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Structure of the analytical physical theories
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We present an analysis of the first analytical physical theories developed after the introduction of calculus. The
underlying framework of these theories is the differential and integral calculus in the form developed by Leibniz.
We point out the fundamental laws, or principles, or postulates upon which they are founded, and show some
results or laws that are derived from them. We point out the main concepts of the theories drawing attention
to the primitive or primary concepts, which are those undefinable. The theories that we describe are those that
emerged just after the introduction of calculus, from Varignon to Navier. The areas of these theories include
mechanics, electricity, magnetism, light, propagation of sound and propagation of heat.
Keywords: Physical theories, analytical theories, analytical mechanics.

1. Introduction

A scientific theory can be understood as a symbolic
framework whose structure is based on a set of funda-
mental laws, or principles, or postulates, from which we
derive other laws by deductive reasoning. The framework
also contains the concepts of the theory, some of them
being the primitive or primary concepts, which are
undefinable. An essential feature of the theory is the
list of correspondence between the symbolic abstractions
of the theory and the real objects, which is usually
called interpretation [1]. Without the correspondence,
a scientific theory is is just an abstraction that we call
mathematics. In a previous paper [1], we have examined,
in the light of this meaning of a scientific theory, the
geometric physical theories from Euclid to Newton. Here
we examine the analytical physical theories from the
mechanics of Varignon, which appeared in the very
beginning of the eighteenth century, until the fluid
mechanics of Navier, in the first half of the nineteenth
century [2–10].

The underlying mathematics of the physical theo-
ries up to the seventeenth century was mainly geom-
etry [1]. This was the case of the scientific theories
developed by Galileo, Descartes, and Newton. When
Galileo declared that mathematics was the language
of nature, he meant geometry. However, there were
important differences in the use of geometry by these
authors. Descartes employed geometry in association
with algebra, a method that came to be known as
analytical geometry. Newton, in his Principles, used
geometry in association with a limiting procedure, called
the method of first and last ratios, to determine the
tangents of curves and areas of geometric figures.

* Correspondence email address: oliveira@if.usp.br

In the last quarter of the seventeenth century, a
powerful method emerged which replaced geometry as
the underlying mathematics of physical theories [1].
The method called differential and integral calculus
was independently invented by Newton and Leibniz.
It consisted of a convenient procedure of dealing with
evanescent quantities which allowed the determination
of tangents of curves and areas of geometric figures.
The evanescent quantities used by Leibniz were algebraic
quantities that he called differentials. He introduced the
notation dx for the differential of a variable x, which
is the notation that we use today. If y and x are the
rectangular coordinates of a point in a certain curve, the
tangent at this point is the ratio dy/dx. Newton called
this ratio fluxion but he used a notation distinct from
that of Leibniz. The method of first and last ratios used
by Newton in the Principles may be understood as a
geometric version of calculus.

Just after its invention, the infinitesimal calculus in
the form given by Leibniz was applied by Leibniz himself
and by Jacob and Johann Bernoulli to solve mechanical
problems, an example of which was the brachistochrone
problem [2]. It also served as the underlying mathematics
for the physical theory that appeared from the beginning
of the eighteenth century onward. We call these theories
analytical theories as they use infinitesimal analysis
which is another name for calculus. These include the
theories related to the areas already treated by the
geometric theories such as mechanics and optics, but
include new areas such as sound, electricity, magnetism,
and propagation of heat.

Our critical analysis is concerned mainly with theories.
We point out their principles and primary concepts
and present the derivation of some laws and concepts.
The development of scientific ideas and theories is
not free from discussions among scientists about their
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viewpoints. For instance, a debate appeared at the
end of the seventeenth century about the appropriate
way of measuring the mechanical effects, whether by
the quantity of motion, which is mass multiplied by
the velocity, or by the vis viva, which is the mass
multiplied by the square of the velocity [9]. Some of these
viewpoints will be also the object of our analysis. We will
stick as closely as possible to the original terminology
and the way the differentials were handled. We use the
same mathematical symbols with the exception of the
use of the slash symbol which, in some cases, will replace
the usual horizontal fraction sign.

2. Varignon

Pierre Varignon was born in 1654 at Caen, France.
He studied at the Jesuit College in Caen and at the
University of Caen, where he earned a degree in 1682. He
became a priest in 1683 and left Caen for Paris in 1686.
The success of his first book, on the subject of statics,
published in 1687 lead him to be appointed professor of
mathematics at the Collège de Quatre-Nations in Paris
in 1688. He lived in Paris until his death in 1722 [11].
His main contribution was in the area of statics where
he emphasized the principle of the composition of forces
by the rule of the parallelogram [11].

The first works of Varignon did not involve the
infinitesimal calculus. However, by 1700 he already had
enough knowledge of infinitesimal calculus to write a
series of three papers on mechanics where he applied
the new mathematical tool in the form developed by
Leibniz [9]. These papers [12–14], published in 1700,
were based on the mechanics of Newton’s Principles and
it is possible that they are the first papers where the
Newton laws of motion were written in the form of the
infinitesimal calculus developed by Leibniz [9].

The first paper [12] deals with the motion of a body
along a straight line under the action of a force. Varignon
starts by introducing two rules concerning the motion of
a body along a straight line. The first rule is

v = dx

dt
, (1)

and relates the velocity v with the element of space
dx and the element of time dt. The increment of the
velocity is dv = d2x/dt where dt is constant, that is, t is
considered to be the independent variable. The second
rule is,

f = dv

dt
, (2)

or f = d2x/dt2, and relates the force f with the increase
in velocity. The elimination of dt between the two rules
written as dx = vdt and fdt = dv gives fdx = vdv.

The first rule is understood as the definition of
velocity. The second rule is Newton’s law for rectilinear
motion with f understood as the force divided by the

Figure 1: QLN is the trajectory of a body acted by a central
force towards the center C. The point K is close to the point
L. The distance CR and CK are equal and RP is perpendicular
to LK.

mass of the body. Varignon remarks that the two rules
(1) and (2) give at once the proposition 39 of book
1 of Newton’s Principles. The integration of equation
fdx = vdv gives ∫

fdx = 1
2v

2, (3)

or

v =
√

2
∫
fdx, (4)

which is the first part of proposition 39. Replacing this
result in dt = dx/v, and after integration,

t =
∫

dx√
2
∫
fdx

, (5)

which is the second part of proposition 39.
The second paper [13] deals with the motion of a body

along a curved line under the action of a central force.
Let QLN be the trajectory of a body, L its position at
a certain instant of time, and K its position after an
elementary interval of time dt, as shown in Figure 1.
The distance LK is ds and the velocity of the body is

v = ds

dt
, (6)

from which follows that dv = d 2s/dt, considering dt
constant. The distance of the point L to the center of
force C is denoted by r and LR is dr. Considering that
the triangles LRK and RPL can be taken as similar, we
may write LP/LR=LR/LK or LP=dr2/ds. Denoting by
f the force towards the center C, its component along
LK will be f(dr/ds). The increment dv in the velocity
will be proportional to the force along LK and to the
increment in time dt so that dv = f(dr/ds)dt from which
we get

f = ds

dr

dv

dt
. (7)
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If we recall that v = ds/dt and that dv = d2s/dt, then
the equation (7) can be written in the equivalent forms

f = ds

dr

d2s

dt2
= v

dv

dr
. (8)

Varignon calls (6) and (7) the first and second rules
of the motion along a curved line. The first rule is the
definition of velocity. The second rule is the Newton’s
law of motion related to the tangential component of
the force. Varignon uses the second rule to determine
the force that acts on a body that follows a given curve,
assuming that it is central. To this end he uses, in
addition, another relation valid for central forces that
was demonstrated by Newton. This relation states that
the line connecting the body to the center of force sweeps
equal areas in equal time. Denoting the length of the line
segment RK by dz, then the area swept in an interval of
time dt is half rdz, considering that RK is perpendicular
to CL. In analytical form, the relation is thus rdz = γdt
where γ is a constant which Varignon sets equal to unity.

The first example of a curved trajectory is an ellipse
where the force is directed towards the center of the
ellipse. The differential equation of an ellipse of major
axis a and minor axis b is written in terms of the
variables z and r as

dz = abdr√
(a2 − r2)(r2 − b2))

. (9)

Here r is the distance to the center of the ellipse. From
this relation we determine ds =

√
dr2 + dz2, which is

ds = rdz

ab

√
a2 − b2 − r2. (10)

Taking into account that rdz = γdt and that v = ds/dt,
we obtain

v = γ

ab

√
a2 − b2 − r2. (11)

Now we use f = vdv/dr to find

f = − γ2

a2b2
r, (12)

that is, the force is proportional to r, the distance of the
body to the center of force.

In the third paper [14], Varignon treats the problem
of finding the force acting on a body following an ellipse
but now the force is directed towards one focus of the
ellipse. The differential equation that describes an ellipse
of major axis a and minor axis b is

dz = bdr√
2ar − r2 − b2

, (13)

where here r is the distance to the focus. From this
relation we determine ds =

√
dr2 + dz2 which is

ds = dz

b

√
2ar − r2. (14)

Taking into account that rdz = γdt and that v = ds/dt,
we find

v = γ

br

√
2ar − r2. (15)

Now we use f = vdv/dr to reach the result

f = − aγ
2

b2r2 , (16)

that is, the force is proportional to the inverse of distance
squared.

Varignon remarks that the inverse square law given
by (16) is in accordance with the propositions 11, 12 and
13 of book 1 of Newton’s Principles. These propositions,
demonstrated by Newton from his laws of motion, states
that the bodies following an ellipse, a hyperbole, and a
parabola with forces directed to their focus follow the
inverse square law. Varignon remarks also that it is in
accordance with the results given by Leibniz in a paper
published in 1689, two years after the Principles. Based
on differential geometry Leibniz showed in this paper the
inverse square law for an ellipse [15].

3. Daniel Bernoulli

Daniel Bernoulli was born in 1700 at Groningen, Nether-
lands, to where his family had moved some years earlier
coming from Basel, Switzerland. At the age of five his
family returned to Basel. He was taught mathematics by
his father and by his older brother. He studied medicine
at Basel, Heidelberg, and Strasbourg and obtained his
doctorate in 1721 at the University of Basel. He went
to St. Petersburg in 1725 as a professor of mathematics
where he stayed for more than seven years. In 1733 he
returned to Basel and thereafter he lived permanently
in this city, where he died in 1782 [16]. He lectured in
botany and physiology at the University of Basel, and
from 1750 he held the chair of physics in this university
[16]. His chief work is Hydrodynamics, published in 1738,
but he published on medicine, mathematics, mechanics
and theory of probability.

In his Hydrodynamics [17–19], Bernoulli presents a
theory of motion of incompressible fluids, introducing
the concept of pressure for fluids in motion, or hydro-
dynamic pressure. The novelty from previous works
on the subject is the consideration of both pressure
and motion [20]. He treated basically the flow of fluids
through tubes and the fluid outflow through orifices.
His theory of fluid dynamics is based on the principle
of the conservation of the living force which he stated
more precisely as an equality between the actual descent
and the potential ascent. In modern terms, this is
understood as the conservation of the sum of kinetic
energy and potential energy. He went on to say that this
principle was formulated by Huygens, which in turn was
a generalization of a law established by Galileo for the
motion of bodies in inclined planes.
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Figure 2: An illustration of Hydrodynamics [17] used in the
demonstration of the Bernoulli equation. The vessel ABGC is
kept full of water, and o is the hole through which the water
escapes at constant velocity.

The statement given by Bernoulli of the principle
formulated by Huygens is as follows. If a certain number
of bodies begin to move from rest, the velocity acquired
by each one is such that the sum of the products of their
masses by the square of their velocities is proportional to
the vertical height through which their center of gravity
descends, multiplied by the total mass.

Bernoulli assumes another principle which, according
to his words, he conceived by thought. If the fluid is
divided into layers perpendicular to the direction of
movement then the particles of the same layer have the
same velocity from which follows that the speed of the
fluid is inversely proportional to the area of the layer.
This principles should be understood as the conservation
of mass.

The hydrodynamics formula known as Bernoulli equa-
tion is derived in paragraph 5 of section 12 of the
Hydrodynamics. He considers a very large vessel which
is kept full of water, having a horizontal cylindrical tube,
as shown in Figure 2. At the end of the cylindrical tube
there is an orifice through which the water escapes at a
constant velocity. It is required to find the pressure on
the walls.

Bernoulli points out that the obstacle created by the
smallness of the orifice causes an over-pressure on the
tube, which is transmitted to the walls. He then assumes
that the over-pressure is proportional to the acceleration,
or to the increase in velocity, that would occur if the
obstacle is removed. The acceleration is determined as
follows [3, 10].

Let v be the velocity of the fluid in the tube Ed so
that the interval of time for a particle to traverse ac
is dt = dx/v where dx is the length ac. The volume
of the region acdb is Adx where A is the area of the
cross section, and the corresponding mass is ρAdx, where
ρ is the density of the fluid. The increase of living
force during the interval of time dt has two parts. One

part comes from the portion of fluid entering the tube
through EG, which is equal the mass of acdb multiplied
by the velocity squared, or (ρAdx)v2. The other part
comes from that part of the fluid leaving the tube Ed,
which is (ρA`)[(v+ dv)2− v2] or 2ρA`vdv where ` is the
distance Ea. The total increase of living force, which
is the actual descent, is thus ρA(dxv2 + 2`vdv). The
corresponding potential ascent is proportional to the
mass ρAdx multiplied by the height h of the surface
AB above the axis of the tube, which we write as
2g(ρAdx)h, where 2g is a constant of proportionality.
But this quantity should be equal to the actual ascent
at the hole which is the mass times the square of the
velocity v0 at the hole, or (ρAdx)v2

0 .
By the principle of living force, the actual descent

equals the potential ascent and

dxv2 + 2`vdv = dxv2
0 , (17)

or

v
dv

dx
= v2

0 − v2

2` . (18)

We now observe that the left hand side of this equation
is the acceleration dv/dt because as dt = dx/v it follows
that dv/dt = vdv/dx. Therefore, the over-pressure is
proportional to the right hand side of equation (18).
To determine the coefficient of proportionality, Bernoulli
argues that when the orifice is infinitely small the veloc-
ity v is negligible compared to v0 and the over-pressure
becomes the hydrostatic ρgh = ρv2

0/2. Therefore, the
over-pressure, which is the difference of the pressure p
in the tube and the pressure p0 in the hole, will be

p− p0 = 1
2ρv

2
0 −

1
2ρv

2, (19)

which is the Bernoulli equation.
The right hand of equation (19) can yet be written as

ρgh(n2 − 1)/n2 where n is the ratio between the area of
the cross section of the tube and the area of the orifice.
Bernoulli did not present his result in the modern form
given by equation (19) but saying that the pressure is
proportional to h(n2 − 1)/n2.

4. Euler

Leonhard Euler was born in 1707 at Basel, Switzerland.
At the age of thirteen he entered the University of
Basel where he received a master degree in 1723 and
a doctoral degree in 1726. He accepted a position in
St. Petersburg where he arrived in 1727, becoming a
professor of physics in 1731. He was offered a post in
Berlin to where he moved in 1741, living there for 25
years. In 1766, he accepted an invitation to return to St.
Petersburg where he spent the rest of his life. He died
there in 1783 [21]. Euler wrote a vast number of papers in
various branches of mathematics and physical sciences,
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particularly in infinitesimal calculus, geometry, algebra,
graph theory, mechanics, fluid statics, fluid dynamics,
optics, and astronomy. He is most remembered as a
leading mathematician of the eighteenth century but his
contribution to physics is as important [22].

4.1. Dynamics of a particle

In 1736, Euler published his Mechanics [23, 24], a treatise
in two volumes on the dynamics of a particle under the
action of a force. The first volume concerns the uncon-
strained motion, or free motion, and the second, the
constrained motion. In the preface of the treatise, Euler
makes it clear that he uses the analytical method. By
analytical method, he meant the infinitesimal analysis,
understood as the differential and integral calculus in
the form advanced by Leibniz.

According to the fundamental law of motion employed
by Euler, a force acting on a particle changes the motion
of that particle. By a change of motion it is meant not
only the change in the speed but also in the direction of
motion. Thus in the absence of force the body remains
at rest or moving with a constant speed along a certain
direction. In a more modern terminology we would say
that the force changes the velocity, understood as vector
quantity, which comprises its magnitude, or speed, and
its direction. The composition of motion follows the rules
of parallelogram, adopted by Euler, which in the modern
terminology corresponds to the sum of vector velocities.
For the sake of brevity and clearness, we will use the term
velocity in the place of motion whenever it is pertinent.

Tangential and normal forces

Euler analyzes initially the change of motion along a
straight line in which case only the speed changes. If the
particle moves is a straight line then, in accordance with
the law of motion, the increase dv in the speed during
an element of time dt is

dv = fdt, (20)

where f is the force divided by the mass of the particle.
Euler remarks that this relation was considered by
Daniel Bernoulli, who wrote this equation in a paper
about the composition of forces published in 1728 [25].
Taking into account that the elementary distance dy is
related to the velocity by dy = vdt, then vdv = fdy,
which relates the speed and distance. From the relation
dy = vdt we may determine the differential of the second
order d2y = dvdt, considering that t is the independent
variable, or in the language used by Euler, that dt is
constant. Replacing dv = fdt in this equation we find

d2y = fdt2, (21)

which is an expression of the law of motion equivalent
to dv = fdt.

