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In a previous paper, we have mathematically derived the Schrödinger equation using the construct of a
Characteristic Function. We have shown that this derivation has a great number of consequences and may
help to understand what Quantum Mechanics is really about. In this paper, we present another axiomatic
mathematical derivation based on the construct of Boltzmann’s entropy. We also show how these two derivations
are mathematically connected and obtain, from this, the positive definite phase space probability distribution
function. This probability distribution function is shown to be the only one that reproduces the Schrödinger
equation and maximizes entropy, while minimizing the energy. Bohmian Mechanics is considered and reinterpreted
from the perspective of the mathematical results of the present approach. Some examples are worked out to give
teachers interested in using this material in their classrooms some concreteness.
Keywords: Bohmian Mechanics, Entropy, Schrödinger equation, Mathematical derivation, Teaching of Quantum
Mechanics.

Em um artigo anterior, derivamos matematicamente a equação de Schrödinger usando como construto a
“Função Característica”. Mostramos que esta derivação tem um grande número de consequências importantes
e pode ajudar a compreender do que realmente trata a Mecânica Quântica. Neste artigo, apresentamos outra
derivação matemática axiomática baseada no construto “entropia de Boltzmann”. Mostramos também como
essas duas derivações estão matematicamente conectadas e obtemos, a partir disso, a função de distribuição de
probabilidade positivo – definida no espaço de fase. Esta função de distribuição de probabilidade mostra-se como
a única capaz de reproduzir a equação de Schrödinger e maximizar a entropia, ao mesmo tempo que minimiza
a energia. A Mecânica Bohmiana é considerada e reinterpretada a partir da perspectiva desenvolvida nesta
abordagem a partir dos resultados matemáticos. Alguns exemplos são elaborados para dar alguma concretude aos
professores interessados em utilizar este material em suas salas de aula.
Palavras-chave: Mecânica Bohmiana, Entropia, Equação de Schrödinger, Derivação matemática, Ensino de
Mecânica Quântica.

1. Introduction

In paper I of this series [1], a mathematical method
to derive the Schrödinger equation was presented. The
method is based on the characteristic function con-
struct – a fairly usual concept of Statistics in general. We
showed the power of adopting an axiomatic approach by
presenting other important results related to the process
of quantization. The approach is based on two axioms
and is mathematically quite direct. That paper followed
lines similar to those adopted in [2, 3], in which we tried
to make a didactic transposition of topics related to the
foundations of Quantum Mechanics.

At this point, one may ask why trying to derive the
Schrödinger equation by other ways, if the one already
presented is so rich of results and mathematically direct?
The point is that each formalism used to make quan-
tization is based upon different formal constructs and
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give us ways of seeing the semantics of the field in
different, but interconnected ways. This is, thus, a quite
secure and careful way to address the problem of the
interpretation of Quantum Mechanics, that shows itself
to be quite complex since its proposition in terms of
the Schrödinger equation, and even more to students
initiating their understanding of the topic.

For instance, Feynman’s approach works with the
notion of trajectories and scratches the idea of a stochas-
tic behavior, when it presents the mathematical fact that
one may look at the formalism of the theory by a sort
of summing over an infinite set of trajectories – these
trajectories, with some stretch at least up to this point,
may be connected to stochastic realizations of the system
dynamics. However, this is nothing but a suggestion that
must be clarified by other quantization methods, using
constructs that are better fit to these notions. On the
other hand, the characteristic function derivation gives
us a glimpse that the Central Limit Theorem may play
a central role in Quantum Mechanics. These two results
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Figure 1: Formal connections already made (in color) and some
connections scratched upon (in gray).

must be mathematically derived, if we want a sound
basis for Quantum Mechanics – in particular regarding
its interpretation. We thus have, up to now, make the
mathematical interconnections shown in Figure 1.

The construct of the present paper is Boltzmann’s
entropy, known by us from our studies in the field
of Thermodynamics. Again, this is a concept closely
related to that of fluctuations. Thus, if we succeed in
making this derivation and if we accomplish to show
the mathematical equivalence between it and the char-
acteristic function derivation (and, thus, also Feynman’s
path integral approach etc.), the use of the notion of
fluctuation in the interpretation of the theory would
begin to be justified.

As a formal result of the present derivation, we will
show how these two approaches together help us finding
a phase space distribution function that represents any
phenomenon of Quantum Mechanics. As the reader
will see, this distribution is positive definite and gives
the correct quantum mechanical results whenever we
calculate average values in the usual classical statistical
way. We show this by applying the formalism to the
harmonic oscillator and the hydrogen atom as examples.

The paper is organized in the following manner: in
the second section we present the derivation, which is
based on only two axioms, as was the case with the
characteristic function derivation. In the third section
we show how the present entropy derivation is connected
to the characteristic function derivation of the previous
paper. Section four will be devoted to the important
issue of deriving the phase space probability density
function. Section five will then show that the present
approach can be used to understand, in a deeper way,
Bohm’s “hidden variables” approach (but in statistical
terms, without the notion of “hidden variables”). To
make the present approach as concrete as possible, we
present two examples of the phase space probability
density function in section six. In section seven, we

will show that the derived phase space probability
density function indeed satisfies the first axiom of the
characteristic function derivation – and how it does that.
Section eight will be devoted to show that the phase
space probability density function obtained is the only
one that maximizes the phase space entropy. The last
section is then devoted to our conclusions.

