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Numerical evaluation of the escape time of a classical point particle

from an annular billiard
(Estimação numérica do tempo de escape de uma part́ıcula puntual clássica em um bilhar anular)
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A two-dimensional annular billiard consisting of a region confined within two concentric circumferences, the
outer of radius R and the inner of radius r, is considered. The escape time of a point particle projected at a given
angle within this billiard is numerically evaluated in terms of the size of the opening in the billiard. The problem
is solved by means of classical mechanics and can be of interest for advanced high school physics students or
undergraduate college physics students.
Keywords: classical mechanics, chaos, computational physics.

Consideramos neste trabalho um bilhar bidimensional que consiste em uma região circunscrita por duas cir-
cunferências concêntricas de raio externo R e interno r, respectivamente. O tempo de escape de uma part́ıcula
projetada por um certo ângulo dentro deste sistema é calculada numericamente em termos do tamanho da
abertura no bilhar. O problema é resolvido usando mecânica clássica em um ńıvel que pode ser apresentado a
estudantes do ensino médio e graduandos em f́ısica.
Palavras-chave: mecânica clássica, caos, f́ısica computacional.

1. Defining the problem

The study of reflections of point particles within a bil-
liard of a given shape with perfectly reflecting walls
is a well known topic in the literature [1-3]. Here we
consider a billiard whose walls are two reflecting con-
centric circumferences; i.e., an annular billiard. Our
interest in this particular shape is given by the possi-
bility of tracing a parallel between the escape time of
the point particle moving at a constant speed V within
the billiard and the analogous problem of a light ray
“trapped” within systems of similar shape [4].

The main question we would like to address in the
present work is the following. In case we project an
incoming point particle from an aperture in the billiard
a given angle θ with respect to the horizontal, after
what interval of time will the same particle emerge out
of the billiard, assuming that the aperture has a finite
size? This question is well posed, since, as we shall see,
one could consider two cases. In the first case, for an-
gles θ greater than some critical value θc, the system
behaves as if the inner circumference were not present,
since the particle never hits its wall. The problem be-
comes thus similar to the well-known topic of circular
billiards. In the second case, on the other hand, when

collisions with the inner wall are allowed (0 < θ < θc),
either a periodic or non-periodic trajectory is followed
by the point particle in case the aperture is point-like.
Of course, in case the aperture has finite dimensions,
there is a finite escape time and the trajectories in the
configuration space cannot in general be classified in
the same way.

In the case the point particle goes through a closed
trajectory, it comes to the starting point after a given
number of reflections, and the escape time is easily cal-
culated even in the presence of a point-like opening.
In the other case, when a non-periodic trajectory is fol-
lowed, the particle will eventually come close enough to
the starting point in such a way that it will escape from
the area enclosed within the concentric circumferences
if the intake has finite dimensions. In the latter case,
a computer algorithm can allow numerical solution of
the problem.

2. Some graphical and analytic notes

Let us start by defining the radius of the inner and
outer circumferences as r and R, respectively. Let also
assume that the point particle enters the outer circum-
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ference of center O at P0, as shown in Fig. 1, at an
angle θ with respect to the horizontal. If we were just
to consider the particle’s trajectory inside a single cir-
cumference, as shown in Fig. 1, then the path followed
is obtained in the following simple way: First draw the
segment P0P1; then draw segments Pn−1Pn all tangent
to the circumference of radius d equal to the distance
between the point O and the segment P0P1. This pro-
cedure gives the starred pattern in Fig. 1.

Figura 1 - Trajectory of a point particle bouncing elastically
within a circumference of radius R and center O.

We would now like to discuss the above construc-
tion from an analytic point of view. A representation
of segment P0P1 can be given in terms of the difference
of two complex numbers, ρ0 and ρ1 (see Fig. 1), in such
a way that

P0P1 = ρ1 − ρ0 = R ei(φ1−φ0) = R eiϕ, (1)

where φ0 and φ1 are the angles the vectors ρ0 e ρ1,
represented on the complex plane, make with the hori-
zontal. If we now set ϕ = φ1 − φ0, we can write