If f is constant, as in a free fall, the integration of
vdv = fdy gives v2 = 2fy, if the particle is at rest

Figure 3: A particle following the trajectory GAH is acted at A
by a force in the direction AE. The line segment BA is tangent
to the trajectory at A, and AO is perpendicular to BA. The point
O is the center of the osculating circle.

when y = 0. The time the particle takes to travel the
distance y, Euler obtains it by integrating dt = dy/v
where v =

√
2fy. The result is t =

√
2y/f , or y = ft2/2,

which is equivalent to y = vt/2.
We treat now the change of speed of a particle when

it moves along a non rectilinear trajectory under a force
that is not in the direction of the motion, as shown in
Figure 3. A and D are two successive positions of the
particle differing in time by an element dt. The velocity
of the particle at the point A has the direction AB,
tangent to the curve, and AB equals vdt, where v is the
speed at A. In the absence of force, the particle would
be found at the point B. As a result of the action of the
force, the particle will be at the point D such that ABDC
is a parallelogram. The side AC of the parallelogram has
the direction of the force and its length is the distance
traveled by the particle if the particle were at rest at the
point A, and is equal to fdt2/2, where f is the magnitude
of the force divided by the mass.

When the particle reaches the point D, its speed will
be v + dv where dv is the increase in the speed from A
to D. Considering that the angle BAD is small, we may
write the distance AD as given by (v + dv/2)dt, so that
AD−AB=dvdt/2. For the same reason, the difference
AD−AB can be set equal to BDcosα where α is the
angle BAC and we reach the result dv = 2(BD/dt) cosα
or

dv = (f cosα)dt, (22)

because BD equals AC and AC= fdt2/2. As α is the
angle between the velocity and the force, the result (22)
says that the change in speed is related to the component
of the force in the direction of the velocity.

Let AO be perpendicular to AB and O be the center
of a circumference passing through the points A and
D. When D approaches A, the circumference becomes
the osculating circumference. Considering that the angle
AOD is twice the angle BAD, the following geometric
relation is valid: DA/2AO=(AC sinα)/DA. This relation
is equivalent to (DA)2/R = fdt2 sinα where R is
the radius AO of the osculating circumference, and we
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recall that AC= fdt2/2. When D approaches A, AD/dt
becomes v and we get

f sinα = v2

R
. (23)

If the particle follows a circumference of radius R with
constant speed v, this equation gives the formula for the
centripetal force f = v2/R because in this case α is a
right angle.

Denoting by y the distance from EA, then d2y =
−fdt2 and equation (22) becomes d2y sinα = −ds2/R
where we used ds = vdt. The differential ds is identified
with DA and equals

√
dx2 + dy2 where dx =DF and

dy =AF. From these relations it follows that sinα =
dx/ds and we get d2y(dx/ds) = −ds2/R, which leads to
the formula

R = − ds3

dxd2y
, (24)

for the radius of the osculating circumference or radius
of curvature.

Central forces

In chapter five of the first volume of the Mechanics,
Euler analyzes the motion of a particle under a central
force. A particle moves along a trajectory FAG under
a central force toward C as shown in Figure 4. At a
certain instant of time the particle is at the position A
with speed v. The line DAB is tangent to the trajectory
and the length of AB is vdt where dt is a small interval of
time. The following notations are used: AE=dz, EB=dr,
AB=ds, AC=r, and CD=p. Considering that the angle
ACE is small, the triangle AEB can be taken similar
to CDA from which follows pds = rdz. Notice that by
denoting the elementary angle ACB by dθ then dz = rdθ,
and r and θ are understood as polar coordinates.

The derivation that we are about to carry out uses
the relation R = rdr/dp involving the osculating radius
OA=R. Denoting by α de angle CAD, then p = R sinα
from which we get dp = dr sinα or dp = dr(dz/ds). As
B approaches A, the angle ACB can be considered to
be equal to the angle AOB from which we obtain the
relation AE/AC=AB/AO or dz/r = ds/R. From these
results we get the desired relation dp = dr(r/R).

The change in speed dv is related to the tangent
component of the force, as given by equation (22).
This result allows us to write dv = −f(dr/ds)dt =
−fdr/v, or

vdv = −fdr, (25)

where f is the force divided by the mass and the minus
sign indicates that the force is toward C, in opposition
to the increase in r. If we let u be the integral of fdr,
the integral of equation (25) gives

v2

2 = −u+ b, (26)

where b is a constant.

Figure 4: A particle following the trajectory FAG is acted at A by
a force in the direction AC. The line segment DAB is tangent to
the trajectory at A and AO is perpendicular to DAB. The point
O is the center of the osculating circle.

Another equation comes from the relation between
the perpendicular component of the force and v2/R,
as given by equation (23), that is, v2/R = f(dz/ds).
Using equation (25) to eliminate f we found dv/v =
−(dr/R)(ds/dz). Taking into account that ds/dz = r/p
and that R = rdr/dp we find dv/v = −dp/p, which
integrated gives vp = k where k is a constant. Using
the relations pds = rdz and ds = vdt, we conclude that
rdz = kdt or r2dθ = kdt. But r2dθ is twice the area of
the elementary triangle CAB, and r2dθ = kdt describes
the Kepler law of areas.

The equation that describes the trajectory is obtained
by replacing v = k/p into equation (26), which gives
k2/p2 = −u + b. Substituting p = rdz/ds = r2dθ/ds in
this equation, the result is

k2ds2

2r4dθ2 = −u+ b. (27)

As ds2 = dr2 + r2dθ2 and u is a function of r, then (27)
is a differential equation involving r and θ. It can also
be written in the equivalent form

dθ = kdr

r
√

2r2(b− u)− k2
, (28)

the integration of which gives θ in terms of r. The time
is obtained by the relation r2dθ = kdt, that is,

dt = rdr√
2r2(b− u)− k2

. (29)

Euler considers several types of central forces. When
the force is proportional to the distance, f = cr, u =
cr2/2, and

dθ = kdr

r
√

2br2 − cr4 − k2
. (30)

Defining the new variable q = 1/r2 − b/k2, we have

dθ = − dq

2
√
a2 − q2

, (31)
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where we are using the abbreviation a2 = b2/k4 − c/k2

The integration of this equation gives q = a cos 2θ and
we reach the result

a cos 2θ = 1
r2 −

b

k2 . (32)

Introducing the rectangular coordinates x = r cos θ and
y = r sin θ, this equation becomes

a(x2 − y2) + b

k2 (x2 + y2) = 1. (33)

which describes an ellipse. The center of force is located
at the point where x and y vanish. But this point is the
center of the ellipse and we conclude that the center of
force is located at the center of the ellipse.

If the central force is inversely proportional to the
square of the distance, f = c/r2, u = −c/r, and the
equation (28) becomes

dθ = kdr

r
√

2br2 + 2cr − k2
. (34)

Defining the new variable q = −1/r + c/k2, we find

dθ = dq√
a2 − q2

, (35)

where we are using the abbreviation a2 = 2b/k2 +c2/k4.
The integration of this equation gives q = a sin θ and we
reach the result

a sin θ = −1
r

+ c

k2 . (36)

Using the rectangular coordinates, we get

(1 + ay)2 = c2

k4 (x2 + y2), (37)

which describes an ellipse. The center of force is located
at the point where x and y vanish, but this point is not
the center of the ellipse. It is a focus of the ellipse, as can
easily be shown. Thus, in this case the center of force is
located at one focus of the ellipse.

The constrained motion of a particle is treated in the
second volume of the treatise. In addition to the forces
determined by the constraint, the body may be acted
by external forces. If the body is constrained to move
along a straight line, not necessarily a straight line,
as if there is no external forces, Euler shows that the
body keeps the same speed. This results follows from
the fact that the forces that results from the constraint
is allways perpendicular to the trajectory. The absence of
tangential force results by equation (22) in the constancy
of the speed. In the proposition of this result, Euler
excludes lines having adjointing elements with a finite
angle, which would yield a nonzero tangential force.

In the following Euler discusses the constrained
motion of a particle under an external forces. A particle
is constrained to move along the trajectory ADB and

Figure 5: A particle following the trajectory BDAM is acted at
D by a force in the vertical direction DF. The line segment DG
is tangent to the trajectory at D and OD is perpendicular to
DG. The point O is the center of the osculating circle.

is under the action of a vertical force along DF, as
shown in Figure 5. We use the notations AH=y, HK=dy,
HD=x, JL=dx, DL=ds. The force divided by the mass is
MF=f , its tangent component is DG=f(dy/ds) and its
normal component is DE=f(dx/ds). We have seen above
that the change in speed dv is due to the tangential
component of the force, dv = −f(dy/ds)dt, and as
ds = vdt, one finds vdv = −fdy. Therefore, if the curve
is given, that is, if x is a function of y, we integrate the
fdy and the speed v may be found along the trajectory.
After v has been obtained, we use the equation ds = vdt
to determine t,

t =
∫
ds

v
. (38)

Let us consider that the vertical force acting on the
particle is the force of gravity. The force of gravity
divided by the mass is denoted by g, which is constant.
Then the integration of equation cdc = −gdy gives
v2/2 = −g(y − h) where h is the value of height y when
the body has velocity zero. The time is determined by

t =
∫

ds√
2g(h− y)

. (39)

If the trajectory BDAM of Figure 5 is a semi-circle, as
happens to a simple pendulum, then x =

√
2Ry − y2,

dx = (R− y)dy/x, ds = (R/x)dy, and

t =
∫

Rdy√
2gy(2R− y)(h− y)

. (40)

To find the time it takes for the body to descend from
the rest to the lowest point of the trajectory, which is
one quarter of the period of oscillation, the integration
is performed from y = h to y = 0.

If h is small,

t = 1
2

√
R

g

∫
dy√

y(h− y)
. (41)

The integral is equal to π from which follows the
result t = (π/2)

√
R/g. This is one quarter of the

DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0160 Revista Brasileira de Ensino de F́ısica, vol. 43, e20210160, 2021



e20210160-8 Structure of the analytic physical theories

period of oscillation. Thus the period of small amplitude
oscillations of a simple pendulum is 2π

√
R/g.

Euler determined the integral in (40) by an expansion
in powers of r = h/2R. To this end he expands
1/
√

2R− y in powers of y and then integrates each term
in the expansion. The result for 4t, which is the period
of oscillation, is

2π

√
R

g

[
1 + r

22 +
(

1.3
2.4

)2
r2 +

(
1.3.5
2.4.6

)2
r3 + . . .

]
.

(42)
Let us consider now that the trajectory BDAM of

Figure 5 is a cycloid. The cycloid holds the property that
its length from the lowest point A to a point of height
y is equal

√
8ay. Therefore, the length of a part of the

cycloid from a point of height h to a point of height y is
s =
√

8ah−
√

8ay. From this result we get ds = −
√

2a/y
which replaced in (39) gives

t =
√
a
√
g

∫
dy√

y(h− y)
, (43)

where the integration is performed from y = h to y = 0,
given thus one quarter of the period of oscillation. This
integral is the same as that found above and equals π
from which follows the result t = π

√
a/g. Thus the

period of oscillation is 4π
√
a/g and is independent of

the amplitude of oscillation. Taking into account that
the radius of curvature is R = 4a the period of oscillation
is 2π

√
R/g, which is the same as that of a simple

pendulum of length R executing small oscillations.

4.2. Hydrodynamics

Euler formulated an analytical theory of fluid mechanics
in three successive papers published in 1757 [26–28]. The
first paper dealt with hydrostatics, and the second and
third with hydrodynamics. The underlying mathematics
is the differential and integral calculus, used in the
analytical form developed by Leibniz. He also employed
the notion of function that he had introduced before [29].
Euler formulates his theory for the static and dynamics
of a fluid by an approach that differs from that used
in his treatise on the dynamics of a particle. Instead of
asking for the position and velocity of a particle at any
instant of time, now a position in space is given and one
asks for the velocity of the particle located at this point
at a given instant of time. The latter form is known as
Eulerian and the former as Lagrangian although both
forms are due to Euler [30]. Therefore, in accordance
with the Eulerian form, the velocity and other properties
such as the density of the fluid are considered to be
functions of the position and time.

He starts by defining within the fluid a rectangular
system of reference consisting of three orthogonal axes.
The coordinates of a certain point of the fluid is denoted
by x, y, and z. At each point of the fluid one associates
the density ρ, the pressure p, and the three components

u, v and w of the velocity, which are all considered to be
functions of x, y, z, and t. In addition, the fluid may be
acted by external forces such as gravity. The components
of the forces per unit mass are denoted by P , Q, and R,
an may depend on the coordinates x, y, and z.

Let us consider an element of volume dxdydz around
a certain point. After an interval of time dt, the elements
dx, dy, and dz change to dx+ dudt, dy+ dvdt, and dz+
dwdt, so that dxdydz changes to

dxdydz

[
1 + dt

(
du

dx

)
+ dt

(
dv

dy

)
+ dt

(
dw

dz

)]
. (44)

We remark that Euler encloses the ratio of differentials
between parentheses to denote a partial differentiation.
The density ρ also changes to a new value which is
determined recalling that the x, y, and z increases by
the amounts udt, vdt, and wdt. The density changes to

ρ+dt
(
dρ

dt

)
+udt

(
dρ

dx

)
+vdt

(
dρ

dy

)
+wdt

(
dρ

dz

)
. (45)

Considering that the mass in the new element of volume,
given by the expression (44), is the mass in previous
element of volume dxdydz, then the product ρdxdydz
should be equal to the product of the expressions (44)
and (45) from which follows

(
dρ

dt

)
+
(
dρu

dx

)
+
(
dρv

dy

)
+
(
dρw

dz

)
= 0. (46)

This equation is referred to as the continuity equation
because it reflects the continuity of the fluid which is
another way to say that the mass is conserved.

If, as it may happen to some fluids, the new element
of volume, given by the expression (44), is equal to the
old one dxdydz, then

(
du

dx

)
+
(
dv

dy

)
+
(
dw

dz

)
= 0. (47)

Fluids obeying this equation are called incompressible.
In modern terms the left hand side is the divergence
of the velocity. Thus an incompressible fluid has zero
divergence.

Next Euler seeks for the fluid equation, which involves
the external forces and the pressure. According to
the laws of motion, the force acting on a particle is
proportional to the change of velocity. To find the change
of velocity of a particle during an interval of time dt, one
should take into account that in this interval the particle
has move to a nearby point. Thus to find the change in
velocity it is necessary to compare the velocity at the
point x, y, and z, at time t with that of the point x+dx,
y+ dy, and z + dz, at time t+ dt. The increases in u, v,

Revista Brasileira de Ensino de F́ısica, vol. 43, e20210160, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0160



Oliveira e20210160-9

and w during dt are Xdt, Y dt, and Zdt where

X =
(
du

dt

)
+ u

(
du

dx

)
+ v

(
du

dy

)
+ w

(
du

dz

)
, (48)

Y =
(
dv

dt

)
+ u

(
dv

dx

)
+ v

(
dv

dy

)
+ w

(
dv

dz

)
, (49)

Z =
(
dw

dt

)
+ u

(
dw

dx

)
+ v

(
dw

dy

)
+ w

(
dw

dz

)
. (50)

Let us consider the parallelepiped of volume dxdydz.
The force due to the pressure p along the direction x
is pdydz in one face and is (p + (dp/dx)dx)dydz in the
opposite face so that the net force in the x direction
is (dp/dx)dxdydz. Considering that the mass of the
parallelepiped is ρdxdydz, the force due to pressure
divided by the mass is (1/ρ)(dp/dx). To this term we
have to add the component P of the external force per
unit mass along the x direction. Thus the total force per
unit mass along this direction will be P − (1/ρ)(dp/dx).
Using the law of motion that the force divided by the
mass equals the acceleration, one finds

P − 1
ρ

(
dp

dx

)
= X, (51)

Q− 1
ρ

(
dp

dy

)
= Y, (52)

R− 1
ρ

(
dp

dz

)
= Z. (53)

These equations are known as the Euler equations.
The three equations (51), (52), and (53) involving the

forces, together with the continuity equation (46) and
the equation that relates the pressure p to the density
ρ comprise the five equations that encloses the theory
of the fluid motion. Euler states that all discoveries in
the field of hydrodynamics made by his predecessors,
including Daniel Bernoulli, d’Alembert, and Clairaut,
are consequences of his theory expressed in those four
equations. Multiplying the equations (51), (52), and (53)
respectively by dx, dy and dz and summing them we find

Pdx+Qdy +Rdz − 1
ρ
dp = Xdx+ Y dy + Zdz, (54)

which encloses in one expression the three equations of
the fluid motion.

The analysis of the equations of fluid motion is
proceeded by considering that dV = Pdx + Qdy + Rdz
is an exact differential which means that dV is the
differential of a function V , called by Euler the effort
of the soliciting forces. The equation (54) becomes

dV − 1
ρ
dp = Xdx+ Y dy + Zdz. (55)

He then considers that udx+vdy+wdz is an exact differ-
ential, or in modern terms, that the flow is irrotational.