2. The Derivation

We begin, as in the previous paper [1], presenting the
postulates of the derivation. Again, we need only two
axioms [4]:

Axiom 1 For an isolated system, the joint phase-space
probability density function related to any Quantum
Mechanical phenomenon obeys the momentum integrated
Liouville equation as∫ ∞

−∞

dF (q, p; t)
dt

dp = 0;
∫ ∞

−∞
p
dF (q, p; t)

dt
dp = 0, (1)

Axiom 2 The product of the variances of the momenta
and the positions of a physical process, calculated at each
point q of the configuration space, must satisfy〈

δp(q; t)2
〉〈

δq(q; t)2
〉

= ℏ2

4 . (2)

It is important to understand what this last equation
is saying, though. We say that p alone (and not p(q; t)) is
the variable that, by quantization turns into the operator
p̂, while ⟨δp(q)2⟩ is the momentum fluctuation over a
fiber on phase space labelled by q, that is, paralel to the
momentum axis., with an analogous interpretation for
⟨δq(q; t)2⟩.

Before developing the derivation of the Schrödinger
equation, it is important to stress that we are not
saying, in Axiom 1, that the phase space probability
density function F (q, p; t) must be a solution of the
Liouville equation. On the contrary, in what follows,
our formal developments will show clearly that this
is not the case (except for the ground state of the
Harmonic Oscillator). We are requesting that only the
first two momentum statistical moments are given by
the constraints in (1). Indeed, the first equation in (1)
represents solely the continuity equation, which we know
to be valid within Quantum Mechanics. The second
equation in (1) is related to energy conservation, which
is also a property of Quantum Mechanical systems, in
general. These are the only demands put forward by
Axiom 1. Moreover, the first axiom is completely general
and can encompass many statistical physical systems
which presents conservation of probability and energy.
What Axiom II does is precisely specify that, from
all those systems, only those satisfying that condition
should be considered.

Revista Brasileira de Ensino de Física, vol. 46, e20240219, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0219



Filho e Ferreira e20240219-3

We now show that these two axioms alone allow us
to mathematically derive the Schrödinger equation in
a quantization process, as explained in [1]. Much of
the developments here follow quite closely the usual
approach of classical kinetic theory[5].

The Liouville equation can be written as
∂F (q, p; t)

∂t
+ p

m

∂F (q, p; t)
∂q

− ∂V (q)
∂q

∂F (q, p; t)
∂p

= 0,

and we can immediately integrate it with respect to p
and use the definitions∫

F (q, p; t) dp = ρ(q; t);∫
pF (q, p; t) dp = p(q; t)ρ(q; t)

, (3)

where ρ(q; t) is the probability density upon configura-
tion space, and the product p(q; t)ρ(q; t) is the momen-
tum density average, also defined upon configuration
space. We arrive at the equation

∂ρ(q; t)
∂t

+ ∂

∂q

[
p(q; t)
m

ρ(q; t)
]

= 0, (4)

which is clearly a continuity equation for the probability
density defined upon the configuration space. This,
therefore, gives us a very direct interpretation of the
probability current that one finds in the usual approach
that begins with the Schrödinger equation.

This is our first result that will be compared with
the formal derivation of paper I. The application of the
second constraint in axiom 1, which involves the use of
axiom 2, is, however, more involved.

Indeed, we may now multiply the Liouville equation
by p and define, in a way parallel to previous ones in (3),
the second order momentum statistical moment as∫

p2F (q, p; t) dp = M2(q; t). (5)

We get the equation
∂

∂t
[ρ(q; t)p(q; t)]+ 1

m

∂M2(q; t)
∂q

+ ∂V (q)
∂q

ρ(q; t) = 0. (6)

Using (4) into this last equation, we find, after some
straightforward calculations, the expression

1
m

∂

∂q

[
M2(q; t) − p2(q; t)ρ(q; t)

]
+ ρ(q; t)

[
∂p(q; t)
∂t

+ ∂

∂q

(
p2(q; t)

2m

)
+ ∂V (q)

∂q

]
= 0.

(7)

The first term of the previous expression may be
written as

M2(q; t) − p2(q; t)ρ(q; t)

=
∫ [

p2 − p2(q; t)
]
F (q, p; t) dp

=
∫

[p− p(q; t)]2F (q, p; t) dp.

From the definitions in (3) and (5), we may also define
the variance density of the variable p on each point of
the configuration space, since integration is being made
upon only the momentum variable, as〈

δp(q; t)2
〉
ρ(q; t) =

∫
[p− p(q; t)]2F (q, p; t) dp. (8)

At this point, we have not used the second axiom
yet – it will be necessary precisely to allow us to find
the expression for ⟨δp(q; t)2⟩ in terms of the probability
density function ρ(q; t). This is the point at which
Boltzmann’s entropy comes into play.

Thus, consider the entropy S(q; t) defined upon the
configuration space in such a way that the equal a priori
probability postulate grants us that (see [25], pp. 290,
509)

ρ(q; t)= exp
[
S(q; t)
kB

]
,

where kB is Boltzmann’s constant. We now make the
system to fluctuate around q by an amount δq in such a
way that we have

ρ (q, δq; t) = ρ (q + δq; t) = ρ(q; t)

× e

[
1

kB
( ∂S(q+δq;t)

∂q )
δq=0

δq+ 1
2kB

(
∂2S(q+δq;t)

∂q2

)
δq=0

δq2

]
,
(9)

meaning that the perturbed ρ (q, δq; t) is a Gaussian
function and is related to the probability of having
a fluctuation ∆ρ in the probability density function
that may be different for different points q in the
configuration space (this method of analysis has nothing
new and was introduced by Einstein and Smoluchovsky;
see [6], p. 172; see also [7], pp. 288-291). Note that we
develop the expression up to second order in δq (which
begins to show the deep connection with the derivation
made in paper I [1] – and, again, with the Central Limit
Theorem).

Thus, it is obvious that

〈
δq(q; t)2

〉
=
∫ +∞

−∞ (δq)2 exp
(
βδq − γδq2) d (δq)∫ +∞

−∞ exp (βδq − γδq2) d (δq)

−

(∫ +∞
−∞ δq exp

(
βδq − γδq2) d (δq)∫ +∞

−∞ exp (βδq − γδq2) d (δq)

)2

,

where we put

γ = − 1
2kB

(
∂2S(q; t)
∂q2

)
0
, β = − 1

kB

(
∂S

∂q

)
0
.