PkPk−1 = ρk − ρk−1 = R ei(φk−φk−1) = R eikϕ, (2)

where k is an integer. The segmentPkPk−1 will thus co-
incide with P0P1 if the following condition is satisfied
after k iterations of the procedure described above

eikϕ = eiϕ ⇒ (k − 1)ϕ = 2sπ, (3)

s being an integer. Eq. (3) can be written as follows

mϕ = 2 (n− 2)π (4)

by setting k − 1 = m and s = n − 2, with n > 2 and
m >1 integers. Notice that for m = 2 and n = 3 we
have ϕ = π, so that the particle enters at φ0 = 0,

bounces once at φ1 = π, and then leaves the circumfer-
ence at φ2 = 2π. In this case, the quantity tE = 4R

V , V
being the particle’s speed, is the minimum escape time
from a circumference of radius R. In the case n = 3 and
m =3, 4, 5, . . . we obtain regular polygons of perimeter
pm with 3, 4, 5 . . . sides, respectively, all inscribed in
the circumference of radius R. In this cases, the escape
time is tE = pm

V .
In the case of non-periodic orbits, on the other hand,

condition (3) is not satisfied and the point particle is
seen to wander within the annular region of outer ra-
dius R and inner radius d, never coming back to the
starting pointP0.

3. Escape time

The purpose of the present work is to find the es-
cape time for a point particle confined within two con-
centric circumferences, whose trajectory is schemati-
cally shown in Fig. 2. The complex representation
of the trajectory, as done in the case of a single cir-
cumference, is useful also in this case. Let us then
start by considering a particle entering the region of
interest for our analysis from P0 as shown in Fig. 2.
The partial trajectory P0Q0P1is a broken line, whose
characteristics are shown in Fig. 2, if the angle θ
(0 ≤ θ < π

2 ) at which the particle enters the annu-

lar region is such that θ < tan−1
(

r√
R2−r2

)
= θc. In

the case tan−1
(

r√
R2−r2

)
≤ θ < π

2 , the particle moves
as if the inner circumference were not present. Notice
that the critical angle αc is complementary to θc, so
that αc = tan−1

(√
R2−r2

r

)
. The relation between the

angles α and θ can be found by trigonometry to be

θ = sin−1

(
x sin α√

x2 − 2x cosα + 1

)
, (5)

where x = r
R .

Figura 2 - Trajectory followed by a point particle, starting from
P0 at speed V , confined within two concentric circumferences of
radii r and R > r, respectively.
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We shall not consider cases similar to those treated
in the previous section, and will thus assume θ < θc.
We therefore indicate with Pk (k = 0, 1, 2, . . . ) and
Qk (k = g, 1, 2,. . . ) the points on which the particle
impinges on the outer and inner circumference, respec-
tively. Therefore, we may represent segments Q0P0 and
P1Q0 by means of the three following vectors ρ0 = R,
σ0 = r eiα and ρ1 = R e2iα, where α is the angle be-
tween ρ0 and σ0, as follows

Q0P0 = σ0 − ρ0 = r eiα −R, (6)

P1Q0 = ρ1 − σ0 = eiα
(
R eiα − r

)
. (7)

In general, we may thus write

QkPk = σk − ρk = ei2kα
(
r eiα −R

)
, (8)

Pk+1Qk = ρk+1 − σk = ei(2k+1)α
(
R eiα − r

)
, (9)

for k = g, 1, 2,. . . In Eqs. (7a-b), of course, we have set
ρk = R ei2kα and σk = r ei(2k+1)α. By now imposing
that QkPk = Q0P0, or, equivalently, Pk+1Qk = P1Q0,
in order to have closure of the trajectory after exactly
k mechanical reflections on the inner circumference, we
have ei2kα = 1, so that

kα = Nπ, (10)

where N is an integer. Notice that Eq. (10) is only
formally similar to Eq. (4). Here, in fact, one should
keep in mind that the angle α must lie in the range[
0, tan−1

(√
R2−r2

r

))
and that it is different, in defini-

tion, from the angle ϕ in Eq. (4). The dependence of
the critical angle αc = tan−1

(√
R2−r2

r

)
on the positive

ratio x = r
R ≤ 1 is given in Fig. 3, where it can be seen

that αc is a monotonously decreasing function of x. In
this way, not all possible choices of k and N in Eq. (10)
represents a path defined in Eqs. (7a-b). In summary,
we may state that if the indices k and N satisfy the
following condition

Figura 3 - Critical angle αc (above which the system behaves as
if the inner circumference were not present) as a function of the
ratio of the radii r/R.