This condition gives the relations (du/dy) = (dv/dx),
(du/dz) = (dw/dx), and (dv/dz) = (dw/dy). Replacing
these results into the equations (48), (49), and (50), we
find

X =
(
du

dt

)
+ 1

2

(
dγ2

dx

)
, (56)

Y =
(
dv

dt

)
+ 1

2

(
dγ2

dy

)
, (57)

Z =
(
dw

dt

)
+ 1

2

(
dγ2

dz

)
, (58)

where γ2 = u2 + v2 + w2. Replacing these expressions
into the equation (54), it becomes

dV − 1
ρ
dp =

(
du

dt

)
dx+

(
dv

dt

)
dy +

(
dw

dt

)
dz + 1

2dγ
2.

(59)
From now we will depart from Euler and follow

Lagrange in his treatise on Analytical Mechanics, pub-
lished in 1788 [31], and introduce the velocity potential.
As udx + vdy + wdz is an exact differential, Lagrange
introduces the function φ of x, y, z, the velocity
potential, such that dφ = udx + vdy + wdz. Therefore
u = (dφ/dx), v = (dφ/dy), and w = (dφ/dz), and
the sum of the three terms on the right-hand side of
the equation (55) is the differential d(dφ/dt), and this
equation simplifies to

dV − 1
ρ
dp = d

(
dφ

dt

)
+ 1

2d(γ2), (60)

the integration of which gives

V −
∫ 1
ρ
dp =

(
dφ

dt

)
+ 1

2γ
2 + C, (61)

where C is a constant of integration, which depends
on t. This equation can be understood as the Lagrange
integral of the Euler equation of motion (51), (52), and
(53) for an irrotational fluid and conservative external
forces.

In the steady flow, (dφ/dt) = 0, and C becomes
independent of t. If in addition, the density ρ is constant,
then

V − p

ρ
= 1

2γ
2 + C. (62)

In modern terms −V is the potential energy per unit
mass and the equation (62) is the expression of the
conservation of mechanical energy. If the external force
is the force of gravity then V = −gz where z is the
vertical distance from the ground

ρgz + p+ 1
2ργ

2 = K, (63)

which is known as the Bernoulli equation.
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4.3. Theory of sound

Sound has always been understood as associated to the
motion of the intimate parts of the bodies particularly
the air, which in the neighboring of the ear produces
the sensation of hearing [32]. In 1660, Boyle conducted
experiments with an air pump and observed the decrease
in the intensity of sound as the air was being extracted
from the vessel, and concluded that sound needs a
medium for transmission, which in the experiments
was the air [32]. Although one cannot properly derive
this conclusion from the experiments, they became the
standard explanation for the need of a medium for the
propagation of sound [32]. The first attempt towards
a theory of the propagation of sound appeared at the
end of the seventeenth century. It was propounded by
Newton [32] and appeared in section 8 of book 2 of his
Mathematical Principles, published in 1687 [33–35].

The theory of Newton received further development
from Lagrange and Euler. Here we will be concerned
with the theory of sound as it was developed by these two
physicists. We examine three papers of Lagrange [36–38]
and three papers of Euler [39–41] on the subject of the
propagation of sound, that were written around 1759.
The first paper of Lagrange stimulated Euler to develop
his analytical theory on the propagation of sound [42].
In the first paper, Euler derived the one-dimensional
wave equation which was then extended to two and three
dimensions in the subsequent papers.

Lagrange opens the first paper stating that the nature
and the laws of the propagation of sound is to be found in
the study of the oscillations of intimate parts of elastic
fluids, caused by disturbances imprinted on the sound
bodies and communicated to the elastic surrounding
media. The first theory based on these assumptions,
according to Lagrange, was developed by Newton who
derived a formula to determine the velocity of sound
in air which he could compare with the experimental
measurements. The main elementary question to solve
in order to develop the theory, according to Lagrange, is
as follows. Given several particles along a straight line
that are in equilibrium in virtue of their mutual forces,
determine their motion after they are disturbed.

This problem was in fact set out and solved by Newton
in the section 6 of book 2 of the Principles [33–35].
He assumed that the elastic particles execute the same
oscillatory motion and that the amplitudes and periods
of oscillation are the same for all particles. The solution
given by Newton allowed him to show that the velocity of
sound c =

√
p/ρ, where p is the pressure, which he called

elastic force and ρ is the air density. From this formula,
Newton obtained a value of 979 feet per second for the
velocity of sound in air. For comparison he mention the
figures obtained from experiments which is 1142 feet per
second.

Below we analyze the problem posed above and
demonstrate the equation of motion advanced by
Lagrange for the propagation of sound and reach the

Figure 6: The particles oscillate along a straight line with the
same period and the same amplitude. The arrangements of
particles are shown at intervals of time equal to one fourth of the
period of oscillations, from top to bottom. The vertical dotted
lines indicate the central point of oscillation of each particle
and they are equally spaced. The pulses are indicated by ellipses
and correspond to regions where the particles are closer to each
other.

Newton formula for the velocity of sound. The reasoning
we use are similar to that of Lagrange which in turn
is follows that of Newton. Figure 6 represents the
oscillatory motion of a sequence of particles along a
straight line that are constrained to move in this line.
The central points of oscillations of the particles are
distinct and are separated by the same distance r. The
figure also shows the location of the pulses, understood
as the region where the concentration of particle is the
highest.

The forces acting on the particles are identified as that
produced by the elasticity of air, and are in accordance
with the Boyle law of gases that the pressure is inversely
proportional to the volume. Let us consider a recipientin
the form of a square box with length ` and area of
the base equal to A = r2, where r is the side of the
square base. If the length varies while the area remains
unchanged, the force f acting along its axis will be
inversely proportional to `. Let us denote by ρ the
density of the air through which the sound propagates.
In this case the force, denoted by f0, is equal to A times
the atmospheric pressure ρgh, where h is the height of
a homogeneous column of air and g is the acceleration
of gravity. When the density of the recipient is ρ, we
assume that the length of the recipient is equal to r.
Denoting by m the mass of the air inside the recipient,
we have then ρ = m/r3, and considering that A = r2,
we find f0 = mgh/r. As f/f0 = r/`, we conclude that

f = mgh

`
. (64)

The force acting between two consecutive particles of
mass m separated by a distance ` is assumed by Newton
and Lagrange to be that given by (64). As the deviation
y = ` − r is considered to be small compared to r, the
following expression is used

f = mgh
r − y
r2 . (65)
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Let us denote by yi the position of the particle i with
respect to its central point of oscillation. The force that
acts on this particle from left to right is that given by
(65) with y replaced by yi − yi−1, that is,

mgh

r2 (r − yi + yi−1). (66)

Similarly one finds the force that acts from right to left
by replacing y by yi+1 − yi,

mgh

r2 (r − yi+1 + yi). (67)

The equation of motion for the particle i is obtained
by bearing in mind that the net force, the difference
between the expressions (66) and (67), is the mass m
times the acceleration d2yi/dt

2, that is,

d2yi

dt2
= gh

r2 (yi+1 − 2yi − yi−1), (68)

which is the equation found by Lagrange [36]. In the
place of g, Lagranges writes two times the height of a
free fall divided by the square of the time of fall of a
body.

To determine the velocity of the pulses we start by
denoting by τ the time it takes for a pulse to travel
a distance r. The velocity of the pulse, and thus the
velocity of sound, will be c = r/τ . The condition that
determines τ is yi+1(t) = yi(t + τ) for any i. Replacing
in (68), one finds

d2yi

dt2
= gh

r2 [yi(t+ τ)− 2yi(t)− yi−1(t− τ)]. (69)

If τ is small, the terms between square brackets will
equal the left hand side multiplied by τ2 which gives
ghτ2/r2 = 1 from which we find c = r/τ =

√
gh. To

reach the Newton formula, we recall that p = ρgh from
which follows c =

√
p/ρ.

The continuous version of equation (68) was obtained
by Euler in his first paper on the propagation of
sound [39]. He sets r = dx and writes

yi − yi−1 = dx

(
dy

dx

)
, (70)

yi+1 − 2yi + yi−1 = dx2
(
d2y

dx2

)
, (71)

which replaced in (68) gives the equation(
d2y

dt2

)
= gh

(
d2y

dx2

)
, (72)

which, says Euler, describes the propagation on sound
along a thin tube. The variable y is understood as a
function of both x and t, and Euler denotes a partial
derivative by enclosing the ratio of differentials between
parentheses. Let us write the equation (72) as(

d2y

dt2

)
= c2

(
d2y

dx2

)
, (73)

where c =
√
gh. D’Alembert in his studied of the

vibration of stretched strings had arrived in 1747 at this
equation with c =

√
F/µ where F is the force of tension

and µ is the mass of the string per unit length [32, 43].
The derivation of d’Alembert was based on a calculation
carried out by Taylor in 1713 [32, 44] concerning the
force acting on a small segment of the string as a result
of the force of tension and the curvature of the string.

A general solution of equation (73) is

y = Φ(x+ ct) + Ψ(x− ct), (74)

where Φ and Ψ are two arbitrary functions and was due
to d’Alembert [43]. From this general solution, Euler
drew the following results. If we set t = 0, we get
Φ(x) + Ψ(x) which represents the state of the air in the
thin tube at the initial time. If we denote by Θ(x) the
value of y at t = 0 and by v(x) the velocity (dy/dt) at
t = 0, then

Φ(x) + Ψ(x) = Θ(x), (75)

Φ′(x)−Ψ′(x) = v(x)
c
. (76)

If we integrate the last equation we find

Φ(x)−Ψ(x) = ζ(x)
c
, (77)

where ζ is the integral of v. The equations (75) and (77)
determine Φ and Ψ if the initial functions Θ and ζ are
given.

To explain the propagation of sound in air, Euler
consider a small perturbation of the air that occurs at
t = 0 in a small interval of the straight line along which
the sound propagates. He argues that in this case ζ(x)
vanishes and Θ(x) is zero except in the perturbation
interval. The first condition gives Φ(x) = Ψ(x) = Θ(x)/2
and

y = 1
2Θ(x+ ct) + 1

2Θ(x− ct). (78)

Assuming that the perturbation occurs on an small
interval around x = 0 then Θ(x) vanishes except in that
small interval. Using this result we see that y vanishes
except on the small intervals around x = −ct and x = ct,
which means that the perturbation, the sound, travels
in both directions with velocity c. From the formula
c =

√
gh, Euler determines the velocity of sound. The

value of g used by Euler is twice 15+5/8 Rhine feet and
h = 32 × 800 feet, which gives c = 894 feet per second
which is to be compared with the experimental value of
1100 feet per second. Faced with such a disagreement,
already noted by Newton as we have seen above, Euler
just remarks that no one has yet discovered the cause of
the discrepancy.

In the second paper on the propagation of sound [40],
Euler extends the wave equation (73) to two and three
dimensions. In two dimensions, the equation describes
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the propagation of sound in the air between two plates
separated by a small distance. The wave equation is
expressed in terms of the variable v which in modern
terms is the divergence of the vector whose components
are the displacement of a particle from its equilibrium
position, (

d2v

dt2

)
= c2

(
d2v

dx2

)
+ c2

(
d2v

dy2

)
, (79)

where x and y denotes the rectangular position of a point
in the plane. In three dimensions, the wave equation
reads(

d2v

dt2

)
= c2

(
d2v

dx2

)
+ c2

(
d2v

dy2

)
+ c2

(
d2v

dz2

)
. (80)

5. Lagrange

Joseph-Louis Lagrange was born in 1736 in Turin, Italy.
His life is divided in three periods [45]. From his birth
until 1766, he lived in Turin where from 1755 he held
a position of professor at the Royal Artillery School.
The second comprises the period from 1766 until 1787,
when he worked at the Berlin Academy and wrote the
remarkable and comprehensive treatise called Analytical
Mechanics [31]. In the third period, from the time he
became a member of the French Academy of Sciences in
1787 until his death in 1813, he lived in Paris. In 1794
he became the first professor of analysis at the newly
oppened École Polytechnique. He wrote in mechanics,
sound,differential and integral calculus, and celestial
mechanics.

5.1. Analytical mechanics

The Analytical Mechanics [31], published in 1788, is
divided in statics and dynamics, and uses the differential
and integral calculus in the analytical form introduce
by Leibniz. Lagrange states at the beginning that the
book has no geometric figures as the analytical method
can be formulated without the need of geometry. In the
following, we give a description of each part of the book.

Statics

The first part on statics is based on three principles.
The first is the Archimedes lever rule. A straight and
horizontal lever is in equilibrium if the weights are
inversely proportional to theirs distances to the fulcrum.
The second is the principle of composition of forces.
Two forces of different directions acting on the same
body are equivalent to a single force given by the rule of
the parallelogram. The third is the principle of virtual
velocities. Let us consider a system consisting of points
in equilibrium which is acted by several forces. If a small
movement is given to the system such that each point
travels an infinitesimal distance that expresses its virtual
velocity then the sum of the forces multiplied each one

by the projection of the infinitesimal distance traveled
by the point along the direction of the force is equal to
zero. Each term of the sum is positive if the distance
is traveled in the direction of the force and negative
otherwise. Lagrange regarded this principle as an axiom
of the theory and credited it to Johann Bernoulli on
account of a letter sent by the latter to Varignon in 1717
reporting the principle.

Let us consider a system under the action of several
forces P , Q, R, . . . and let us draw to each point where
a force is applied a straight line parallel to the force. We
denote by dp, dq, dr, . . . the projection along the these
lines of the infinitesimal increments that result from a
small perturbation of the system. The analytical form of
the principle of virtual velocities is

Pdp+Qdq +Rdr + . . . = 0. (81)
In general, the displacement of the points where the
forces are applied are not free from one another but
have connections that lead to one ore more constraints
between the variables p, q, r. That is, the differentials
dp, dq, dr are not independent of each other in general.

From the principle of virtual velocities (81), Lagrange
derives two conditions for equilibrium. One is related to
the motion of translation. If a free system is in equilib-
rium then the sum of the forces along each one of the
three orthogonal axes vanishes. The other is relative to
the rotational motion and is stated as follows. Consider
an axis and a plane perpendicular to this axis. The
moment of a force with respect to the axis is the product
of the component of the force parallel to the plane with
the distance to the axis. The moment of a force that
would cause the rotation in a certain direction and that
that would cause the rotation in the opposite direction
are taken to be of the opposite signs. If the system is in
equilibrium the sum of all the moments will vanish. We
notice that the Archimedes lever rule stated above is in
fact a particular case of this condition and in this sense
it is not an independent principle but a derived law.

Let us consider that the left hand side of (81) is an
exact differential of a function φ, that is,

dφ = Pdp+Qdq +Rdr + . . . . (82)
The condition for equilibrium becomes dφ = 0 which
means that the equilibrium occurs when the function
φ is generically speaking a minimum or a maximum.
According to Lagrange this constitutes the principle
proposed by Maupertuis in 1740, called the law of rest
of bodies.

To determine the state of equilibrium, Lagrange intro-
duces the method of multipliers. Let x, y, z, . . . be
the variables describing the rectangular coordinates of
the points where the forces are applied. Let L, M ,
and N be functions of these variables and let L = 0,
M = 0, N = 0 be the relation among these variables
that describe the restrictions imposed on the system,
valid also when it is perturbed. By differentiation, the
restriction is equivalently written as dL = 0, dM = 0,
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and dN = 0. Each one of these differentials is multiplied
by an undermined quantity and added to equation (81).
The result is

Pdp+Qdq+Rdr+ λdL+ µdM + νdN + . . . = 0. (83)

which becomes the general equation of equilibrium.
As the differentials in this equations are linear in the
differentials dx, dy, dz, . . . the whole left hand side of
this equation will also be linear in these differentials,
that is, equation (83) becomes

Xdx+ Y dy + Zdz + . . . = 0. (84)

The introduction of the multipliers λ, µ, and ν make the
differentials dx, dy, dz to be independent of each other
and we conclude that X, Y , and Z vanish. The equations
X = 0, Y = 0, and Z = 0 are called particular equations
of equilibrium, and together with L = 0, M = 0, and
N = 0, they will provide x, y, z at equilibrium as well
as the values of λ, µ, and ν.

Dynamics

Lagrange opens the second part of the treatise by
stating that the science of dynamics is due to modern
investigations, particularly to Galileo who developed
the basic principles, to Huygens who completed most
of Galileo work and added his own contribution, and
mainly to Newton who turned the discipline into a new
science. He then added that the infinitesimal calculus
enabled the investigators to reduce the laws of motion
to analytical expressions and that the relation between
force and motion became the main object of their work.

According to Lagrange, the first great study of
mechanics where the analytical method was applied
was Euler’s Mechanics [23], published in 1736. Euler
based the study of the dynamics of a particle on the
formulas for the tangent and normal forces. In 1744,
Euler published a book on the method of determining
curves fulfilling minimum of maximum properties such
as the isoperimetrical problem [46]. The variational
method called the attention of Lagrange who gave his
own contribution to the subject [47, 48] and envisaged its
use as an approach to mechanics in connection with the
Maupertuis principle of least action [49, 50]. However,
Lagrange did not formulated his mechanics based on this
principle but used instead the d’Alembert principle.