A simple calculation of the integral shows that

〈
δq(q; t)2

〉
= 1

2γ = −
(
∂2 ln(q; t)
∂q2

)−1

.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0219 Revista Brasileira de Ensino de Física, vol. 46, e20240219, 2024



e20240219-4 Derivation of the Schrödinger equation II: Boltzmann’s entropy

Note that we were looking for an expression for〈
δp(q; t)2

〉
,

but ended up with an expression for
〈
δq(q; t)2

〉
. In

principle, there is no relation among these dispersions,
and it is axiom 2 that brings about this relation,
which may be thought as the main feature of Quantum
Mechanics1.

Indeed, the content of the second axiom (and of
Quantum Mechanics) allows us to write〈

δp(q; t)2
〉

= −ℏ2

4
∂2 ln ρ(q; t)

∂q2 ,

and thus (see [41] p. 120 or [42])〈
δp(q; t)2

〉
ρ(q; t) = −ℏ2

4 ρ(q; t)∂
2 ln ρ(q; t)
∂q2 . (10)

Substituting this last expression into (7) and writing,
as in the derivation of paper I,

ρ(q; t) = R(q; t)2; p(q; t) = ∂S(q; t)
∂q

, (11)

we find

∂S

∂t
+ 1

2m

(
∂S

∂q

)2
+ V (q) − ℏ2

2mR(q; t)
∂2R

∂q2 = 0. (12)

Equations (4) and (12) were already shown in paper I
to be equivalent to the Schrödinger equation

− ℏ2

2m
∂2ψ

∂q2 + V (q)ψ(q; t) = iℏ
∂ψ(q; t)
∂t

,

if we put

ψ(q; t) = R(q; t) exp
[
i

ℏ
S(q; t)

]
. (13)

Thus, the two axioms of this section also allow us to
mathematically derive the Schrödinger equation.

From the previous calculations, we may hunch that
there must be a relation between the derivation of paper
I and the present one. This can be mathematically shown
and we prove it in the next section.

3. Connections with the Characteristic
Function Derivation

The characteristic function derivation of paper I used
the expression

Z (q, δq; t) =
∫
F (q, p; t) exp

(
i

ℏ
pδq

)
dp, (14)

1 We will show that axiom 2, as expected, gives Heisenberg’s
relations as a formal consequence.

which implies that

ρ(q; t) = lim
δq→0

Z(q, δq; t)

p(q; t)ρ(q; t) = lim
δq→0

−iℏ∂Z(q, δq; t)
∂(δq) ,

and ∫
p2F (q, p; t) dp = lim

δq→0
−ℏ2 ∂

2Z (q, δq; t)
∂(δq)2 .

Then, (8) becomes〈
δp(q; t)2

〉
ρ(q; t)

= lim
δq→0

[
−ℏ2 ∂

2Z (q, δq; t)
∂(δq)2 + ℏ2

(
∂Z (q, δq; t)
∂ (δq)

)2
]
,

which may be rearranged as〈
δp(q; t)2

〉
ρ(q; t)

= −ℏ2 lim
δq→0

Z (q, δq; t) ∂
2 lnZ (q, δq; t)

∂(δq)2 .

It thus remains for us to calculate the explicit appear-
ance of this expression and to show that it is equivalent
to (10).

We may expand the exponential in (14) to write the
characteristic function, up to second order in δq, as

Z (q, δq; t) =
∫
F (q, p; t) dp+ iδq

ℏ

∫
pF (q, p; t) dp

− (δq)2

2ℏ2

∫
p2F (q, p; t) dp

and using (3) and (5) we rewrite it as

Z (q, δq; t) = ρ(q; t) + iδq

ℏ
p(q; t)ρ(q; t)

− (δq)2

2ℏ2 M2(q; t) + o
(
δq3) . (15)

The left-hand side, on the other hand, has to be
written as

Z (q, δq; t) = ψ∗
(
q − δq

2 ; t
)
ψ

(
q + δq

2 ; t
)

and using (13) we find, up to second order in the
infinitesimal parameter δq, the expression (see paper I)

Z (q, δq; t)

=
{
R(q, t)2 +

(
δq

2

)2
[
R(q; t)∂

2R

∂q2 −
(
∂R

∂q

)2
]}

exp
(
iδq

ℏ
∂S

∂q

)
,
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or, explicitly,

Z (q, δq; t) = R(q; t)2 + iδq

ℏ
R(q; t)2 ∂S(q; t)

∂q

+ (δq)2

2

[
1
4R(q; t)2 ∂

2 lnR(q; t)2

∂q2

− R(q; t)2

ℏ2

(
∂S (q, t)
∂q

)2
]
. (16)

Comparison of (15) with (16) shows that

ρ(q; t) = R(q; t)2; p(q; t) = ∂S(q; t)
∂q

, (17)

as in (11), and

M2(q; t) = −ℏ2

4 ρ(q; t)∂
2 ln ρ(q; t)
∂q2 + p(q; t)2

ρ(q; t).

Now, using (15), we can write (up to second order)

Z(q, δq; t) = ρ(q; t)
[
1 + iδq

ℏ
p(q; t)+

+ (δq)2

2

(
1
4
∂2 ln ρ
∂q2 − p(q; t)2

ℏ2

)]
,

and thus

lim
δq→0

∂2

∂(δq)2 lnZ (q, δq; t) = 1
4
∂2 ln ρ(q; t)

∂q2 ,

which implies equation (10), as we were willing to show.
Another way of comparing the two derivations is

to substitute (15) into the equation satisfied by the
characteristic function and take the real and imaginary
parts to find equations (5) and (6).

