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Lagrangian formulation of Newtonian cosmology
(Formulação lagrangiana da cosmologia newtoniana)
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In this paper, we use the Lagrangian formalism of classical mechanics and some assumptions to obtain cos-
mological differential equations analogous to Friedmann and Einstein equations, obtained from the theory of
general relativity. This method can be used to a universe constituted of incoherent matter, that is, the cosmo-
logic substratum is comprised of dust.
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Neste artigo usamos o formalismo Lagragiano da mecânica clássica e algumas hipóteses para obter as equações
diferenciais cosmológicas análogas às equações de Friedmann e Einstein, obtidas a partir da teoria da relativi-
dade geral. Este método pode ser usado para um universo constitúıdo de matéria incoerente, isto é, o substrato
cosmológico é composto de poeira.
Palavras-chave: energia total, equações cosmológicas, nuvem de poeira.

1. Introduction

The modern cosmology, relativistic or Einsteinian, is
described using the theory of general relativity, whose
formulation is geometric, so that the descriptions of the
cosmological effects are associated to spacetime geome-
try. This formulation makes use of the spacetime con-
cept which is worked out through the differential mani-
fold concept. Others themes of modern mathematics, of
complex nature, such as tensor algebra and continuous
groups, are also used in this formulation [1].

Initially, the Einsteinian cosmology was not accep-
ted to describe the universe, constituting simply in one
more new cosmological theory. At the beginning, more
exactly in the year of 1917, two solutions were found:
one by Netherlander astronomer Willem de Sitter, and
other by Albert Einstein. The first was of a universe
with matter, while the second led to existence of an
empty universe. Other solutions were found by Alek-
sandr Friedmann [2] and Georges Lemâıtre [3], which
gone unnoticed until the discover of the American astro-
nomer Edwin Hubble concerning the cosmological Dop-
pler effect by examining the light from distant stars.
Hubble’s discovery led cosmologists to conclude that
the redshift of the emitted light by these stars could be
associated to the fact that the universe would expand.

In these first years of the 1930’s, the Einsteinian
cosmology began to be accepted, now with less restric-

tions, in the sense that it predicted a model compatible
with the astronomical observations. However, in 1934,
Milne and McCrea [4,5] adopted an approach based on
Newtonian theory, in which it has no sense to associate
the gravitational phenomena to the effects of the spa-
cetime curvature. In this context, was shown that the
universe behavior could be understood on the basis of
classical physics, which does not use the mathematical
complexity in the study of the universe, as is the case of
Einsteinian cosmology. This mean, among other things,
that is possible, in this scenario, get back the same re-
sults provided by homogeneous and isotropic models of
the universe, in a simpler way from the mathematical
point of view.

In Milne approach, called Newtonian cosmology, the
expansion of the universe was not something dynamic,
inherent to the universe itself. In this, the universe
is static. However, it was necessary to incorporate
the Hubble observations about the expanding universe.
The solution was to admit that the observed expansion
is associated to the motion of particles (galaxies) in
the universe. Therefore, this particles motion in a sta-
tic space would produce the same phenomena as those
generated by stationary particles in the expanding uni-
verse. Thus, the expansion was understood as being
caused by the movements of the particles, and not the
space, allowing preserve Euclidean geometry, thus not
having the need to introduce the curved spacetime of
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the relativistic approach. Newtonian cosmology was
originally formulated for null pressure. Some decades
later, the pressure term was included [6,7]. We can in-
troduce also in the Newtonian approach to cosmology a
term containing the cosmological constant, associated
with a kind of cosmological force. This term, propo-
sed by Einstein, has been the subject of several stu-
dies, especially in recent years, with the aim to explain
the question related to the accelerated expansion of the
Universe.

As shown by Milne and McCrea [4,5], in Newtonian
cosmology the cosmological equation is obtained from
the equation of motion for particles (galaxies) submit-
ted to gravitational forces [8, 9]. This leads us imme-
diately to an idea of use the formalism developed by
Lagrange and Hamilton, since such it provides us the
equation and integral of motion, respectively.

This paper is organized as follows. In section 2
we present the cosmological principle in the Newtonian
version. In section 3 we introduce some assumptions
about the structure of the universe, and then we obtain
the analogous of the Einstein equation for the scale pa-
rameter. In section 4 we obtain the analogous of the
Friedmann equation. Finally, in section 5 we present
our conclusions.

2. Cosmological principle

The cosmology is based in a principle of simplicity,
which is the generalization of Copernican principle. It
afirms that: in each epoch, the universe presents the
same aspect in all points, except by local irregularities.
Thus, our universe in a certain determined Newtonian
time, t = constant, is isotropic and homogeneous.

3. Cosmological equation

We admit as hypothesis that the cosmological substra-
tum is made by a gas cloud in expansion, in an arbi-
trarily large volume, however finite. The particles that
constitute this gas are the galaxies. We assume that the
pressure in the cloud will be given by p = p(t), which
in the simplest cosmological models it is assumed to be
null, which implies that the cosmological gas cloud is
really a dust cloud (incoherent matter).

Two basic equations of cosmology govern the ex-
pansion of the universe. They can be understood as
statements about energy, since there is a constant like
the sum of kinetic and gravitational energy for the mo-
tion of a galaxy in the expansion. The expansion of the
universe is observed with the relative motion of the ga-
laxies. The universe is like an expanding gas, but the
units are galaxies, and an individual galaxy does not
expand.