From the d’Alembert principle which Lagrange
adopted as the fundamental principle of his Analytical
Mechanics, he obtains the following principles, which are
in fact theorems or derived laws.

1. Conservation of living forces.
2. Conservation of the motion of the center of gravity.
3. Conservation of the motion of rotation,

or principle of areas.

4. The principle of the least quantity of action.

In modern terms the first three are know as the conserva-
tion of mechanical energy, the conservation of the linear
momentum, the conservation of the angular momentum,
respectively. The fourth principle was proposed by Mau-
pertuis and is connected with an integral of the vis viva
in time but the formulation of the principle as used
by Lagrange and formulated more precisely by Euler is
connected to an integral of velocity in space. In any case
we will call it Maupertuis principle of least action and we
remark that it should no be confused with the Hamilton
principle of least action which appeared later But the
main result of the theory is the Lagrange equations of
motion derived from the fundamental principle.

According to Lagrange, the first principle was stated
by Huygens, based on a result of Galileo concerning the
final velocities of descending bodies. Johann Bernoulli
derived this principle from the laws of motion and
gave to it the name of conservation of living forces.
Daniel Bernoulli used the principle in his studies of
hydrodynamics. The second principle is due to Newton,
who showed in his Principles that the state of rest
or motion of the center of gravity of several bodies is
not changed by reciprocal action of these bodies. The
third principle, says Lagrange, seems to be discovered
independently by Euler, Daniel Bernoulli and d’Arcy.
We should add that the origin of this principle lays
in the areal law of Kepler which was demonstrated
by Newton in his Principles from his laws of motion
applied to central forces. The fourth principle is the one
introduced by Maupertuis according to which the sum
of the product of the masses with the velocities and the
spaces traversed is a minimum. A more precise statement
of the principle was given by Euler. Lagrange does not
regard this principle as a metaphysical principle as did
Maupertuis but as a simple and general result of the laws
of mechanics.

The d’Alembert principle was stated in his Treatise
on Dynamics [51], published in 1743. According to
Lagrange, this treatise provided a general and direct
method to equate the problems of dynamics, reducing
the laws of motion to those of equilibrium, rendering
the dynamics to the statics. D’Alembert conceived his
principle by adding to the Johann Bernoulli principle of
virtual velocities the so called inertial forces. These are
not properly forces in the usual sense. The inertial force
of a body is just an abbreviation for the mass multiplied
by the acceleration. Lagrange formulates the d’Alembert
principle as follows. Let us denote by P , Q, R the forces
acting on a material point of mass m along the directions
p, q, r and let x, y, z be the rectangular coordinates of
this material point at a certain instant of time t. The
use of rectangular axes fixed in space is a crucial step
in Lagrange reasoning because it allows to write the
accelerations along these direction as d2x/dt2, d2y/dt2,
and d2x/dt2, the same form for all three directions. He
reminds that the use of three rectangular fixed axes was
employed by Maclaurin in 1742. The expression of the
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d’Alembert principle is written in the form∑
m

(
d2x

dt2
δx+ d2y

dt2
δy + d2z

dt2
δz

)
+
∑

(Pδp+Qδq +Rδr) = 0, (85)

where the summation is over all the material points.
Lagrange uses the notation δ for a generic variation and
d for a variation in position resulting from a variation dt
in time.

In modern notation, the quantities m, x, y, z, P , p, Q,
q, R, and r appearing after a sing of summation should
be labeled by an index, i for instance, which in turn
should be indicated in the sign of summation. We also
remark that Lagrange uses a capital letter S for the sign
of summation instead of the capital Greek letter sigma,
used here. Notice in addition that the sense in which
the forces F , Q, R are used in equation (85) is such
that they decrease the velocities when they are positive.
To use these quantities in the usual sense of increasing
the velocities, we should replace the plus sign in the
second summation by a minus sign. However, we will
not do this and stick to Lagrange convention.

From the fundamental principle given by equa-
tion (85), Lagrange demonstrates the four laws stated
above. The second is derived by first transforming the
variables p, q, r into the rectangular variables x, y, z in
which case the equation (85) becomes

∑(
m
d2x

dt2
+X

)
δx+

∑(
m
d2y

dt2
+ Y

)
δy

+
∑(

m
d2z

dt2
+ Z

)
δz = 0. (86)

Let us assume that the forces remains unchanged if
each one of the variables x, y, and z suffer the same
translations a, b, and c, respectively. After performing
the change of variables the equation (86) will contain
terms in δa, db and dc and, as these variations are
independent, their coefficients should vanish leading to
the results ∑

m
d2x

dt2
+
∑

X = 0, (87)

∑
m
d2y

dt2
+
∑

Y = 0, (88)

∑
m
d2z

dt2
+
∑

Z = 0, (89)

which are the expression of the conservation of the center
of gravity.

The third law is demonstrated by considering a rota-
tion of the system about a fixed axis which is accom-
plished by the following expressions for the variations
on x, y, and z: δx = zδω − yδϕ, δy = xδϕ − zδψ,
δz = yδψ − xδω. Again the coefficients of δω, δψ,
and δϕ in equation (85) are independent leading to the

equations∑
m

(
x
d2y

dt2
− y d

2x

dt2

)
+
∑

(xY − yX) = 0, (90)

∑
m

(
z
d2x

dt2
− xd

2z

dt2

)
+
∑

(zX − xZ) = 0, (91)

∑
m

(
y
d2z

dt2
− z d

2y

dt2

)
+
∑

(yZ − zY ) = 0, (92)

which are the expression of the conservation of the
motion of rotation.

The first and fourth laws are demonstrated by assum-
ing that the second summation in (85), involving the
forces, is an exact differential of a function V , that is

dV =
∑

(Pdp+Qdq +Rdr). (93)

In modern terms, V is understood as the potential
energy and the forces are said to be conservative. To
demonstrate the first law Lagrange replaces the varia-
tions δx, δy, δz, by the differentials dx, dy, dz, which
represent the actual distances traversed by the bodies
during an element of time dt. The equation (85) becomes

∑
m

(
d2x

dt2
dx+ d2y

dt2
dy + d2z

dt2
dz

)
+ dV = 0. (94)

Next we observe that the summation in (94) is the
differential dT of

T = 1
2
∑

m

(
dx2

dt2
+ dy2

dt2
+ dz2

dt2

)
. (95)

from which follows that dT + dV = 0 or T + V equal to
a constant, which is the expression of the conservation
of the living forces.

Before deriving the fourth law, we will transform the
expression (85) into an equivalent form. To this end we
use the identity

d2xδx+ d2yδy + d2zδz

= d(dxδx+ dyδy + dzδz)− 1
2δ(dx

2 + dy2 + dz2),

(96)

obtained by the usual rules of differentiation and by
taking into account that d and δ may be interchanged,
as in dδx = δdx, as argued by Lagrange. Replacing this
expression in equation (85) and taking into account the
definition of T given by (95), we reach the result

d
∑ m

dt2
(dxδx+ dyδy + dzδz)− δT + δV = 0, (97)

and we are considering that the second summation
in (85) is an exact differential.

The fourth law, the Maupertuis principle of least
action, is derived by considering that the variation in
the variables x, y, z are taken only over trajectories such
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that the sum T + V is a constant. From this restriction,
it follows that δT + δV = 0 which ones uses to replace
δV in equation (97) by −δT , which gives the result

d
∑ m

dt2
(dxδx+ dyδy + dzδz)− 2δT = 0. (98)

Denoting by ds and element of the trajectory, the
velocity is u = ds/dt and u2 = (dx2 + dy2 + dz2)/dt2.
Then from the definition (95) of T , we have T =
(1/2)

∑
u2 and δT =

∑
muδu, which replaced in (98)

gives

d
∑

m

(
dx

dt
δx+ dy

dt
δy + dz

dt
δz

)
− δ

∑
muds = 0,

(99)
after multiplying by dt.

Now we integrate this equation along a trajectory such
that T + V is a constant with the condition that the
initial and final points belong to the actual trajectory.
This condition implies that δx, δy, and δz vanish at
the initial an final points and the integral of the first
summation in (99) vanishes and we are left with

δ

∫ ∑
muds = 0. (100)

This is the expression of Maupertuis principle of least
action as it had been formulated by Euler for the case of
one body [52, 53] and by Lagrange [48, 50]. It should be
remarked that the integral between two given points is
constrained to the paths such that T + V is a constant.

Equations of motion

In the fourth section on dynamics, Lagrange derives from
(85) his equations of motion. He starts by changing
variables from x, y, z to ξ, ψ, ϕ which gives linear
relations between dx, dy, dz and dξ, dψ, dϕ, and also
the same linear relations between δx, δy, δz and δξ,
δψ, δϕ, the coefficients being functions of the new
variables. From the linear relations we see that quadratic
forms on the differentials of the old variables become
quadratic forms on the new variables. Thus from this
transformation, we may write

dxδx+ dyδy + dzδz

= Adξδξ +Bdψδψ + Cdϕδϕ+Ddξδψ + Edξδϕ

+ Fdψδϕ+Ddψδξ + Edϕδξ + Fdϕδψ, (101)

and

dx2 + dy2 + dz2 = Adξ2 +Bdψ2 + Cdϕ2

+ 2Ddξdψ + 2Edξdϕ+ 2Fdψdϕ, (102)

where A, B, C, D, E, F are functions of the new
variables ξ, ψ, ϕ. Defining α = (dx2 + dy2 + dz2)/2,

we find
δα

δdξ
= Adξ +Ddψ + Edϕ, (103)

δα

δdψ
= Bdψ +Ddξ + Fdϕ, (104)

δα

δdϕ
= Cdϕ+ Edξ + Fdψ. (105)

Lagrange uses the notation δ/δ for partial derivative.
The derivatives δα/δξ, δα/δψ, and δα/δϕ are obtained
from expression (102) by merely deriving the coefficients
A, B, C, D, E, and F with respect to the variables ξ,
ψ, and ϕ, respectively.

Replacing these results in the identity (96), we find

d2xδx+ d2yδy + d2zδz = −δα
δξ
δξ − δα

δψ
δψ − δα

δϕ
δϕ

+ d

(
δα

δdξ

)
δξ + d

(
δα

δdψ

)
δψ + d

(
δα

δdϕ

)
δϕ,

(106)

and the first part of the equation (85) becomes∑
m

(
d2x

dt2
δx+ d2y

dt2
δy + d2z

dt2
δz

)
=
(
d
δT

δdξ
− δT

δξ

)
δξ

+
(
d
δT

δdψ
− δT

δψ

)
δψ +

(
d
δT

δdϕ
− δT

δϕ

)
δϕ, (107)

where T is given by (95) and understood as a function
of ξ, ψ, ϕ, and dξ, dψ, dϕ.

The second term in (85) is written as∑
(Pδp+Qδq+Rδr) =

∑
(Fδξ+Gδψ+Hδϕ), (108)

by transforming p, q, and r into ξ, ψ, and ϕ.
From the above results, equation (85) is written as

Ξδξ + Ψδψ + Φδϕ+ . . . = 0, (109)

where

Ξ = d
δT

δdξ
− δT

δξ
+ F, (110)

Ψ = d
δT

δdψ
− δT

δψ
+G, (111)

Φ = d
δT

δdϕ
− δT

δϕ
+H, (112)

If δV , is an exact differential, then

F = δV

δξ
, G = δV

δψ
, H = δV

δϕ
, (113)

and

Ξ = d
δT

δdξ
− δT

δξ
+ δV

δξ
, (114)

Ψ = d
δT

δdψ
− δT

δψ
+ δV

δψ
, (115)

Φ = d
δT

δdϕ
− δT

δϕ
+ δV

δϕ
. (116)
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If the new variables ξ, ψ, ϕ, . . . are all independent
which means that the variations δξ, δψ, δϕ become
indeterminate, then Ξ = 0, Ψ = 0, Φ = 0, which
constitute the Lagrange equations of motion. But if it
is not the case, that is, if the new variables are not
independent, we may use the method of multipliers
discussed above to write down the equations of motion.

Hamilton principle of least action

Let us write equation (97) as

d
∑

m

(
dx

dt
δx+ dy

dt
δy + dz

dt
δz

)
− δ(T − V )dt = 0.

(117)
If we integrate this equation along any trajectory with
the condition that the initial and final points belong
to the actual trajectory, then δx, δy, and δz vanish at
these two points and the integral of the first summation
in (117) vanish and we are left with

δ

∫
(T − V )dt = 0. (118)

Equation (118) is also the expression of a least action
principle which should not be confused with the Mau-
pertuis principle of least action. It was not derived by
Lagrange in his Analytical Mechanics but was proposed
later on by Hamilton in 1834 and for that reason called
Hamilton principle of least action.

If the integration in (1180 is performed only along
trajectories such that T + V is a constant then this
equation reduces to

δ

∫
2Tdt = 0, (119)

which is equivalent to the expression (100) of the
Maupertuis principle of least action.

We remark again that the Maupertuis and Hamilton
principles of least action are different in the constraints
used to perform the procedure of minimization. Both
principles minimizes the same integral (118) but one
of them, the Maupertuis principle, is subject to a
minimization under the restriction that the trajectories
fulfill the constraint T + V equal to a constant. We
remark in addition that both principles requires that the
forces are conservatives. Therefore the Lagrange equa-
tions obtained from them are valid only for conservative
forces. This is in contrast with the d’Alembert principle
from which the Lagrange equations can be derived even
for nonconservative forces.

6. Laplace

Pierre-Simon Laplace was born in 1749 at Beaumont,
in northern France. He attended the Benedictine school
of the village from the age of seven to sixteen. In 1766
he was sent to the University of Caen and in 1768 he

left to Paris. He was appointed professor of mathematics
at the Military School and was elected to the Academy
of Sciences in 1773 at the age of twenty-four. In the
period of ten years from 1778 he reached most of the
major results in the areas of celestial mechanics and
probability, which were incorporated into the Treatise
on Celestial Mechanics and in the Analytical Theory of
Probabilities [56]. Laplace also engaged on research on
other topics of physics such as the heat capacities of
bodies and the related topic of sound velocity. He died
in Paris in 1827.

6.1. Mechanics

The Treatise on Celestial Mechanics was written in five
volumes, divided in fifteen books, and published in the
period 1799–1825 [57–61]. The treatise contains an expo-
sition of the analytical mechanics and its application to
the motion of celestial bodies that attract each other in
accordance with inverse square law. Laplace also treats
the problem of the shape of celestial bodies, the tidal
problem, and develops a perturbation theory to treat
the motion of bodies.

Here we will be concerned only with the subjects
contained in the first volume, consisting of two books.
The first volume, published in 1799, gives an exposi-
tion of the laws of mechanics in a form appropriate
to be applied to astronomical problems [57]. Laplace
adopts d’Alembert principle as the fundamental law
of mechanics as did Lagrange. In book 1, he derives
from this principle the main laws of mechanics for a
system of bodies, following reasonings similar to those
used by Lagrange, as exposed above. These includes the
conservation of living forces, conservation of the motion
of the center of gravity, conservation of areas, and the
principle of least action.

Denoting by x, y, and z the rectangular coordinates
of a material point, by P , Q, and R the components of
the force acting on these directions, Laplace writes the
d’Alembert principle for one material point as

δx

(
d
dx

dt
− Pdt

)
+δy

(
d
dy

dt
−Qdt

)
+δz

(
d
dz

dt
−Rdt

)
= 0,

(120)
where δx, δy, and δz are the variations of the rectan-
gular coordinates, and dx, dy, dz increments in these
coordinates during an elementary interval of time dt.
The equations (120) remain valid if one replaces the
variations by differentials. Integrating it we get

dx2 + dy2 + dz2

dt2
= c+ 2

∫
(Pdx+Qdy +Rdz), (121)

where the left hand side is the square of the velocity and
c is a constant. If in addition Pdx + Qdy + Rdz is an
exact differential dφ of a function φ it may be written as

dx2 + dy2 + dz2

dt2
= c+ 2φ. (122)
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If the material point is free, the variations are inde-
pendent and the equations of motion are d2x/dt2 = P ,
d2y/dt2 = Q, and d2z/dt2 = R. Otherwise, one should
employ the relation between the variations to get the
equations of motion.

Laplace gives the example of a heavy body moving on
a spherical surface. Here we will consider the particular
case of this type of motion, which is the motion of a
simple pendulum. Denoting by z the vertical coordinate
and by x the horizontal coordinate then these variables
obeys the constraint x2 + z2 = r2. The method of
multipliers gives the equations

d
dx

dt
+ 2λxdt = 0, (123)

d
dz

dt
+ 2λzdt− gdt = 0. (124)

From x2+z2 = r2, we find xdx+zdz = 0, and x2dx2 =
z2dz2, which replaced in the relation

dx2 + dz2

dt2
= c+ 2gz, (125)

obtained from (122), we find

r2 dz
2

dt2
= (r2 − z2)(c+ 2gz), (126)

and

dt = −rdz√
(r2 − z2)(c+ 2gz)

. (127)

Performing the change of variables z = r−h sin2 θ, where
h = c/2g + r, we find

dt =
√
r

g

dθ√
1− γ2 sin2 θ

, (128)

where γ2 = h/2r. The quarter of the period of oscillation
is obtained by integration from θ = 0 to θ = π/2.
The integration can be performed after the expansion
in powers of γ with the following result for the period of
oscillations

2π
√
r

g

[
1 + γ2

22 +
(

1.3
2.4

)2
γ4 +

(
1.3.5
2.4.6

)2
γ6 + . . .