These results show that the two derivations are math-
ematically equivalent, and their comparison gives us
another perspective about the physical content of the
second axiom of the characteristic function derivation.
That axiom is rather mathematical and hides the phys-
ical content related to the imposition it makes upon the
dispersions in position and momentum of some physical
process at each point of the configuration space.

We now prove that relation (2), with an equal sign
for each point of the configuration space, mathematically
gives Heisenberg’s dispersion relations, if one integrates
it with respect to q (see, for example, [8]).

Indeed, if we begin with〈
δp(q; t)2

〉〈
δq(q; t)2

〉
= ℏ2

4 ,

and use 〈
δp(q; t)2

〉
= −ℏ2

4
∂2 ln ρ (x, t)

∂x2 ,

then

∆p2 · ∆x2

= −ℏ2

4

∫
ρ (x, t) ∂

2 ln ρ (x, t)
∂x2 dx

∫
(x− x)2

ρ (x, t) dx,

with ∆p2 and ∆x2 as implied. If we rewrite this last
expression as

∆p2 · ∆x2 = − ℏ2

4

∫ (√
ρ (x, t)∂ ln ρ (x, t)

∂x

)2
dx

·
∫ [√

ρ (x, t) (x− x)
]2
dx,

and apply the Schwartz inequality, we get

∆p2 · ∆x2 ≥ −ℏ2

4

(∫
ρ (x, t) (x− x)∂ ln ρ (x, t)

∂x
dx

)2
,

and thus (after a simplification and an integration by
parts)

∆p2 · ∆x2 ≥ ℏ2

4 .

We note that one may consider the characteristic
function Z (q, δq; t) as a momentum partition function,
in the same mathematical sense that the function Ze =∑

r e
−βEr of usual statistical mechanics is an energy

partition function. Indeed, we may establish the close
formal analogy between these two functions for the
derivation of useful statistical quantities. This compari-
son is presented in Table 1.

The results shown in Table 1 address an old intuition
first presented by Callen (see [9], pp. 458), who argued,
in the realm of thermodynamics, that we should write
the thermodynamic characteristic function Ze in its most
general form as

fi = 1
Z

exp
(

−βEi − λ⃗p · P⃗i − λ⃗J · J⃗i

)
,

where the Lagrange parameters
(
β, λ⃗p, λ⃗J

)
play the

same role in the generalized theory as the parameter β
plays in the usual formalism, and P⃗ and J⃗ are the linear
and angular momenta, respectively.

Table 1: Comparison between the energy partition function and
the momentum partition function as defined in the present work.

Energy Partition
Function Momentum Partition Function

Ze =
∑

r
e−βEr Z =

∫
F (q, p; t) e

i
ℏ pδqdp

⟨E⟩ = −∂ ln Ze

∂β
⟨p⟩ = limδq→0 − iℏ∂ ln Z

∂ (δq)〈
E2〉 = 1

Ze

∂2Ze

∂β2

〈
p2〉 = limδq→0 − ℏ2

Z

∂2Z

∂(δq)2〈
∆E2〉 = ∂2 ln Ze

∂β2

〈
δp2〉 = limδq→0 − ℏ2 ∂2 ln Z

∂(δq)2
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Callen thus concludes:

“In accepting the existence of a conserved
macroscopic energy function as the first pos-
tulate of thermodynamics, we anchor that
postulate directly in Noether’s theorem and
in the time-translation symmetry of the
physical laws.
An astute reader will perhaps turn the sym-
metry argument around. There are seven
‘first integrals of the motion’ (as the con-
served quantities are known in mechanics).
These seven conserved quantities are the
energy, the three components of the linear
momentum and the three components of
the angular momentum; and they follow
in parallel fashion from the translation in
‘space-time’ and from rotation. Why, then,
does energy appear to play a unique role in
thermostatistics? Should not momentum and
angular momentum play parallel roles with
the energy?
In fact, the energy is not unique in thermo-
dynamics. The linear momentum and angu-
lar momentum play precisely parallel roles.
The asymmetry in our account of thermo-
statistics is a purely conventional one that
obscures the true nature of the subject.
We have followed the standard convention
of restricting attention to systems that are
macroscopically stationary, in which case the
momentum and angular momentum are arbi-
trarily required to be zero and do not appear
in the analysis. But astrophysicists, who
apply thermostatistics to rotating galaxies,
are quite familiar with a more complete form
of thermostatistics. In that formulation the
energy, the linear momentum, and the angu-
lar momentum play fully analogous roles.(...)
The proper ‘first law of thermodynamics’,
(...) is the symmetry laws of physics under
space-time translation and rotation, and the
consequent existence of conserved energy,
momentum, and angular momentum func-
tions.” (see [9], pp. 461-462)

We note that we could have defined the characteristic
function with the energy term included (multiplied by
δt, and this is exactly what appeared when we made the
connections with Feynman’s formalism); the inclusion of
this term would not change our derivations. Moreover,
the complete ‘momentum term’, that could be written
as λ⃗p · P⃗i + λ⃗J · J⃗i is just our term p⃗ · δq⃗, where δq⃗ plays
the role of the parameters λ⃗p and λ⃗J , if we remember
that p⃗ already includes angular momentum (as should
had become clear when we approached the problem of
quantization in generalized coordinates in paper I).

4. The Phase-Space Probability Density
Function

The previous developments have very important con-
sequences for our representation of the problem
upon phase space. The equivalence between the two
approaches shows us that we must identify ρ (q + δq; t)
with Z (q, δq; t), since they are exactly equal up to second
order in δq. Then we may use (9) to invert the Fourier
transform to find

F (q, p; t) = ρ(q; t)√
2πv(q; t)

exp
{

− [p− p (q, t)]2

2v(q; t)

}
, (18)

where we already used

p(q; t) = −iℏ lim
δq→0

∂ lnZ (q, δq; t)
∂ (δq) ,

and we put the variance density in p as

v(q; t) = −ℏ2

4
∂2 ln ρ(q; t)

∂q2 .