0 ≤ tan
(

Nπ

k

)
< αc, (11)

then the escape time can be calculated in terms of the
angle α = Nπ

k as follows

tE =
2k
√

r2 + R2 − 2rR cosα

V
, (12)

where V is the constant speed of the particle. Eq. (5)
can be used to relate the escape time tE to θ. The
above relation can be used, more generally, as we shall
see in the following section, even when α 6= Nπ

k .

4. General behavior of the system

Up to this point we have not considered the possibility
of having a point particle in P0 with an initial velocity
making, with respect to the horizontal, an angle α be-
ing an irrational multiple of π. Therefore, in the present
section we shall consider also cases in which α 6= N

k π,
N and k being positive integers and the angle α is such
that 0 ≤ tanα <

√
R2−r2

r . In this case the point parti-
cle will suffer reflection on both circular walls and will
never go back to its starting point, even though it can,
after a certain time, get close enough to it. The par-
ticle will thus be able to exit from the annular region
in which it is temporarily confined if the opening has
finite height ε, as shown in Fig. 4. In this way, a fi-
nite escape time tE will still exist for the system. Of
course, in this case the quantity tE will go to infinity as
the dimension ε of the opening goes to zero and, in the
absence of dissipation, the system will realize a non-
periodic perpetual motion within the annular region.
In what follows we shall give a numerical estimate of
the escape time in the case the particle wanders within
the region in between the two concentric circumferences
and, at the same time, the dimension of the opening is
assumed to be finite.

Figura 4 - After k mechanical reflections on the inner circumfer-
ence, the particle impinges on a region very close to the opening
through which it had initially passed (on the right). If the vector
ρk is close enough to ρ0, as shown in the inset on the left, then
the point particle is able to escape from the annular region in
which it was temporarily trapped.
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By considering the inset in Fig. 4, where we set
αk = 2kα, we see that the condition for which the light
ray might escape after k reflections is simply the fol-
lowing

0 < |sin (2kα)| < ε

R
, (13)

provided cos (2kα) > 0. The above relation can readily
be used in a numerical algorithm, so that the escape
time may be computed for varying values of θ , recall-
ing Eq. (5), in the interval 0 ≤ θ < θc. In Fig. 5
we report a numerical evaluation of an averaged escape
time T . In order to find T , we start from a list of val-
ues of tE as given by Eq. (12), found by a numerical
algorithm based on condition (13) for various values of
the dimensions of the opening ε

R , choosing r
R = 0.75

and V = 10 m
s . We then average the outcome of the

escape times calculated for specific values of the angle
θ over an angular range of about ∆θ = 1.21 degrees.

Figura 5 - Escape time of a particle trapped within an annular
billiard for V = 10 m/s, r/R = 0.75 and ε/R = 0.0010 (tri-
angles), 0.0015 (empty diamonds), 0.0020 (full diamonds). The
critical angle for r/R = 0.75 is 48.6◦.

This averaging process is necessary in order to show,
in an experimentally significant fashion, the outcome of
our analysis, given the highly scattered nature of plots
obtained when evaluation of tE is performed. A large
amount (10.000 in our case) of tE values in the angu-
lar range 0 < θ < θc are then grouped in such a way to

form intervals of amplitude ∆θ = 1.21degrees . Consid-
ering the outcome of this averaging process, in Fig. 5
we notice that the quantity T lies below the value of
200 s for most projection angles θ for the choice of pa-
rameters given. However, as the angle θ increases, the
average escape time rises in the vicinity of θc. Natu-
rally, the obvious result that for increasing values of the
dimension of the opening the escape times are, on the
average, smaller for a given angular range, is confirmed
by the present simple analysis.

5. Conclusions

We have considered the problem of the motion of a
classical point particle confined within an annular re-
gion with perfectly reflecting walls. Assuming finite
dimensions of the hole from which the point particle is
projected within the billiard with speed V at an angle
θ with respect to the horizontal, we evaluate, numeri-
cally, by means of a rather simple algorithm, the escape
time from the billiard. The escape time is seen to in-
crease, on the average, with increasing values of the
projecting angle θ. The analysis of the problem can
be proposed to advanced high school students or un-
dergraduate college students. Future work will involve
light propagation within a region enclosed between two
coaxial cylinders, the external one presenting a circular
opening from which a light ray may enter or exit.
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