]
,

(129)
a result that had been obtained by Euler [23], as shown
by equation (42). If the oscillations are small then γ will
be small and it can be neglected. In this case the period
of oscillation will be 2π

√
r/g.

The book 2 contains the analysis of the motion of
celestial bodies based on the inverse squared law of grav-
itation. Laplace starts by considering the motion of a
body under a central and showing that if the trajectory is
a conic section and is directed towards the focus then it is
proportional to the inverse of the square of the distance

of the body to the focus. The demonstration is as follows.
The equation of motion of a planet is given by

d2x

dt2
+ P = 0 d2y

dt2
+Q = 0, (130)

where x and y are the rectangular coordinates on the
plane of the orbit and P and Q are the forces acting on
the planet.

If we sum the first equation multiplied by −y with the
second multiplied by x, we have

d(xdy − ydx)
dt2

+ xQ− yP = 0. (131)

It is clear that xdy − ydx is double the are which
the radius vector sweeps in the interval of time dt.
If Q/P = y/x, the force is always directed to origin of
the coordinate system, that is towards the sun. In this
case the area swept by the radius vector is proportional
to the time, which is the law of the areas that is,

xdy − ydx = cdt, (132)

where c is a constant.
If now we sum the first equation multiplied by dx with

the second multiplied by dy, we have

dxd2x+ dyd2y

dt2
+ Pdx+Qdy = 0, (133)

which after integration gives

dx2 + dy2

dt2
+ 2

∫
(Pdx+Qdy), (134)

or, using the law of areas,

c2(dx2 + dy2)
(xdy − ydx)2 + 2

∫
(Pdx+Qdy) = 0. (135)

Using new variables r and ν related to x and y by
x = r cos ν and y = r sin ν, and φ, related to P and Q
by P = φ cos ν and Q = φ sinφ, we find

c2(dr2 + r2dν2)
r4dν2 + 2

∫
φdr = 0, (136)

dν = cdr

r2
√
−c2/r2 − 2

∫
φdr

. (137)

The integration of this equation gives ν in terms of r if φ
is a function of r. That is, it gives the orbit of a planet.

The differentiation of (136) with respect to r gives

φ = c2

r3 −
c2

2
d

dr

(
dr2

r4dν2

)
. (138)

The equation describing a conic section in the variables
r and ν with the origin of the coordinates at the focus is

r = h

1 + e cos ν , (139)
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where b is a constant and e is the eccentricity, with e < 1
for an ellipse, e = 1 for a parabola and e > 1 for a
hyperbole. From the equation of the conic section we
find

φ = c2

hr2 , (140)

and the force is inversely proportional to the square of
the distance to the focus.

A system of bodies interacting through the mutual
attraction given by the inverse squared law is treated by
defining a function λ, which is a sum of terms, each one
corresponding to a pair of bodies of the type

mm′√
(x′ − x)2 + (y′ − y)2 + (z′ − z)2

, (141)

where m and m′ are the masses, and x′, y′, z′, and
x, y, z are the rectangular coordinates of the bodies,
respectively. In modern terms, −λ is the potential
energy. The equation of motion of a given body is

m
d2x

dt2
=
(
dλ

dx

)
, (142)

m
d2y

dt2
=
(
dλ

dy

)
, (143)

m
d2z

dt2
=
(
dλ

dz

)
, (144)

where a partial derivative is denoted by enclosing the
fraction between parentheses.

From the equations of motion, Laplace shows that
the center of mass is at rest or moves with a constant
velocity. He shows the law of areas, translated by∑

m
xdz − zdx

dt
= c, (145)

where c is a constant, and similar equations for y and z.
He also shows the conservation of living forces,∑

m
dx2 + dy2 + dz2

dt2
− 2λ = h, (146)

where h is a constant.
Laplace comments that these three laws give seven

integrals of motion. If the system is composed by two
bodies, these integrals allow the reduction of the problem
to to differential equations of the first order, which can
thus be integrated. But if the system consists of three or
more bodies it is necessary to resort to approximation
methods.

Let us consider three bodies. The larger, representing
the sun, with mass M , and two others representing
a planet and a satellite, with masses m0, and m1,
respectively. We denote by x0, y0, z0, and x1, y1, z1
the rectangular coordinates of the smaller bodies in
relation to the larger one. The mass M is large enough

to considered the large body at rest. The corresponding
function λ is

λ = Mm0

r0
+ Mm1

r1
+ m0m1

r
, (147)

where r0 =
√
x2

0 + y2
0 + z2

0 , r1 =
√
x2

1 + y2
1 + z2

1 are the
distances of the smaller bodies to the larger one, and
r =

√
x2 + y2 + z2, x = x1−x0, y = y−y0, z = z1− z0.

Denoting the coordinates of the center of mass by X,
Y , Z, its equation of motion is

m
d2X

dt2
=
(
dλ

dX

)
= −Mm0

r3
0

x0 −
Mm1

r3
1

x1, (148)

and similar equations for Y , and Z, where m = m0 +m1
is the total mass of the smaller bodies. The equation of
motion related to the variables x, y, and z are

µ
d2x

dt2
=
(
dλ

dx

)
= Mµ

r3
0
x0 −

Mµ

r3
1
x1 −

m0m1

r3 , (149)

and similar equations for y, and Zz, where µ =
m0m1/m.

Laplace expands x0/r
3
0 and x1/r

3
1 around X/R3 with

the result
x0

r3
0

= X

R3 −
m1x

mR3 + 3m1X(Xx+ Y y + Zz)
mR5 , (150)

x1

r3
1

= X

R3 + m0x

mR3 −
3m0X(Xx+ Y y + Zz)

mR5 . (151)

From these results one reaches the results
d2X

dt2
= MX

R3 , (152)

d2x

dt2
= −m

r3 −
Mx

R3 + 3MX(Xx+ Y y + Zz)
R5 , (153)

and similar equations for Y , Z, y, and z. From the
first, we see that the motion of the center of gravity is
equivalent to the motion that result if the smaller bodies
were reunited at the center of gravity.

In the following, Laplace consider the function V
such that −(dV/dx), −(dV/dy), and −(dV/dz) are the
components of the force acting on a material point
of mass m due to an extended body with density ρ.
Denoting by x, y, and z the rectangular coordinates of
the material point then V , which in modern terms is the
potential, is given by

V =
∫

ρ

R
dx′dy′dz′, (154)

where R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2.
From the definition of R we see that

d

dx

1
R

= − (x− x′)
R3 , (155)

and
d2

dx2
1
R

= − 1
R3 + 3(x− x′)2

R5 , (156)
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and similar equations related to y and z. From these
equations it follows at once

d2

dx2
1
R

+ d2

dy2
1
R

+ d2

dz2
1
R

= 0. (157)

Multiplying by ρ and integrating in x′, y′, and z′, we
find

d2V

dx2 + d2V

dy2 + d2V

dz2 = 0, (158)

which is the Laplace equation. It appeared in a paper
by Laplace on the attractions of spheroids, published in
1785 [62]. Laplace states that it is a remarkable equation
and is of great utility in the theory of shapes of celestial
bodies. He shows that in spherical coordinates it reduces
to the form(
d2V

dθ2

)
+cos θ

sin θ

(
dV

dθ

)
+ 1

sin2 θ

(
d2V

dω2

)
+r
(
d2rV

dr2

)
= 0.

(159)
If the body is a spherical layer then V depends only on

r and (159) gives (d2rV/dr) = 0 from which follows that
V = A+B/r, and the force acting on the material point
is −(dV/dr) = B/r2. If the point is inside, one should
consider the solution such that B = 0 giving a vanishing
force. If the point is outside the force is the same as that
the mass M of the body were at its center which is M/r2.
This result remarkable result, says Laplace, is also valid
for a sphere consisting of concentric layers and can thus
applied to the sun, the planets and satellites, which are
very nearly spheres of that type.

In cylindrical coordinates, the Laplace equation (158)
reads

r2
(
d2V

dr2

)
+
(
d2V

dω2

)
+ r

(
dV

dr

)
= 0. (160)

If r is the distance to the axis of a cylinder, the
potential V does not depend on ω and using the notation
F = −(dV/dr), the equation (160) becomes

r2
(
dF

dr

)
+ rF = 0, (161)

whose solution is F = H/r, where H is a constant.
The rest of the book 2 is devoted to the development

of a perturbation theory for a systematic approximation
to the motion of celestial bodies.

6.2. Theory of sound

According to Newton the velocity of sound in the air
is given by c =

√
p/ρ where p is the pressure and ρ

the density. As we have seen above, the value obtained
by Newton from this formula by using the experimental
values of the pressure and density is one sixth lower than
the experimental values of the velocity of sound. The
same formula was obtained both by Lagrange and by

Euler by using their theories. They could not explain
the discrepancy and Euler, seventy years after Newton,
admitted that no one has yet discovered its the cause.

Around the beginning of the nineteenth century,
Laplace come up with a new idea that could solve
the problem of the discrepancy [8, 63]. This idea led
him to state in a publication of 1816 [64], without
demonstration, that the velocity of sound is equal to
that of Newton multiplied by the square root of the ratio
between the specific heat at constant pressure and the
specific heat at constant volume. If we denote this ratio
by γ, this is expressed by

c =
√
γp/ρ. (162)

He demonstrated this formula later on in 1822 [65].
As the ratio γ is larger than the unity, the velocity
of sound is larger than that of Newton and closer to
the experimental value. Indeed, in a publication of 1822,
Laplace obtained 332.9 meters per second, by using the
value γ = 1.354 for the air and the value 286.1 meters for
the velocity of sound at 12.5◦ from the Newton formula.
The observed value at 7.5◦ was 337.2 which corrected by
3.2 gives the observed value of 340.4 meters per second
at 12.5◦ [65].

As the sound involves compressions and rarefactions
of the air, the velocity is related to the variation of the
pressure p with density ρ. A measure of this variation is
dp/dρ and, as we will show below, the velocity of sound
is related to this quantity by

c =
√
dp/dρ. (163)

However, the calculation of dp/dρ depends on the ther-
modynamic process. Laplace argues that the compres-
sions and rarefactions do not occur isothermally but
occur without the exchange of heat, or adiabatically.
If we denote by kS the value of dp/dρ calculated along
an adiabatic process then according to Laplace c =

√
kS .

Let us denote by kT the value of dp/dρ calculated
along an isothermal process. If the compressions ane
rarefactions were isothermal, the velocity of sound would
be c =

√
kT . Using the Boyle law, which says that

pressure is proportional to density, one finds kT = p/ρ,
and c =

√
p/ρ, which is the Newton formula. Laplace

demonstrated in his publication of 1822 [65] concerning
the theory of elastic fluids that the quantities kS and kT

are related to the specific heat at constant pressure cP

and the specific heat at constant volume cV by

kS

kT
= cP

cV
, (164)

or by kS = γkT , as γ is the ration of the specific heats,
which leads to his formula for the speed of sound in air.

Biot in 1802 [66] and Poisson in 1808 [67] gave
derivations of a formula for the velocity of sound which
is equivalent to the expression (163). The derivation
which we present next follows the Poisson approach,
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which he presented in a paper on the theory of sound,
published in 1808 [67]. He uses the equations of motion
of a fluid contained in the Analytical Mechanics of
Lagrange. Denoting by ρ density and by u, v, and w,
the rectangular velocities at a point x, y, z of the fluid,
the first equation reads

dρ

dt
+ dρu

dx
+ dρv

dy
+ dρw

dz
= 0. (165)

The density as well as the components of the velocity
depends on the position x, y, and z, and on time t.
This is the Euler continuity equation (46), as we have
seen above. The second equation refers to the velocity
potential φ defined by considering that the differential
udx+ vdy + wdz so that

u = dφ

dx
, v = dφ

dy
, w = dφ

dz
. (166)

It reads∫
dp

ρ
+ dφ

dt
+ 1

2(u2 + v2 + w2) = V, (167)

where p is the pressure, considered to be a function of
ρ, and V is the potential related to the external forces,
considered to be conservative, and is the equation (61)
considered above. If we derive these equations in relation
to x, y, and z, the equations that result are the hydro-
dynamic Euler equations (51), (52), and (53). In other
terms, if the external forces are conservatives and the
flow is irrotational, the integral of these equations is
equation (167).

We assume that the air is homogeneous and its density
equal to ρ0 when the velocities vanish. This density is
related to the atmospheric pressure p0 by p0 = ρgh
where g is the acceleration of gravity and h is the height
of homogeneous column of air. For small deviation of the
density, we may write p = p0+k(ρ−ρ0) and

∫
dp/ρ = kξ

where ξ = (ρ − ρ0)/ρ0, and k = dp/dρ calculated at
ρ = ρ0. Up to linear terms in ξ and in the velocities, the
two equations (165) and (167) become

dξ

dt
+ du

dx
+ dv

dy
+ dw

dz
= 0, (168)

kξ + dφ

dt
= 0. (169)

Replacing (169) in (168) and taking into account (166)
we reach the equation

d2φ

dt2
= k

d2φ

dx2 + k
d2φ

dy2 + k
d2φ

dz2 . (170)

From this equation it follows immediately that the sound
velocity c =

√
k =

√
dp/dρ.

7. Fourier

Joseph Fourier was born in 1768 at Auxerre, France.
His parents had twelve children and he was the ninth.

In 1780 he entered the École Royale Militaire of Auxerre
under the direction of the Benedictine order. After
spending the period of 1787–9 at the Abbey Saint Benoit
he returned to Auxerre where he taught at his former
school. He became directly involved with the Revolution
in Auxerre. In 1795 he was appointed professor to
the newly founded École Polytechnique. Fourier joined
the Egypt expedition in 1798 as scientific adviser and
appointed secretary of the Cairo Institute. He returned
to France in 1801 and was appointed prefect of the Isère
department in the following year, settling in Grenoble.
He remained in this city until March 1815 when he left
to Lyon and then to Paris, a few months later. He was
elected to the Académie des Sciences in 1817 and became
its permanent secretary in 1822. He died in 1830 [68].
Fourier is best known for developing the series expansion
that bears his name. His major achievement in the area
of physics is the law of heat conduction and the heat
equation, which are the focus of our attention here, and
the subject of his Analytical Theory of Heat, published
in 1822 [69, 70].

The Fourier theory of the propagation of heat is based
on the primary concepts of heat and temperature, and
on the principle of the communication of heat. The tem-
perature of a body is measured by a thermometer which
should be in perfect contact with the body. The scale of
a thermometer is set up by assigning the temperature 0
to the melting ice and temperature 1 to the boiling water
under the atmospheric pressure. The heat is measured
by the ice calorimeter. It is proportional to the mass of
ice at temperature 0 which is converted into water at the
same temperature. The unit of heat corresponds to the
melting of one unit of mass such as one kilogram.

The theory of heat that prevailed in the time of
Fourier considered heat as a substance called caloric,
the main principle of which was the conservation of
heat. Although Fourier did not mention any relation of
his conception of heat to that of caloric, he used the
conservation of heat in an implicit form. In fact, his
theory of heat conduction in solids can be understood
as an accomplishment of the caloric theory [71], in view
of the conservation of heat.

Although the nature of heat is uncertain, says Fourier,
the laws that result from its effects are independent of
all hypothesis and can be known. Heat penetrates every
substance. When it is not uniformly distributed in a
body, it passes from the parts which are more heated to
those which are less, and is lost at the surface by radia-
tion. The tendency to reach a uniform distribution and
the spontaneous emission at the surface have the effect of
changing continuously the temperatures of the different
points of the body. The problem of the propagation of
heat consists in finding the temperature at each point of
the body at a given instant, supposing that the initial
temperatures are known. This is accomplished by the
solution of the differential equation of heat introduced
by Fourier.
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Fourier points out in the introduction of his treatise
that the effect of heat cannot be compared to those of an
elastic fluid. The motion of heat inside bodies is not of
the same character as that of the mechanical motion of
elastic particles that describes the sound waves. It would
be useless, says Fourier, to attempt to deduce from the
hypothesis of mechanics the laws of the propagation of
heat. To better understand this point we recall that the
analytical theories describing mechanical systems give
rise to differential equations that are of the second in
time. This is for instance the case of the wave equation
that describes the propagation of sound in elastic fluids
as given by equation (80). The cause of this conclusion is
that the Newton equation of motion, which underlies the
mechanical theories, is expressed in terms of the second
derivative of space with respect to time. The equation
of heat on the other hand, although similar to the wave
equation, is of the first order in time and in this sense it
could not be derived from the laws of mechanical motion,
as claims Fourier.