Function v(q; t) (the variance on p) will be generally
positive definite. If we note that v(q; t) =

〈
δp(q; t)2

〉
,

expression (18) tells us that the phase space probability
distribution function for any phenomenon of Quantum
Mechanics is given, at each point of the configuration
space, as a Gaussian function with average momentum
given by p(q; t) and statistical variance given by v(q; t).
We have already pointed out in paper I that a Gaussian
characteristic function is related to a Gaussian probabil-
ity density function (for each point of the configuration
space, something obviously connected to the Central
Limit Theorem).

5. Connections with Bohm’s Approach

The path taken by our derivations leaves no room for
any sort of ambiguity in the calculation of average
values using the probability density function Fn (q, p; t) –
we are already assuming that the problem at hand is
represented by some set of quantum numbers n, since
we know that the Schrödinger equation will imply in
the quantization of the spectrum –; given some function
g (q, p), its average value with respect to the quantum
state labeled by n is calculated simply as

⟨g (q, p)⟩n,qp(t) =
∫ ∫

g (q, p)Fn (q, p; t) dqdp, (19)

while its average value with respect only to the momenta
(and thus defined upon configuration space) is given by

⟨g (q, p)⟩n(q; t) =
∫
g (q, p)Fn (q, p; t) dp.

Note that we have used an index in the phase space
probability density function. This is just to make it
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explicit that we must have one phase space probability
density function, as given in (18), for each quantum
mechanical state.

Thus, since we know that the expression for Fn is given
by (18), we can readily calculate the expression for any
function g (q, p) defined upon phase space. In particular,
we may calculate these results for the energy.

The average energy density (upon configuration
space) is given by

⟨H (q, p)⟩n =
∫
H (q, p)Fn (q, p; t) dp = hn(q; t)ρn(q; t),

where H (q, p) is the classical Hamiltonian and hn(q; t)
is a Hamiltonian density. Now, writing

H (q, p) = p2

2m + V (q),

and using (18), it is very easy to show that

hn(q; t) = pn(q; t)2

2m + V (q) − ℏ2

8m
∂2 ln ρn(q; t)

∂q2 ;

the average energy en = ⟨H (q, p)⟩n,qp is given by

en =
∫
ρn(q; t)

×

(
pn(q; t)2

2m + V (q) − ℏ2

8m
∂2 ln ρn(q; t)

∂q2

)
dq,

(20)

where we are assuming that ρn(q; t) is normalized.
However, we have already shown that we must have

(compare with [10])

∂Sn

∂t
+ 1

2m

(
∂Sn

∂q

)2
+ V (q) − ℏ2

2mRn(q; t)
∂2Rn

∂q2 = 0,

and, if we have,

ψn(q; t) = Rn(q; t) exp
(
i

ℏ
Sn(q; t)

)
,

such that

Sn(q; t) = −Ent+ fn(q),

(where En is the energy calculated using the Schrödinger
equation), as is usual. We find that (we also write pn(q; t)
for ∂Sn(q; t)/∂q)

En = pn(q; t)2

2m + V (q) − ℏ2

2mRn(q; t)
∂2Rn

∂q2 ,

and thus, giving the normalization of ρn(q; t), we must
have

En =
∫
ρn(q; t)

×

[
pn(q; t)2

2m + V (q) − ℏ2

2mRn(q; t)
∂2Rn

∂q2

]
dq,

(21)

since En is a constant. Now, we must compare En with
en. We may differentiate the last term in (20) and use the
fact that ρn(q; t) is a probability density to find, using
ρn(q; t) = Rn(q; t)2,

En =
∫ {

ρn(q; t)
{
pn(q; t)2

2m + V (q)

+ ℏ2

2m

(
∂Rn(q; t)

∂q

)2
}
dq

and integration by parts in the last term gives
directly (21). Thus, En = en and our criterion to
calculate the energy is shown to be sound.

It is now better to take a look at some examples to
see, in less abstract ways, how the formalism works.

6. Examples

6.1. The one-dimensional harmonic oscillator
example

The harmonic oscillator problem has solutions given by

ψn(q) =
(

β

π22nn!2

)1/4
exp

(
−βq2

2

)
Hn

(√
βq
)
, (22)

where β = mω/ℏ, and Hn

(√
βq
)

are the Hermite
polynomials. In Table 2 we present the probability
density function Fn (q, p; t) for various values of n. The
distribution functions defined upon phase space quickly
get very complicated, but the process to find them is
immediate and any algebraic computer program can do
the job (we present such a program in the appendix).
The dispersions ∆pn and ∆qn and the energy En

can also be calculated using the functions presented
in Table 2 and the results are the usual ones (again,
algebraic computation was used throughout).

We can plot these phase space probability distribu-
tions for each value of the quantum number n. The
results are shown in Figure 2, together with the profile
of the average fluctuations

〈
δp(q)2

〉
.

Table 2: Phase space probability density functions for various
values of the quantum number n for the harmonic oscillator
problem.

n Fn(q, p) En

0 1
π

e
−βq2− p2

ℏ2β 1
2

1
2
∣∣√βq

∣∣3
πℏ

√
βq2+1

e
−βq2− p2q2

ℏ2(βq2+1) 3
2

2 |2βq2−1|3

2πℏ
√

2β2q4+4βq2+5
e

−βq2−
p2(2βq2−1)2

ℏ2β(2β2q4+4βq2+5) 5
2

3
∣∣√βq(2βq2−3)

∣∣3
3πℏ

√
4β3q6+9βq2+9

e
−βq2−

p2q2(2βq2−3)2

ℏ2(4β3q6+9βq2+9) 7
2
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Figure 2: Left column: The phase space probability density func-
tions for n=0 and n=1. Right column: the average fluctuation
profiles defined upon configuration space.