The Hubble law describes what is observed. The
speeds of galaxies moving away from us are proportio-
nal to their distances from us. Galaxies at distance R

are moving away from us with average speed

dR

dt
≡ Ṙ = HR , (1)

where H = H(t) is the Hubble parameter. The Hubble
law is what we expect to observe in a spatially isotropic
uniformly expanding universe. We assume it would be
the same for observers at any other location, and that
the universe is, in fact, homogeneous, or in other words,
the same everywhere and at any given time.

Gravity pulls the galaxies together and slows the ex-
pansion of the universe. If distances are measured from
a typical galaxy, which could be at any location, the
force of gravity on a galaxy at distance R coming from
the mass of homogeneous universe inside the sphere of
radius R is the same as if all the mass were at the cen-
ter of the sphere. There is no force arising from the the
region outside to the sphere.

The kinetic energy for the motion of a galaxy ex-
pressed in fixed rectangular coordinates (comoving) is
a function only of Ṙ and, if the galaxy moves in a con-
servative force field, the potential energy is a function
only of R. Thus, we can write

T = T (Ṙ) , (2)

U = U(R) . (3)

With the usual expressions for the kinetic and gravi-
tational potential energies, the Lagrangian L = L(q, q̇)
for the motion of a galaxy of mass m in the expansion
is

L(R, Ṙ) = T − U =
1

2
mṘ2 +

GMm

R
, (4)

where we choose the generalized coordinates q = R and
q̇ = Ṙ. In Eq. (4) M is the total mass of the universe,
that we assume to be distributed in a sphere of radius
R.

If we assume that there is a cosmological force on a
particle (galaxy) of the gas, given by [8]

FΛ =
1

3
ΛmR , (5)

where Λ is the cosmological constant, we have an addi-
tional potential energy given by

UΛ = −
∫ R

0

FΛdR
′ = −1

6
ΛmR2 . (6)

This implies that the Lagrangian, given by Eq. (4),
changes to

L(R, Ṙ) = T − Ueff = T − U − UΛ =

1

2
mṘ2 +

GMm

R
+

1

6
ΛmR2 . (7)

Now, using the Euler-Lagrange equation, namely

∂L
∂q

− d

dt

(
∂L
∂q̇

)
= 0 , (8)
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we have:
∂L
∂R

= −GMm

R2
+

1

3
ΛmR ; (9)

∂L
∂Ṙ

= mṘ ⇒ d

dt

(
∂L
∂Ṙ

)
= mR̈ . (10)

Substituting Eqs. (9) and (10) into Eq. (8), we obtain
the equation of motion

R̈ = −GM

R2
+

1

3
ΛR . (11)

Since the mass of the sphere is given by

M =
4

3
πR3ρ , (12)

where ρ is the mass density, Eq. (11) becomes

R̈ = −4

3
πGρR+

1

3
ΛR . (13)

Therefore, this is the Newtonian cosmological equation
for the scale parameter R that governs the universe ex-
pansion. This equation is analogous to Einstein equa-
tion obtained from theory of general relativity [1], in
the case p = 0, that is, dust cloud.

4. Cosmological differential equation

According our previous assumption the time is homo-
geneous within an inertial reference frame. Therefore,
the Lagrangian that describs a closed system, i.e., a
system not interacting with anything outside the sys-
tem, cannot depend explicitly on the time. In our case,
the Lagrangian is likewise independent of the time, be-
cause the system is under the action of a uniform force
field. Thus, the constant quantity of the motion is H,
called Hamiltonian of the system, which can be defined
as

H =

(
∂L
∂q̇

)
q̇ − L . (14)

Using the Eq. (7), we obtain

E =
(
mṘ

)
Ṙ− 1

2
mṘ2 − GMm

R
− 1

6
ΛmR2 , (15)

where we renamed the constant H by E, total energy,
which is the constant of the motion for this case. Iden-
tifying some constants in Eq. (15), it can be rewritten
as

Ṙ2 =
C

R
+

1

3
ΛR2 − k , (16)

where C = 8πGρR3/3 and k = −2E/m are constants.
Therefore, this is the cosmological differential equation
for the scale parameter R that governs the universe
expansion. This equation is analogous to Friedmann
equation obtained from theory of general relativity [1].

5. Conclusions

In this paper, we presented a new method to obtain
the cosmological differential equations, which are ana-
logous to Friedmann and Einstein equations, in the case
of null pressure. This method is equivalent to one deve-
loped by Milne and McCrea in the sense that we started
from statements about the total energy for a system of
particles (galaxies) which constitute the cosmological
substratum.

The Newtonian approach is quite simple, from the
conceptual and mathematical point of views. Thus, the
approach based on classical mechanics permits to ob-
tain in a simple way an explanation about some aspects
of the universe we observe today.

The description of natural phenomena addressed
by modern cosmology can, therefore, be investigated
within a purely classical perspective, using the flat and
static space, the Newtonian time, the dynamics of La-
grange and Hamilton, and the Newton’s law of universal
gravitation, plus some ad-hoc hypotheses. This appro-
ach avoids the mathematical complexity needed in the
Einsteinian description, and provides the same relati-
vistics results, within certain limitations, naturally.
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