The fundamental principle of the communication of
heat was stated by Fourier as follows. Let us denote by
v and v′ the temperatures of two equal molecules m and
n separated by a very small distance from each other.
If v′ is larger that v, then the quantity of heat that
m receives from n per unit time, is proportional to the
difference (v′−v). To reach the law of of heat conduction,
Fourier introduces a second assumption concerning the
distribution of temperatures along a homogeneous solid
enclose between two parallel planes. If these two planes
are maintained at temperatures a and b then, in the
stationary regime, the temperature v of a certain point
at a distant z from A is assumed to be linear with x,

v = a+ b− a
e

z, (171)

where e is the length AB and a is greater than b. Using
the fundamental principle, the flux of heat F from A to
B is proportional to (b − a)/e, that is, F = K(b − a)/e
where K is a constant.

Let us consider now two small parallel surfaces inside
a solid which differ by a small distance dz, and which
are small enough so that they may be considered to be
plane surface. In this case we may use the formula F =
K(b− a)/e which becomes

F = −Kdv

dz
, (172)

where dv is the difference in temperature. The flux
of heat F is understood as the quantity of heat per
unit time and per unit area. The coefficient K is a
measure of the specific conductibility of a substance. The
equation (172) is the expression of the Fourier law of heat
conduction.

The equation of heat conduction is derived as follows.
Let us consider the flow of heat through a slice of
thickness dx and area S. During an interval of time dt,

the heat that enter the slice through one of the surfaces,
located at x, is KS(dv/dx)dt whereas the heat that
leaves the slice through the other surface, located at
x + dx, is KS(dv/dx)dt + KS(d2v/dx2)dxdt. Thus the
net flow of heat inside the slice is KS(d2v/dx2)dxdt.
This quantity should be equal to the increase in heat in
the slice during the interval dt, by the conservation of
heat.

Denoting the specific heat per unit mass of the
substance by C and the density by D, then the increase
in heat will be the specific heat per unit volume CD mul-
tiplied by the volume Sdx of the slice and multiplied by
the increase dv in temperature. The result is CDSdxdv
and we conclude that

dv

dt
= K

CD

d2v

dx2 , (173)

which is the heat equation for one dimensional flow.
If instead of a slice, we use a small rectangular paral-
lelepiped of volume dxdydz, and consider the flow of
heat through its six rectangular faces, we find

dv

dt
= K

CD

(
d2v

dx2 + d2v

dy2 + d2v

dz2

)
, (174)

which is the heat equation in three dimensions describing
the motion of heat in the interior of solids.

Let us consider a semi infinite plate bounded at the
left by the line x = π/2, at the right by the line x =
−π/2, and at the bottom by the line y = 0. The left and
right boundary are maintained at temperature 0 whereas
the bottom boundary at temperature 1. It is required
to find the temperature of each point of the plate at
the stationary state. In this case one has to solve the
stationary heat equation in two dimensions, which is

d2v

dx2 + d2v

dy2 = 0, (175)

with the given boundary conditions. Fourier assumes
that a solution to this equation is the product f(x)g(y)
of two functions, one being a function of x only and the
other a function of y only. Replacing the product into
the equation (175) w have

f ′′(x)
f(x) + g′′(x)

g(x) = 0. (176)

We suppose that f ′′(x)/f(x) = m and that
g′′(x)/g(x) = −m where m is a positive constant to be
found. From these two equations we find f(x) = e−mx

and g(x) = cosmy. The other solution for f is emx but
it should be excluded on account that f cannot become
infinite when x grows indefinitely. Taking into account
that g should vanish when y = π/2, it follows that the
possible values of m are 1, 3, 5, etc. Therefore a general
solution for the temperature is v = φ(x, y) where

φ = ae−x cos y+ be−3x cos 3y+ ce−5x cos 5y+ . . . (177)
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Figure 7: The wavy line represents the Fourier expansion of
the square wave given by equation (183) truncated at the tenth
term.

It is clear that φ(x,±π/2) = 0. The other boundary
condition that should be fulfilled is φ(0, y) = 1, which
gives

1 = a cos y + b cos 3y + c cos 5y + . . . (178)

and we are left to find the coefficients a, b, c, etc.
To find the coefficients, the expression (178) is derived

several times after which we set y = 0. The result is

1 = a+ b+ c+ . . . (179)

0 = a+ 3nb+ 5nc+ . . . (180)

which is a set of linear equations for the coefficients.
Fourier was able to solve this equation finding the result
a = 4/π, b = −4/3π, c = 4/5π and so on, which replaced
on equation (177), gives the complete solution

π

4 v = e−x cos y− 1
3e
−3x cos 3y+ 1

5e
−5x cos 5y+. . . (181)

valid for x nonnegative and y between −π/2 and π/2.
If the values of the coefficients are replace in equation

(178), we find

π

4 = cos y − 1
3 cos 3y + 1

5 cos 5y + . . . (182)

Let us write the expression in the right hand side as a
function y(x), that is,

y(x) = cosx− 1
3 cos 3x+ 1

5 cos 5x+ . . . (183)

At first sight it seems odd that the function y(x) is a
constant π/4. However, Fourier warns that y(x) is in
fact a function which is understood as being composed
by successive segments parallel to the abscissa that
takes alternatively the values π/4 and −π/4 as shown
in Figure 7. The exceptions to this rule are the values
of y which are odd multiples of ±π/2 in which cases
h vanishes. The Figure 7 also shows the plot of the
expansion (183) considering only ten terms.

8. Poisson

Siméon Denis Poisson was born in 1781 at Pithiviers,
France. In 1796 he was enrolled at the École Cen-
trale of Fontainebleau. He was admitted to the École
Polytechnique in Paris in 1798, being placed first in
the entrance examination, and immediately after his
graduation in 1800 he was appointed to a teaching
position at the school. In 1802 he became substitute
professor and in 1806 full professor. He died in 1840.
Poisson made contributions to mathematics, astronomy,
analytical mechanics, theory on sound, theory of heat,
optics, electricity and magnetism [72].

8.1. Electricity

The theory of electricity of Poisson is contained in two
papers concerning the distribution of electricity on the
surface of conductor bodies, published in 1812 and 1814,
which we analyze here [73, 74]. Poisson assumes that the
electric phenomena are attributed to two types of fluids,
vitreous and resinous, that extend over all bodies. These
electric fluids repel each other if they are of the same
type and attract each other if they are of different types.
In both cases the force of attraction or repulsion between
two molecules of the fluid is assumed to be proportional
to the inverse of the square of the distance, in accor-
dance with Coulomb observations, which constitutes
the fundamental principle of the theory developed by
Poisson.

The main purpose of the theory is the study of the
mutual action of electrified conductors placed on dry air
so that they do not lose electricity. Poisson remarks that
the electric fluid moves to the surface on account of its
repulsion and its free motion. The problem remains to
find the surface distribution of the fluid in equilibrium.

The approach used by Poisson is based on the use
of the function introduced by Lagrange and used by
Laplace, which was later called potential function by
Green. The relevant property of this function is that
the components of the force is obtained by partial
differentiation with respect to the space coordinates. As
the electric force acting at a certain point at a distant
R from a certain molecule is proportional to 1/R2, then
the corresponding potential function is proportional to
1/R. The potential function due to several molecules
will be a sum of terms, each one being inversely pro-
portional to the distance of that point to each one of the
molecules.

The potential function at a point A with coordinates
x, y, and z, produced by the electric fluid contained in a
certain region of the space is determined as follows. Let
us denote by x′, y′, and z′ the rectangular coordinates
of a point B of that region. The potential function V is

V =
∫
ρ dx′dy′dz′

R
, (184)
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where ρ is the density of the electric fluid and R is the
distance between A and B and, given by

R2 = (x− x′)2 + (y − y′)2 + (z − z′)2. (185)

Now the region is supposed to be a very thin spherical
shell of radius a and the thickness of the electrical fluid
is σ, which we interpreted as the surface density of
the electrical fluid. Using spherical variables defined by
x′ = r′ sinω cosϕ, x′ = r′ sinω sinϕ, and y′ = r′ cosω,
the integral becomes

V = a2
∫ ∫

σ

R
sinωdωdϕ, (186)

where σ depends on the point of the surface, that is,
depends on ω and ϕ and may be of either sign.

Denoting by r, θ, and φ the spherical coordinates of
the point A, that is, x = r sin θ cosφ, x = r sin θ sinφ,
and y = r cos θ, the distance R is given by

R2 = r2 + a2 − 2ra cos γ, (187)

where γ is the angle between the lines that connect the
points A and B to the origin of the reference frame,
given by

cos γ = cos θ cosω + sin θ sinω cos(φ− ϕ). (188)

The method used by Poisson to determine V rests on
the expansion of 1/R on powers of r/a or a/r depending
whether the point A is inside or outside the spherical
shell. In the first case

1
R

= 1
a
U0 + r

a2U1 + r2

a3U2 + . . . (189)

and in the second case

1
R

= 1
r
U0 + a

r2U1 + a2

r3U2 + . . . (190)

where U0 = 1 and Un is a function of ω and ϕ and fulfills
the differential equation

1
sinω

∂

∂ω

(
sinω∂Un

∂ω

)
+ 1

sin2 ω

∂2Un

∂ϕ2 + n(n+ 1)Un = 0,

(191)
as shown by Laplace in book 3 of volume 2 of his Celestial
Mechanics. Replacing the expansions of 1/R into (186),
we obtain similar expansions

V = 1
a
V0 + r

a2V1 + r2

a3V2 + . . . (192)

valid inside the shell, and

V = 1
r
V0 + a

r2V1 + a2

r3 V2 + . . . (193)

valid outside the shell, where the coefficients Vn are
given by

Vn = a2
∫
σ Un sinωdωdϕ. (194)

In the case of a surface uniformly electrified, σ is a
constant, which we set equal to b. The point A is chosen
to be at the z axis, which is equivalent to set R2 =
r2 + a2 − 2ra cosω, and Vn vanishes except V0 which
equals 4πa2b from which one finds V = 4πba if the point
A is inside the spherical shell and V = 4πba2/r if it is
outside.

A relevant result of the mechanics of systems attract-
ing through the inverse square law was demonstrated
by Laplace. He showed that the potential V at a point
free from matter such as a point outside an extended
body or at a point inside a hollow body obeys the
equation (158), which is also valid for electric systems as
these systems also involve the inverse square law. In fact
the result (191) used by Poisson is a consequence of the
equation (158). If the point is not free from matter, then
the potential does not obey equation (158) but obeys
the equation

d2V

dx2 + d2V

dy2 + d2V

dz2 = −4πρ, (195)

which is known as the Poisson equation. In this equation
ρ is the mass density, in the case of mechanical systems,
or the electrical density, in the case of electrical systems.

The demonstration was given by Poisson in a paper
published in 1813 and is as follows [75]. We consider the
potential V given by (184) where R is given by (185).
The differentiation of 1/R, gives

d2

dx2
1
R

= 3(x− x′)2 −R2

R5 , (196)

d2

dy2
1
R

= 3(y − y′)2 −R2

R5 , (197)

d2

dx2
1
R

= 3(z − z′)2 −R2

R5 . (198)

If we sum these three quantities, the result vanishes as
long as R is nonzero, that is, as long as the point B with
coordinates x′, y′, z′ does not coincide with the point A
with coordinates x, y, z, which occurs if A is outside the
region of integration.

Let us see what happens when A is inside the region
of integration. In this case we split the integral (184) in
two parts. One of them contains the point A and the
other does not. Denoting the first integral by U then

d2U

dx2 =
∫
ρ
d2

dx2
1
R
dx′dy′dz′. (199)

As the region of integration around the point A can be
chosen at will, we choose it to be a very small region, in
which case the density can be considered to be the same
in all points inside the region and equal to the density
at the point A, and the integral becomes

d2U

dx2 = ρ

∫
d2

dx2
1
R
dx′dy′dz′. (200)
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Therefore

d2U

dx2 + d2U

dz2 + d2U

dz2 = ρ, I (201)

where I is the integral

I = −
∫ (

d2

dX2
1
R

+ d2

dY 2
1
R

+ d2

dZ2
1
R

)
dXdY dZ,

(202)
obtained by the change of variables X = x′−x, Y = y′−
y, and Z = z′−z, where here R2 = X2+Y 2+Z2, and the
integration is performed inside a sphere. The integration
gives I = −4π, a result independent of the radius of the
sphere, and we reach the Poisson equation (195).

8.2. Magnetism

Poisson presented his theory of magnetism in two papers
published in 1826 [76, 77]. His theory is based on the
assumption that the magnetic phenomena are attributed
to two types fluids, austral and boreal. The two types
of magnetic fluids repel each other if they are of the
same kind and attract each other if they are of distinct
type. The force is assumed to be proportional to the
inverse of the square of the distance between two ele-
ments of a magnetic fluid, in accordance with Coulomb
observations. In this sense magnetism is analogous to
electricity but there are significant differences. Whereas
the electricity fluid can pass freely from a conductor to
another when they are in contact, the magnetic fluid
cannot be transported from a piece of iron to another.
The two types of fluids, boreal and austral, that a
piece of iron hold in its natural state, only suffers small
displacement inside the body when they are separated
from external action, such as the induction by a magnet.

Poisson assumes that a magnetic body, such as a piece
of iron or nickel, is made up of a collection of small
magnetic elements, well separated from one another,
each one consisting of equal quantities of austral and
boreal fluids located at a thin layer of their surfaces.
The magnetic elements are the only places where the
magnetic fluids can be found. The process of magnetiza-
tion corresponds to the separation of the two fluid within
each magnetic element and this state of magnetization is
maintained by the coercive force that opposes a further
separation or the approach of the two fluids.

The main problem is to determine the resultant of
the forces, in strength and direction, exerted by a
magnetic body on a point A, or the potential at point A
as the forces can be obtained from the potential. As
the magnetic body consists of magnetic elements, it is
necessary first to determine the potential at A, with
coordinates x, y, and z, due to a magnetic element
located within the magnetic body at the point B, with
coordinates x′, y′, and z′. To this end we consider a
point C located at the surface of the magnetic element B.
The potential at A due to the point C, denoted by q, is
inversely proportional to the distance R1 from C to A,

and is given by

q =
∫

σ

R1
ds′′, (203)

where σ is the surface density of magnetic fluid, and the
integration is over the surface of the magnetic element.

Taking into account that the distance of a point of the
surface to the center B of the magnetic element is small
compared to the distance R from B to A, we may expand
1/R1 around 1/R. The first term of the expansion is

1
R

∫
σds′′, (204)

and vanishes because the amount of boreal and austral
fluids in a magnetic element are equal. The result up to
the first order is

q = α
X

R3 + β
Y

R3 + γ
Z

R3 , (205)

where X = x−x′, Y = y−y′, and Z = z−z′, and R2 =
X2 +Y 2 +Z2, and α, β, and γ are surface integrations of
σ, where the element of area is the projection to a plane
perpendicular to the x, y, and z directions, respectively.
These three quantities determine how the magnetic
fluids are distributed within the magnetic element at B.
Poisson remarks that a magnetic element is equivalent
to a small magnetic needle and that α, β, and γ are
understood as proportional to the cosines of the angles
defining the axis of the needle.

The potential Q at point A due to the magnetic body
is obtained by summing over all magnetic elements of
the body

Q =
∫
kqdx′dy′dz′, (206)

where k is number of magnetic elements per unit volume,
which we consider to be constant. If α, β, and γ are
independent of x′, y′, and z′, then q can be written as

q = d

dx′
α

R
+ d

dy′
β

R
+ d

dz′
γ

R
, (207)

and the integral (206) can be transformed into the
surface integral

Q = k

∫
(αλ+ βµ+ γν)dσ

′

R
, (208)

where λ, µ, and ν are the cosines of the angles that
defines the direction of the normal to surface of the body.

Let us apply the results to a magnetic body which is
a sphere of radius a. We choose the frame of reference
such that the point A is at the z axis, which is equivalent
to say that R2 = r2 + a2 − 2ra cosω, where ω is the
polar angle. In addition we set the axis of the magnetic
element perpendicular to the y axis in which case β = 0,
and α2 + γ2 = 1. The potential Q is thus

Q = k

∫ 1
R

(α sinω cosϕ+ γ cosω)a2 sinωdωdϕ. (209)
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Before performing the integral Poisson expands 1/R in
powers of 1/r. After the integration, the only surviving
terms is the one that corresponding to 1/r2, with the
result

Q = 4
3πa

3h
cos θ
r2 , (210)

where we have replaced kγ by h cos θ because γ is
proportional to the cosine of θ, the angle between the
axis of the magnetic elements and the line connection
the center of the sphere and the point A.

Below we write down the potential between two mag-
netic elements characterized by the two sets of quantities
α, β, γ, and α′, β′, γ′, which are proportional to the
director cosines, respectively. From (207), it is possible
to derive the expression for the potential

Q = 1
R3 (αα′ + ββ′ + γγ′)

− 3
2R5 (Xα+ Y β + Zγ)(Xα′ + Y β′ + Zγ′).