Figure 3: Left column: The phase space probability density func-
tions for n=2 and n=3. Right column: the average fluctuation
profiles defined upon configuration space.

The fluctuation profiles may be compared to the con-
tours of the probability density functions to make a first
tentative interpretation of the results – an interpretation
that we will keep improving in future papers. Let us
consider the state n = 1 of the quantum harmonic
oscillator. The function F1 (q, p; t) is given in Table 2
and the momentum fluctuation profiles are given (for
n = 0, 1, 2, 3) in Figure 2 and Figure 3 (compare with
the results in [11]).

The Schrödinger equation can be written in the format
∂p1(q; t)

∂t

= − ∂

∂q

(
p1(q; t)2

2m + V (q) − ℏ2

8m
∂2 ln ρ1(q; t)

∂q2

)
,

where we used (17). This equation can be rewritten as
∂p1(q; t)

∂t
+ p1(q; t)

m

∂p1(q; t)
∂q

= −∂V (q)
∂q

− ∂Q1(q)
∂q

,

where

Q(q) = − ℏ2

8m
∂2 ln ρ1(q; t)

∂q2 ,

and it can be metaphorically identified with the Hamil-
ton equation

dp1

dt
= −∂V (q)

∂q
− ∂Q1(q)

∂q
, (23)

as David Bohm did in his seminal papers [10]. In the
present approach, however, the function Q1(q) cannot
be associated with a true potential, but reflects only
the momentum fluctuations2. This shows that Bohm’s
approach cannot be assumed as a non-statistical deter-
ministic theory (analogous to Newtonian Mechanics, but
with an extra potential function), as is amply assumed.
Indeed, its main variable p is, in fact, a statistical func-
tion. Moreover, equation (23) is not a true Hamiltonian
equation, since, in the present approach, p is, in fact,
p(q; t), an explicit function of q, and not an independent
variable, as required for a true Hamilton-Jacobi theory.
This, in turn, easily explains why, for stationary and
symmetrical states in general, one gets p(q; t) = 0,
something hard to explain using Bohm’s interpretation
of the formalism.

Having said this, we can turn our attention to a simple
example, using equation (23) to write it, for the first
excited state of the Harmonic Oscillator, by substituting
the expression for the derivatives there shown. We then
find that our “Hamiltonian” for equation (23) is given by
(we also write the potential of the harmonic oscillator)

H (q, p1) = p2
1

2m + 1
2mω

2q2 + ℏ2

2m

(
1 + q2

q2

)
,

Q(q) = ℏ2

2m

(
1 + q2

q2

)
,

We can draw the constant energy trajectories for the
previous Hamiltonian (see the appendix) and they are
shown in Figure 4. We also show in Figure 4 the contours
of the probability density function F1 (q, p; t). These two
sets of contours present a striking resemblance to each
other showing that the constant probability curves of
the function F1 (q, p; t) are close to the constant energy
ones, although not exactly the same.
2 This may induce us to try to find a Langevin equation for
Quantum Mechanics, something we will do in a future paper of
this series.
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Figure 4: Contours of the Hamiltonian and of the probability
density function for the levels n=1, 2 and 3 of the harmonic
oscillator problem. For the Hamiltonian, each contour represents
a constant energy shell, while, for the probability density
function, each contour represents a constant probability density.

Most important, these two sets of contours give us
a clue of what is going on in the detailed microscopic
level. Indeed, we may see that the term given by Q1(q)
has a divergence at the origin; thus if the particle (of
whose position q is a label – remember: Feynman’s
path integrals allows us to use these notions) is on a
constant energy contour, whenever it comes close to
the origin, there appears a very strong force which
will be responsible for drastically altering the value
of the particle’s momentum. This explains the strong
modifications in value that the momenta suffer at points
close to the origin, even if the coordinate q is not
substantially altered. The corpuscle then is strongly
thrown away from the origin. This can be seen by the
fluctuation profile for the fluctuation in the momentum,
shown in Figure 3, by the tangents lines of the contours
at regions close to the origin. At great distances from
the origin, the term given by Q1(q) becomes almost
constant and does not produce any appreciable force;
thus, the system behaves exactly as a usual harmonic
oscillator and the contours approach the form of a circle
(or an ellipse, in general). The contours of the probability
density function F1 (q, p; t) just reproduce this pattern:
since the corpuscle has a tendency to be pushed from
the origin, the probability of finding it there is very low
(zero, indeed, since there Q1(q) goes to infinity). The
exact same analysis can be made for all excited states.

6.2. The Hydrogen atom example

Let us now take the Hydrogen atom problem, for which
the normalized probability density function is given by

(we put m = ℏ = a = e= 1 and x⃗ = (r, θ, ϕ))

ρn (x⃗) = Rnℓ(r)2|Yℓm (θ, ϕ)|2, (24)

where

Rnℓ (r) = −
(

2
n

)3/2
e−r/n

(
2r
n

)ℓ

L2ℓ+1
n+ℓ

(
2r
n

)
(25)

with Ls
k (x) the associated Laguerre functions and

Yℓm (θ, ϕ) =
[

2ℓ+ 1
4π

(ℓ+ |m|)!
(ℓ− |m|)!

]1/2
Pm

ℓ (θ) eimϕ (26)

are the usual spherical harmonics with Pm
ℓ (θ) the

associated Legendre functions. We thus have

pϕ(r⃗; t) = ∇S (x⃗; t) = m

r sin θ ϕ̂, (27)

that we got from S (x⃗; t) = E +mϕ.
In Table 3 we have listed quantum numbers for some

states of the hydrogen atom together with their momen-
tum fluctuations, in the first and second columns, respec-
tively. The energy values obtained by explicit calculation
of the integral (19) with g (q, p) equal to the Hamiltonian
function are given in the third column. The results are
exactly those found for the Hydrogen atom (algebraic
computation used throughout, see Appendix 2).

In spherical coordinates, the phase space probability
density functions, for a three dimensional problem, are
written in the general format

F (r⃗, p⃗) = ρ(r⃗)
[2πmkBT (q; t)]3/2 exp

−

[
p⃗− p(q; t)

]2

2mkBT (q; t)

 ,

(28)
which represents a Maxwellian function, where p(q; t) is
an average momentum, and T (q; t) is the local temper-
ature. Since we have (27), we get

[p⃗− ∇S (r⃗)]2 = p2
r + p2

θ

r2 + (pϕ −m)2

r2sin2θ
.

We also have
3
2kBT (q; t) =

〈
δp⃗(r⃗)2

〉
= −ℏ2

4 ∇2 ln ρ (r⃗) , (29)

Table 3: Momentum fluctuations and energies for some states
of the hydrogen atom problem given by the quantum numbers
in the first column (ξ = cos θ).

(n, ℓ, m) Momentum Fluctuations E
(1,0,0) 1

r
− 1

2

(2,0,0) 1
2

(8−5r+r2)
r(r−2)2 − 1

8

(2,1,0) 1
2

rξ2 +1
r2ξ2 − 1

8

(2, 1, ±1) 1
2r

− 1
8

(3,0,0) 1
3

2187−1944r+648r2−84r3+4r4

r(27−18r+2r2)2 − 1
18

(3,1,0) 1
6

108rξ2−27r2ξ2+2r3ξ2+108−36r+3r2

r2(r−6)2ξ2 − 1
18

(3,1,±1) 1
6

(−27r+108+2r2)
r(r−6)2 − 1

18
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Table 4: Phase space probability density functions for some
levels of the hydrogen atom (ξ = cos θ) and the functions are
not normalized.

(n, ℓ, m) F (r, θ, ϕ, pr, pθ, pϕ; t)

(1,0,0) r3/2e−2re
− 3

2

[
p2

r+
p2

θ
r2 +

p2
ϕ

r2sin2θ

]
r

(2,0,0) r3/2|r−2|5

(8−5r+r2)3/2 e−re
−3
[

p2
r+

p2
θ

r2 +
p2

ϕ

r2sin2θ

]
r(r−2)2

8−5r+r2

(2,1,0) |rξ|5e−re

−3

[
p2

r+
p2

θ
r2 +

p2
ϕ

r2sin2θ

]
ξ2r2

ξ2r+1

(ξ2r+1)3/2

(2,1,1) r7/2sin2θe−re

−3

[
p2

r+
p2

θ
r2 +

(pϕ−1)2

r2sin2θ

]
r

since we are in three dimensions. Thus, we end with

F (r⃗, p⃗) = ρ(r⃗)
[2π ⟨δp⃗(r⃗)2⟩ /3]3/2 exp

{
−3 [p⃗−m]2

2 ⟨δp⃗(r⃗)2⟩

}
. (30)

In Table 4, we write the probability density functions
in phase space for some levels of the hydrogen atom.

7. Zeroes of the Integrated Liouville
Equation

In paper I, we postulated in axiom 1 that∫
exp

(
i

ℏ
pδq

)
dF (q, p; t)

dt
dp = 0, (31)

but the function F (q, p; t) was not available. Now, with
this function at hand, we may show that this is indeed
the case, up to second order in δq.

Note that we do not assume that the function F is
a solution of the Liouville equation (which would make
the whole formalism of Quantum Mechanics to collapse
into the Newtonian one).

Now, with the probability density function at hand, we
can, for the examples in the previous section, explicitly
calculate this result. This calculation is presented in the
Maple program that we make available at appendix A.
We do that by showing that∫ ∞

−∞

[
lim

δq2→0

∫ ∞

−∞
exp

(
i

ℏ
pdq

)
Fn(x, p)
dt

dp

]
dq = 0,

(32)

for n = 0, 1, 2, 3 . . ., as expected.
Although we are not assuming that the phase space

probability density function satisfies the Liouville equa-
tion, it is instructive to consider the application of
the Liouville operator to the quantum phase space
probability density.

Again, for the simplest case of the harmonic oscillator
in the first and second excited states (F1 and F2), we get
the results shown in Figure 5 (we divided the application
of the Liouville operator by Fn to avoid the fact of

Figure 5: Behavior of the functions Fn(q, p) for n = 1 and
n = 2. The images show the strong fluctuation behavior of the
phase space density near the divergence points in the momentum
fluctuations, while they satisfy Liouville’s equation far from the
divergence points.

making the result to go to zero because of the negative
Gaussian exponent). That is, in Figure 5 we plot the
function

1
Fn(q, p)

dFn(q, p)
dt

= 1
Fn(q, p)

(
p

m

∂Fn

∂q
− q

∂Fn

∂p

)
,

(33)

and similar plots can be obtained for any quantum
number n (see Appendix A).

In this figure it becomes apparent that the Liouville
equation is, indeed, satisfied almost everywhere, except
at the points where the phase-space probability density
functions have divergences. At those points, the results
resemble some sort of fluctuation process. This explains
why the contours of the phase-space probability density
are not exactly the same as the energy contours: if
they were the same, the phase-space probability density
function would obey, exactly, the Liouville equation
and Quantum Mechanics would collapse into Newto-
nian Mechanics. However, it becomes apparent that the
integral in (31) does the job of averaging over these
fluctuation behavior – a point to which we will return in
future papers.