(211)

The components of the force between the two magnetic
elements are determined by differentiation with respect
to x, y, and z. We remark that Poisson did not present
this result in his two papers on magnetism but it follows
straightforwardly from his theory. In modern terms, the
expression (211) is the potential of two magnetic dipoles.

9. Ampère

André-Marie Ampère was born in 1775 in Lyon, France.
When he was seven years of age, his family moved to
Poleymieux, near Lyon. He was not sent to a formal
institution education but educated himself at home.
In 1802, he was appointed professor of physics at Bourg.
He moved to Paris in 1804 when he was appointed
assistant professor at the École Polytechnique. He was
one of the last to get a teaching position before the
educational degrees was required. He was promoted to
professor in 1815 and teached continuously at that school
until 1828. In 1824, he became professor of physics at the
Collège de France. He died in 1836 [78].

The main field of research of Ampère was on electric
currents and its magnetics effects, for which he coined
the term electrodynamics. He started to work on this
subject in 1820, just after the discovery by Oersted
that a bar magnet was affected by electrical currents.
His investigations and his theory on this subject are
found in his Theory of Electrodynamic Phenomena [79],
published in 1826 [79]. He also worked on mathematics
and chemistry and was one of the supporters of the law of
Avogadro, published in 1811, stating that equal volumes
of gases at the same temperature and pressure contain
the same number of molecules. In fact he also reached
this law independently [8], presented in a publication
of 1814.

Figure 8: The wires A and B carry electrical currents I and I ′,
respectively. The length of AC is ds, of BD is ds′, the angle
CAB is θ′, the angle ABD is θ, and the angle CAE or FBD is γ.

9.1. Electrodynamics

In 1820, a remarkable discovery was made by Oersted.
In July of that year he showed that the orientation
of a suspended bar magnet was affected by electric
currents [78, 80]. Just after being aware of the Oersted
results, Ampère himself conducted experiments on the
action of electric currents, not on magnets but rather
in other electric currents. He showed that two parallel
wires carrying electric currents attracted or repelled
each other depending whether the currents were in the
same direction or in opposite directions, announced in
September 1820 [78, 80]. In the following, Ampère sought
to determine the law of force between two elements of
wires carrying currents [80]. The action between the two
electric currents he called electrodynamic phenomenon
whereas that between a magnet and an electric current
he called electromagnetic phenomenon. At the end of
1820, Ampère arrived at his fundamental formula for
the mutual force between two wire elements [78]. His
formula contained a constant k which only later on, in
1822, he set to be k = −1/2 [78].

To properly state the fundamental formula of Ampère,
let us consider two wires A and B carrying currents I
and I ′, respectively, as shown in Figure 8. Denoting by
ds the length of an element of the wire A at a point A
and by ds′ that of an element of the wire B, at a point
B, the force between the two elements, acting along AB,
is inversely proportional to the square of the distance R
between A and B, and is given by

II ′fdsds′, (212)

where

f = 1
R2 (sin θ sin θ′ cosω + k cos θ cos θ′), (213)

where the constant k = −1/2, θ and θ′ are the angles
that the current elements AC and BD make with the
line AB, respectively, and ω is the angle between the
two planes ABDE and ABFC containing the line AB,
and the current elements BD and AC, respectively, as
shown in Figure 8.

Let γ be the angle DBF which is equal to the angle
EAC and understood as the angle between the two
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current elements. The angles θ, θ′, and ω are related
to γ by cos γ = sin θ sin θ′ cosω + cos θ cos θ′. Using this
relation, the formula (213) can written as

f = 1
R2 (cos γ + h cos θ cos θ′), (214)

where h = k−1 or h = −3/2. The expression (213) with
k = −1/2, or its equivalent form (214) with h = −3/2,
is the fundamental formula of the electrodynamic theory
of Ampère, and usually called Ampère law force.

Let x, y, and z be the coordinates of the point A and
x′, y′, and z′ be the coordinates of the point B. Then
R2 = X2 + Y 2 +Z2, where X = x− x′, Y = y− y′, and
Z = z−z′. The following results can be obtained for the
cosines of the angles θ, θ′, and γ,

cos θ = dR

ds
cos θ′ = −dR

ds′
, (215)

cos γ = −dR
ds

dR

ds′
−R d2R

dsds′
. (216)

Replacing these results into equation (214), it reads

f = − 1
R2

(
R
d2R

dsds′
− 1

2
dR

ds

dR

ds′

)
, (217)

which may be transformed into

f = − 1√
R

d

ds′

(
1√
R

dR

ds

)
. (218)

We determine now the total force acting between the
two circuits A and B and consider the case where the two
circuits are planar figures belonging to the same plane.
The appropriate way to do determine the total force is
to sum separately each rectangular component of the
force. The component along the x direction is obtained
by integrating (X/R)f in s′ along the circuit B and in s
along the circuit A, that is,

Fx =
∫
fxds fx =

∫
X

R
fds′. (219)

We remark that the actual forces are obtained by
multiplying the above results by II ′. Replacing the
expression (218) for f into equations (219), and after
appropriate integrations by parts we find

fxds = 1
2Cdy, (220)

C =
∫ 1
R3 (Xdy′ − Y dx′). (221)

Let us consider the case of two parallel straight wires.
The wire A coincides with the y axis and the other, the
wire B, is parallel to the first at a distance `. Then

C = `

∫
dy′

R3 = `

∫
dξ

(`2 + ξ2)3/2 = 2
`
. (222)

Figure 9: The line ECD is a bended wire carrying an electric
current. The distance from its vertex C to the ring at A is `.
The distances BG, AG and AB are x, y and r, respectively. If
the ring is replaced by a magnet, then the figure also illustrates
the arrangement of the Biot experiment.

But ds = dy, and we find fx = 1/`, that is, the force per
unit length between the wires is inversely proportional
to distance between them.

If the size of the wire B is small compared to its
distance to the wire A, we may expand 1/R3 in powers
of x′ and y′. Up to linear terms in x′ and y′, we find

1
R3 = 1

r3 + 3
r5 (xx′ + yy′), (223)

where r =
√
x2 + y2, and the integral becomes

C = 1
r3

∫
(y′dx′ − x′dy′) + 3

r5

∫
(x2x′dy′ − y2y′dx′).

(224)
For the case where the wire B is a small circle of area a,
we find C = a/r3, and

fxds = a

2r3 dy. (225)

We consider now the problem illustrated in Figure 9
which was treated by Savary [81]. The x component of
the force on the ring is

Fx = a

∫
dy

r3 , (226)

where the integral is performed along the upper arm
of the wire for which y = (x − `) tanα and we recall
that r =

√
x2 + y2. Let ω be the angle ABC between

the wire and the line joining the point B to the center
of the ring. The following relations involving this angle
are valid: r sinω = ` sinα and r cosω = x cosα+ y sinα.
Using these relations we change the variable of integra-
tion from y to ω, obtaining

Fx = a

`2 sinα

∫
sinωdω, (227)

where the integration runs from ω = 0 to α. The result is

Fx = a

`2 sinα (1− cosα) = a

`2
tan α2 , (228)
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and the force on the ring is inversely proportional to the
square of the distance and proportional to tanα/2.

The arrangement of the ring and the bended wire
shown in Figure 9 is such that there is no torque on the
ring although there is a net force, which was calculated
above. Let us suppose now that the bended wire is
rotated ninety degrees around its axis, coinciding with
the xz plane. The ring remains in the xy plane. In this
configuration there will be no net force on the ring but
it will suffer a torque which we will determine in the
following. The torque T around the x axis is obtained by
multiplying y′ by the z component of the force, (Z/R)f ,
and integrating in both circuits. That is,

Tx =
∫
τxds τx =

∫
y′
Z

R
fds′. (229)

Taking into account that the ring is small compared to
the distance to the bended wire, we expand the integrand
of the second integral up to linear terms in x′ and y′. We
find

τxds = az

2r5 [(2r2 − 3x2)dx− 3xzdz], (230)

where a = −
∫
y′dx′, which is the area of the ring.

Replacing this result in the first integral of (229), and
after appropriate integrations by parts, we find the
following expression for the torque on the ring

Tx = a

∫ 1
r3 (xdz − zdx), (231)

where the integral is carried out along the upper arm of
the bended wire which is described by z = tanα(x− `).
Using this relation, we find

Tx = a`

∫ 1
r3 dz, (232)

which can also be written in the form

Tx = a

∫ sinω
r2 ds, (233)

by the use of the relation dz = ds sinα. Employing the
same reasoning used above, we reach the result

Tx = a

`
tan α2 , (234)

and we conclude that the torque is inversely proportional
to the distance ` and proportional to tanα/2, that is
proportional to the tangent of half the inclination of the
upper arm in relation to the axis of the bended wire.
This result was obtained by Savary and published in
1823 [81].

The electrodynamic theory of Ampère concerned the
action between electric currents. But from the results of
the theory, some of which we have just obtained, one
realizes that a circular current acts on another current
like a magnet. This observation lead Ampère to propose

that any magnet may be replaced, without change the
effects, by a collection of closed electric circuits around
the particles of the magnet. In other terms the electric
currents of a closed circuit explains the effects of the
two fluids called austral and boreal. Ampère advanced
the idea that the terrestrial magnetism is produced by
electrical currents in the interior of the terrestrial globe.

Ampère drew also the following conclusions concern-
ing the relation of his theory and the Poisson theory
of magnetism. The action of a solenoid is the same
as that of a series of the Poisson magnetic elements
of the same intensity, distributed uniformly along the
line that encloses all the small circuits of the solenoid.
Incidentally, the term solenoid was created by Ampère
in his treatise of 1826. The action of a closed circuit
carrying a electric current is precisely that exerted by
the Poisson magnetic elements of the same intensity,
distributed uniformly on the surface wrapped up by this
circuit.

9.2. Biot experiments

The Oersted experiment prompt Biot and Savart to
conduct their own experiments on the effect of electric
currents on a small magnetized needle, the results of
which were presented to the Académie des Sciences in
October 1820 [82]. They suspended a small magnetized
needle which could rotate freely, and placed it in the
presence of a straight line wire conducting an electrical
current. They observed that the needle turned into a
transverse position in relation to the wire in accordance
with the Oersted observations. That is, the needle
became perpendicular to the plane contained the wire
and the point where the needle was placed. In addition
they determined the force on the needle and concluded
that it was inversely proportional to the distance from
the needle to the wire. In fact, the net force on the needle
vanishes. What they determined was the magnitude of
the two opposite forces acting on the needle, which
create a torque on the needle.

When perturbed, the needle performed torsional
vibration due to the torque of the opposite forces acting
on the needle by the electric current. This allowed them
to determine the torque as this quantity is inversely
proportional to the square of the period of oscillation.
They concluded from the measurements of the period of
oscillation that the torque is inversely proportional to
the distance from the needle to the wire and so is the
magnitude of the two opposite forces.

According to Biot, Laplace showed that their results
could be derived by assuming that each small element
of electric current exerted a force on the needle which
is inversely proportional do the square of the distance
[80, 83]. The force acting on the needle is obtained by
summing over all elements of the wire. Let us suppose
that the straight wire coincides with the y axis and that
the needle is placed on the x axis, perpendicularly to the
plane xy, at a distance ` from the wire. The distance
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from an element dy to the needle is R =
√
`2 + y2

and, according to Laplace proposition, the force is
proportional to dy/R2. Integrating over all the element
of the wire, ∫

dy

R2 =
∫

dy

`2 + y2 = π

`
, (235)

that is, the force inversely proportional to `.
To determine the force for configurations of the wire

other than a straight line, Biot considered a bended wire
in the form of a V, as shown in Figure 9. The needle is
placed at a distance ` from the vertex of the wire as
shown in Figure 9. From the experimental results, Biot
found that the force was inversely proportional to ` and
proposed that it was proportional to angle of inclination
α [84]. This result was criticized by Ampère who argued,
based on a result by Savary, that we have analyzed
above, that the force should vary as tan(α/2) and not
as α [80]. Later on, the tan(α/2) result was verified
experimentally by Biot himself [85]. Biot stated that this
result could be obtained theoretically by assuming that
the force acting of the needle at a distance R from an
element of current is proportional to sinω/R2, where ω is
the angle between the direction of the element of current
and the line joining it to the needle [85].

10. Fresnel

Augustin Fresnel was born in 1788 at Broglie, in north-
ern France. In 1794, his family retired to Mathieu, near
Caen. At twelve he was sent to the École Centrale
in Caen. He was accepted to the École Polytechnique
in 1804 where he spent two years after which he was
enrolled at the École des Ponts et Chaussées for three
years. After completing his formal training, he entered
at the service of the Corps des Ponts et Chaussées as
a civil engineer. He died in 1827 [86]. His researches
were confined almost exclusively with optics. By around
1814, he began to consider the wave hypothesis of
light. Returning to Mathieu, he undertook experiments
on diffraction which confirmed his belief on the wave
nature of light. It seems that he reached this idea
independently of previous works on the subject such
as that of Huygens and Young [86]. To explain the
polarization of light, he postulated the concept of trans-
verse waves for light based on a similar proposition
by Young.

10.1. Diffraction

Here we will examine his memoir on the diffraction of
light which won the prize of the Académie des Sciences
for the year 1819 and published in 1826 [87]. Fresnel
adopts the viewpoint that light is a result of vibrations
of a universal fluid, called ether, following in this matter
Descartes, Hook, Huygens and Euler. It has advantages
of offering the explanation of a multitude of optical

phenomena which are difficult to be explained by the
Newton emission theory.

The Fresnel theory is based on two fundamental prin-
ciples. The first is the Huygens principle which is stated
by Fresnel as follows: The vibrations of a luminous wave
in each of its points can be regarded as the sum of the
elementary motions that all the parts of this wave, con-
sidered in any of its previous positions, and in isolation,
would send to these points at the same time [87]. The
second is the interference principle, which Fresnel state
as follows: Two undulations which cross at a small angle
are in opposition and weakened when the expanded nodes
of one correspond to the condensed nodes of the other,
and mutually strengthen each other, on the contrary,
when their movements are in harmony [88]. According
to Fresnel, the interference principle was introduced
in optics by Young. However he considered only the
extreme cases of agreement or complete discordance
between two waves whereas Fresnel considered the inter-
mediate cases and applied it to any number of waves.

A light wave is conceived by Fresnel as the vibra-
tions of the ether substance as much a sound wave is
understood as the oscillations of the molecules of the
air. The force acting on an ethereal particle is assumed
to be proportional do its displacement from equilibrium,
resulting in a oscillation of the particle. The solution of
the equation of motion gives a sinusoidal behavior for the
velocity of the particle which Fresnel writes u = a sin 2πt
by considering the unit of time as being the period of
the oscillation. Here, however, we write more generically
u = a sinω2πνt, where ν is the reciprocal of the period.
To determine the velocity of a particle at a time t and at
a distance x from the source of the movement, Fresnel
argues that it is the same as that occurring at the instant
t − x/νλ where λ is the light wavelength. Thus, the
velocity is

u = a sin 2π
(
νt− x

λ

)
, (236)

where a is called by Fresnel the intensity of vibrations.
Let us consider several waves that reach a given point

P located at distances x, x′, x′′, . . . from the source. By
the interference principle, the velocity of a particle at
this point is

u = a sin 2π
(
νt− x

λ

)
+a′ sin 2π

(
νt− x′

λ

)
+ . . . (237)

which can be written as

u = B sin 2π
(
νt− x

λ

)
− C cos 2π

(
νt− x

λ

)
, (238)

B = a+ a′ cos 2π `
′

λ
+ a′′ cos 2π `

′′

λ
+ . . . (239)

C = a′ sin 2π `
′

λ
+ a′′ sin 2π `

′′

λ
+ . . . (240)

where `′ = x′ − x, `′′ = x′′ − x, . . . are the differences in
distance of the P from the sources in relation to one of
them.
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Figure 10: The point C is a source of light waves that is partially
intercepted by the opaque body GA. Two trajectories from C to
a point P of the screen. Fringes are produced at the screen and
are explained by the difference in the lengths of the two paths.
The geometric shadow occurs at the left of point B.

If we define A and n by the relations B = A cos 2πn/λ
and C = A sin 2πn/λ, the expression (238) becomes

u = A sin 2π
(
νt− x

λ
− n

)
, (241)

and the several waves can be understood as a single wave
with intensity of vibrations equal to

A =
√
B2 + C2. (242)

The terms of the right-hand sides of (239) and (240)
can be interpreted, following Fresnel, as the rectangular
components of forces, or vectors in modern terminology,
with intensities a, a′, a′′. Using this interpretation, we
see that B and C are the rectangular components of the
sum of these vectors and that A is the intensity of the
sum of the vectors.

The above expressions, which are derived from the
interference principles, are applied along with the Huy-
gens principle to the phenomena of diffraction. Here we
analyze the diffraction fringes produced by a straight
edge as shown in Figure 10. Let C be a luminous
point understood as a source of waves which are partly
intercepted by an opaque body GA. The arc KAML
represents the wave at the moment it reaches the edge of
the opaque body. According to the Huygens principle we
may consider the points at the arc AML as the sources of
waves that reach the points of the screen HBD. It is not
necessary to consider the points of the arc KA because
this part of the wave is reflected by the opaque body.

Let us consider the rays that reach a certain point P
of the screen coming from the points of the arc AML.
The difference ` of the distance mP from MP is equal to
the length of the segment ms and is given by

` = z2

2
a+ b

ab
, (243)

where z is the length of the arc Mm, a is the distance
CA, and b is the distance AB. We are considering that

Figure 11: Intensity I of diffraction fringes produced by a
straight edge as a function of the distance x to the limit of
the geometric edge.

these distances are larger compared to z. To determine
the wave at the point P we use the expressions (239)
and (240). The terms of these expressions are given by
dz cos 2π`/λ and dz sin 2π`/λ, respectively, where the
waves have all the same intensity of vibrations and are
proportional do dz. Integrating them we get

B =
∫
dz cos qz2, C =

∫
dz sin qz2, (244)

where q = π(a + r)/arλ, and the integration is carried
out from z = −z0 to z = ∞, where z0 is the distance
BP. The intensity of vibrations is

A =
√
B2 + C2. (245)

The intensity of light at P is proportional to the square
of the velocity and thus proportional to the square of
the intensity of vibration, that is,

A2 = B2 + C2. (246)

For convenience, let us define x and I by x = z0
√

2q/π
and I = (2q/π)A2. Then I = B2 + C2, where

B =
∫ ∞
−x

ds cos π2 s
2, C =

∫ ∞
−x

ds sin π2 s
2. (247)

Fresnel carried out numerical integration of B and C from
which he obtained I and its maximum and minimum
values for several values of x. We have also carried out
the numerical integration and the results for I are shown
in Figure 11.

10.2. Polarization

An object observed through a calcite crystal shows two
images as a result of the double refraction of light.
The double refraction in calcite was first described by
Bartholin in 1669 and later by Huygens in his treatise
on light published in 1690. The two rays emerging from
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Figure 12: The incident light, polarized along the plane PP′,
traverses a crystalline plate with principal section represented
by OO′ and a rhomb of calcite with principal section SS′. The
incident beam is divided into two beams polarized in the CO
and CE directions.

a calcite are understood as polarized light. Another way
of polarizing light, called polarization by reflection, was
discovered by Malus in 1808. He observed through a
calcite crystal that the sun light reflected on a glass
window formed just one image instead of the expected
two images, and assigned the effect to the polarization
of the reflected light [4].

The polarization of light impelled the idea that a
light ray might be composed by two distinct components
that do not interfere one another. A crucial step in
this direction was the observation by Fresnel and Arago
that light polarized in orthogonal directions do not
show the phenomena of diffraction, that is, they cannot
interfere [89]. According to Fresnel, Young was the first
to propose, based on the optical properties of biaxial
crystals, that the undulations of ether could be similar to
the transversal waves of a stretched strings, and that the
polarization of light was thus related to the orientation
of the transverse vibration.

The explanation of Young, however, could not explain
the existence of unpolarized light, and a more complete
theory was carried out by Fresnel by postulating a pure
transverse wave of light. This is contained in a paper on
the tints developed in crystalline plates by polarization,
published in 1821 [90], which we describe next.

Let us consider an incident light polarized along the
plane PP′ which traverses the crystalline plate whose
principal section OO′ makes an angle α with that plane,
as seen in Figure 12. We ask for the intensity of the
ordinary and extraordinary images determined by a
homogeneous light of wavelength λ considering that
the principal section SS′ of the calcite makes an angle
β with OO′. If we denote by F the intensity of the
velocities of the ether molecules, which is the amplitude
of the velocity oscillations, for the incident beam, then
the intensity of light will be represented by F 2. After
crossing the crystalline plate, the beam is divided into

to other beams, which are orthogonally polarized in the
directions CO and CE. In accordance with the transverse
wave postulate, the amplitudes of the velocities along
CO and CE will follows the rules of decomposition of a
vector parallel to PC. Thus the amplitude of the first or
ordinary beam will be Fo = F cosα and of the second or
extraordinary beam will be Fe = F sinα. The intensity
of light will be F 2

o = F 2 cos2 α and F 2
e = F 2 sin2 α, in

accordance with Malus’s law.
Each of the beams is divided into two other beams

by the action of the calcite crystal. Applying again the
decomposition rule, the amplitudes of these four beams
will be

Foo = F cosα cosβ, Foe = F cosα sin β, (248)

Feo = F sinα sin β, Fee = −F sinα cosβ. (249)

Next, we have to find the intensity of the two wavetrains
whose difference is o-e and corresponds to the amplitudes
of oscillations Foe and Fee. According to the rules given
by equations (239), (240) and (242), the intensity of
light is

F 2
oe + F 2

ee + 2FoeFee cos 2π `
λ
, (250)

where ` = o− e, or

F 2(cos2 α sin2 β + sin2 α cos2 β)

− 2F 2 cosα sin β sinα cosβ cos 2π `
λ
, (251)

which can be written in the simplified form

F 2 sin2(β − α) + F 2 sin 2β sin 2α sin2 π
`

λ
. (252)

An analogous calculation for the other two wavetrains
give

F 2 cos2(β − α) + F 2 sin 2β sin 2α sin2 π
`

λ
. (253)

These two equations are the general formulas that
give the intensity of each species of homogeneous light
in the ordinary and extraordinary images in terms of
the wavelengths λ and the difference c in their paths.
As λ is the same for both wavetrains, they corresponds
to the same color but with distinct intensity, that is,
with distinct tint. These two formulas, says Fresnel, can
be compared with experimental observation by the aid
of the empirical formula provided by Newton.

11. Navier

Claude Louis Navier was born in 1785 at Dijon, France.
He entered the École Polytechnique in 1802 and the
École de Ponts e Chaussées in 1804 from which he
graduated in 1806. He lived for the rest of his life in
the Saint-Germain-de-Prés quarter in Paris, where he
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died in 1836. From 1819, he taught the course in applied
mechanics at the École des Ponts et Chaussées, becom-
ing professor in 1830. In 1831, he also became professor
at the École Polytechnique. During the period 1807-1820
he turned the mathematical analysis a fundamental tool
of the civil engineer [91]. He contributed to theory of
elasticity and to the structural analysis but his major
contribution is on fluid mechanics contained in a paper
presented at the Academy of Sciences in 1822 and
published in 1827 [92].

In his paper on fluid mechanics [92], Navier restricted
himself to the analysis of incompressible fluids. He rep-
resented a fluid by a collection of material points, or
molecules, located at small distances from each other,
and susceptible to change their position almost freely.
The pressure inside the fluid tends to approach the
molecules which reacts through repulsive forces. The
forces of the molecules among themselves vary with
the distance between molecules, being repulsive when
the distance decreases and attractive when it increases.
In addition to these forces, each molecule may also be
subject to external forces such as gravity. We denote by
P , Q, and R the components of the external forces per
unit volume.

The distinguish feature of the Navier approach lies
on the consideration of the internal friction or viscosity,
which is appropriate to describe viscous fluids. This is
accomplished by postulating a second type of forces
between two nearby molecules which emerges when their
relative motion is nonzero. Navier assumes as a principle
of the theory that these forces, which is the origin of
the viscosity, are proportional to the difference in the
velocities of the nearby molecules. This hypothesis had
been introduced before by Newton in the Principles,
section 6 of book 2 [33, 34]. For this reason, fluids
following this rule, such as air and water, are called
Newtonian fluids.

The fundamental principle used by Navier to find the
equations of motion is that the sum of moments of the
forces is equal to zero, which is the d’Alembert principle
used by Lagrange, as we have seen above. Thus the
problem is reduced to find the moments of the forces.
Let us denote by x, y, and z the rectangular coordinates
of a molecule M, and by δx, δy, and δz the respective
variations in the position. The sum of the moments of
the external forces is∫

(Pδx+Qδy +Rδz)dxdydz (254)

The fundamental principle also includes the moment of
the inertial force which is the mass multiplied by the
acceleration. Denoting by u, v, and w the velocity of M
along the three rectangular direction, at the position x,
v, and z, then the acceleration along the three directions
are

A = du

dt
+ u

du

dx
+ v

du

dy
+ w

du

dz
, (255)

B = dv

dt
+ u

dv

dx
+ v

dv

dy
+ w

dv

dz
, (256)

C = dw

dt
+ u

dw

dx
+ v

dw

dy
+ w

dw

dz
. (257)

The sum of their moments is∫
ρ(Aδx+Bδy + Cδz)dxdydz, (258)

where ρ is the density, that is, the mass per unit volume.
Next we determine the moments of the first type of forces
between molecules alluded above.

Let us denote by x, y, and z the coordinates of a
certain molecule M, as before, and by x + α, y + β,
and z+ γ the coordinates of a neighboring molecule M′.
The distance between them is r =

√
α2 + β2 + γ2 and

the force between them, denoted by f(r), depends on
r as well as on the coordinates x, y, and z. Thus each
molecule M is subject to forces of this type emanating
from nearby molecules M′.

Considering that the fluid is the state of equilibrium
one asks for the variation δr in the distance r that results
from the variations δx, δy, and δz in the position of the
molecule M. The answer is

rδr = dδx

dx
α2 + dδy

dy
β2 + dδz

dz
γ2 + dδx

dy
αβ + dδy

dx
αβ

+ dδx

dz
αγ + dδz

dx
αγ + dδy

dz
βγ + dδz

dy
βγ. (259)

The moment of the force f(r) is∫ ∫
f(r)δrdxdydzdαdβdγ. (260)

Integrating in α, β, and γ by transforming these coordi-
nates into spherical coordinates, we find∫

p

(
dδx

dx
+ dδy

dy
+ dδz

dz

)
dxdydz, (261)

where

p = 4π
3

∫ ∫ ∞
0

r3f(r)dr. (262)

An integration by parts of the integral (261), gives

−
∫ (

dp

dx
δx+ dp

dy
δy + dp

dz
δz

)
dxdydz. (263)

According to the fundamental principle, the sum of
the moments given by (254), (258) with a minus sign,
and (263) should vanish. As the variations δx, δy, and
δz are independent, their coefficients vanish and we find
the equations of motion

P − dp

dx
− ρA = 0, (264)

Q− dp

dy
− ρB = 0, (265)

R− dp

dz
− ρC = 0. (266)
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These equations are the Euler equations (51), (52),
and (53).

Let us determine now the moments of the second
type of forces, that are related to th internal friction.
Denoting by u, v, and w the components of the velocity
of the molecule M, as before, then the components of the
velocity of the molecule M′ are u+ a, v + b, and w + c,
where

a = du

dx
α+ du

dy
β + du

dz
γ, (267)

b = dv

dx
α+ dv

dy
β + dv

dz
γ, (268)

c = dw

dx
α+ dw

dy
β + dw

dz
γ, (269)

and we are considering that α, β, and γ are small
quantities. The difference of the velocities along the line
joining the two molecules is

V = α

r
a+ β

r
b+ γ

r
c. (270)

In accordance with the principle adopted by Navier,
we understand that the force between the molecules
M and M′ is proportional to increase in V along the
line joining the molecules and to a function f(r) which
decreases rapidly with the distance r and vanishes when
r takes an appreciable value. Thus the components of
this force along the x, y, and z direction are f(r)(dV/dx),
f(r)(dV/dy), and f(r)(dV/dz), respectively. To deter-
mine the components X, Y , and Z of the force should
integrate in α, β, and γ, that is,

X =
∫
f(r)dV

dx
dαdβdγ, (271)

Y =
∫
f(r)dV

dy
dαdβdγ, (272)

Z =
∫
f(r)dV

dz
dαdβdγ. (273)

The result of the integrals are

X = ε

(
d2u

dx2 + d2u

dy2 + d2u

dz2

)
, (274)

Y = ε

(
d2v

dx2 + d2v

dy2 + d2v

dz2

)
, (275)

Z = ε

(
d2w

dx2 + d2w

dy2 + d2w

dz2

)
, (276)

where

ε = 8π
30

∫ ∞
0

drr4f(r). (277)

Adding X, Y , and Z to the equations (264), (265),
and (266), we reach the Navier equations of motion,

P − dp

dx
− ρA+X = 0, (278)

Q− dp

dy
− ρB + Y = 0, (279)

R− dp

dz
− ρC + Z = 0, (280)

which in explicit form are

ρ

(
du

dt
+ u

du

dx
+ v

du

dy
+ w

du

dz

)
= P − dp

dx
+ ε

(
d2u

dx2 + d2u

dy2 + d2u

dz2

)
, (281)

ρ

(
dv

dt
+ u

dv

dx
+ v

dv

dy
+ w

dv

dz

)
= Q− dp

dy
+ ε

(
d2v

dx2 + d2v

dy2 + d2v

dz2

)
, (282)

ρ

(
dw

dt
+ u

dw

dx
+ v

dw

dy
+ w

dw

dz

)
= R− dp

dz
+ ε

(
d2w

dx2 + d2w

dy2 + d2w

dz2

)
. (283)

We remark that p is the pressure and ε is the viscos-
ity. These equations were also obtained by Stokes in
1845 [93], and are called Navier-Stokes equations [20].

12. Conclusion

We have examined the analytical physical theories that
emerged after the introduction of the differential and
integral calculus, restricting to the period from the very
beginning of the eighteenth century up to the middle
of the nineteenth century. We intend to analyze other
analytical physical theories that appeared after this time
in an other publication. The analytical theories that we
have examined here employed the calculus, or analysis,
as the underlying framework. This was a change in
the theoretical approach as the previous theories from
Euclid to Newton used basically the geometry methods.
The mechanics of Lagrande was a typical and relevant
example of these analytical theories. It is not by chance
that the word analytic appears in the title of his treatise
on mechanics.

The theories were examine on the light of the view-
point stated above that a scientific theory consists of
a framework composed by concepts and laws which
are derived by a deductive reasoning from a set of
fundamental laws and a set of primary concepts. In
Table 1 we list the theories examined along with the
main concepts, including the primary concepts. The
primary, or primitive concepts, are undefinable concepts.
In addition the framework is endowed with an interpre-
tation which connects the abstract concepts to the real
world. These correspondence are directly related to the
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Table 1: The author of a scientific theory is listed together with the abbreviated name of the main work where it is found, the year
of its public presentation or publication, the subject of the theory, the main concepts including the primary concepts, and references.

Author Work Year Subject Concepts References
Varignon Motion in general 1700 particle dynamics space, time, force [12–14]
Euler Mechanics 1736 particle dynamics space, time, force [23]
D. Bernoulli Hydrodynamics 1738 hydrodynamics hydrodynamic pressure [17–19]
Euler Principles of fluid motion 1757 fluid mechanics pressure, density [26–28]
Euler, Lagrange various papers 1759 sound propagation pressure, density [36–41]
Lagrange Analytical Mechanics 1788 mechanics space, time, mass, force [31]
Laplace Celestial Mechanics 1799 mechanics space, time, mass, force [57]
Laplace, Biot, Poisson Theory of sound 1808 sound propagation pressure, density [64–67]
Poisson Electricity distribution 1812 electricity electric fluid [73, 74]
Fresnel Diffraction of light 1819 light diffraction light wave [87]
Fresnel Polarization of light 1821 light polarization transverse light wave [90]
Fourier Analytical Theory of Heat 1822 heat propagation heat, temperature [69]
Poisson Theory of magnetism 1826 magnetism magnetic fluid [76, 77]
Ampère Electrodynamic phenomena 1826 electrodynamics electric current [79]
Navier Laws of fluid motion 1827 fluid mechanics pressure, density, viscosity [92]

measurements. We remark that not all concepts of a
theory need to have a real counterpart, or, employing
a terminology of quantum mechanics, need not be an
observable.

Acknowledgement

I wish to acknowledge Tânia Tomé for the critical
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Livraria da F́ısica, São Paulo, 2011), 2ª ed.

[6] L.R. Evangelista, Perspectivas em História da F́ısica,
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[14] P. Varignon, Mémoires de l’Académie Royale des Sci-
ences, année 1700, p. 224 (1760).

[15] R. Dugas, Mechanics in the Seventeenth Century
(Griffon, Neuchatel, 1958).

[16] C.C. Gillispie (ed.) Dictionary of Scientific Biography
(Scribner, New York, 1970) v. 2, p. 36.

[17] D. Bernoulli, Hydrodynamica (Dulseckeri, Argentorati,
1738).

[18] D. Bernoulli and J. Bernoulli, Hydrodynamics and
Hydraulics (Dover, New York, 1968).

[19] D. Bernoulli, Hydrodynamique (Blanchard, Paris, 2004).
[20] G.A. Tokaty, A History and Philosophy of Fluid

Machanics (Dover, New York, 1971).
[21] C.C. Gillispie (ed.) Dictionary of Scientific Biography

(Scribner, New York, 1971) v. 4, p. 467.
[22] D. Suisky, Euler as Physicist (Springer, Berlin, 2019).
[23] L. Euler, Mechanica sive Motus Scientia Analytice

Exposita (Academiae Scientiarum, Petropoli, 1736).
[24] A translation of [23] by I. Bruce is found in http://www.

17cneturymaths.com.
[25] D. Bernoulli, Commentarii Academiae Scientiarum

Imperialis Petropolitanae 1, 126 (1728).
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