8. Entropy Maximization and Energy
Minimization

Another interesting argument in favor of F (x, p) can
be found in the literature connected with the Density
Functional Theory (DFT). It can be easily shown that
F (q, p) is the distribution function that maximizes the
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local Boltzmann’s entropy

S(q) = −kB

∫ ∫
F (q⃗, p⃗) lnF (q⃗, p⃗) dq⃗dp⃗ (34)

constrained to satisfy

ρ (q⃗) =
∫
F (q⃗, p⃗) dp⃗ ts (q⃗) =

∫
p⃗2

2 F (q⃗, p⃗) dp⃗,

where ts (q⃗) is the so called Weiszäcker term in
the context of Density Functional Theory (see [12],
pp. 239–240). It is then possible to define notions such
as local temperature, pressure etc.

Given this last result, we can show by other means
that F (q⃗, p⃗) is the probability density function related to
the Schrödinger equation. Indeed, the energy functional
becomes, using our previous result (20)

E [ρ,∇ρ] =
∫ ∫

H (q⃗, p⃗)F (q⃗, p⃗) dr⃗dp⃗

=
∫ {[

p(q, t)2

2m + V (q⃗)
]
ρ (q⃗) + ℏ2

8m
|∇ρ|2

ρ

}
dq⃗,

where we used in the last equality the fact that ρ (q⃗)
must be zero when q⃗→∞. With this functional we
can make our variations [with the Lagrange multiplier
λ introduced by the normalization of the probability
density ρ (q⃗)] to find

δE [ρ,∇ρ]
δρ

= − ℏ2

4m∇ ·
(

∇ρ
ρ

)
− ℏ2

8m
|∇ρ|2

ρ2 + p(q⃗, t)2

2m + V (q⃗) − λ

= − ℏ2

4m

[
∇2ρ

ρ
− 1

2
|∇ρ|2

ρ2

]
+ p(q⃗, t)2

2m + V (q⃗) = λ,

and when we put, as usual, ρ (q⃗, t) = R (q⃗, t)2 and
p⃗ (q⃗, t) = ∇S (q⃗, t), we find

1
2m |∇s (q⃗, t)|2 + V (q⃗) − ℏ2

2mR (q⃗, t)∇2R (q⃗, t) = λ.

This last equation is completely equivalent to (12) for
stationary states for which

∂S (q⃗, t)
∂t

= λ,

being λ, obviously, the energy of the state.

9. Extensions for Teaching Physics

It is worth highlighting the effort, made in this article,
of the axiomatic derivation of the Schrödinger equation
from Boltzmann’s entropy construct, demonstrating the
connections with the positive probability distribution
function – defined in phase space. Furthermore, we

sought to characterize it as the only one capable of
maximizing entropy simultaneously while minimizing
energy, while Bohmian Mechanics is considered and
reinterpreted from the perspective developed from the
mathematical results of this approach.

Based on discussions carried out in previous articles
by these authors, for example in [2, 3, 13, 14], we
consider that the approach and examples elaborated in
this text are transposable to common teaching situations
in Higher Education, such as initial Quantum Mechanics
courses.

This development, in a logic of didactic transposition
[1–3, 15], can favor reasoning skills, concept formation,
investigation and translation for the constitution of
careful, critical and creative higher order thinking. This
is in line with perspectives of meaningful [16, 17] and
critical [18, 19] learning, especially when we understand
a capacity to disrupt the hegemonic model of presenting
the Schrödinger equation as a separate postulate, often
obtained from principles of symmetry, usually dedicated
to describing wave-particle duality.

It would also be possible to imagine going further
and treating more general systems, for example, via
application to systems with speed-dependent potentials,
which, in fact, we will show in a future article as an
example of an extension of the approach. Thus, such
modeling could, for example, dedicate itself rigorously to
dissipative systems, finding a more general Schrödinger
equation that takes such effects into account – something
that has been attempted, in various ways, since the birth
of Quantum Mechanics.

Works like this seek to provide alternatives that
provide the student with entry into the field of Quan-
tum Mechanics beyond the usual form, provided by
manuals that are endlessly repeated, without bringing
anything beyond a carefree formalism of questions of
interpretation. Very important to highlight, they do
this without foregoing the necessary formalism, which
works, in fact, as an elucidator of the interpretative
structures that underlie it, and they do so, specifically
through the derivation model adopted, which allows the
interpretation of numerous constructs and variables of
Quantum Mechanics to starting from the idea that, in
the derivation process, such variables that emerge from
mathematical developments inherit their meaning from
those placed in the axioms – something that a non-
axiomatic derivation would never be able to achieve.

10. Final Considerations

In this paper, the second of the series on mathematical
quantization procedures, we improve our knowledge of
some deep aspects of Quantum Mechanics. For instance,
the role played by Boltzmann’s entropy (and, thus, the
extensional aspect of the theory) and some very stringent
interpretation issues regarding Bohm’s approach, now
based on solid formal derivation, instead of an analogy
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Figure 6: New connections between formal results regard-
ing quantization and the formalism of Quantum Mechanics.
Bohmian Mechanics, in a new perspective, and a derivation
based on Boltzmann’s entropy are now part of the set of results.

loosely established. In terms of Figure 1 we now have
the situation shown in Figure 6.

We must stress two things regarding Figure 6. First,
we are assuming transitivity of mathematical deriva-
tions, which should be obvious. Then, if one can connect
the entropy derivation with the Characteristic Function
one, and it was mathematically proved that the Charac-
teristic Function derivation is equivalent to Feynman’s
Path Integral approach, there is no need to show the
formal equivalence between Feynman’s approach and the
Entropy one. This is important. Such a relation would be
very difficult to formally establish, showing, again, the
importance of having different quantization methods as
a means to better understands the theory. This kind of
approach may help teachers of undergraduate courses to
introduce important discussions about the interpretation
of Quantum Mechanics. We kept the formalism at this
level of presentation and make it accessible algebraic
computation programs to present algebraically more
involved results.

The second important thing to mention is that, we
still have not accomplished the formal derivation of the
two connections of the present approach with (a) the
Central Limit Theorem and (b) some possible stochastic
behavior, of which Figure 6 is but mere suggestive,
although we have given one more step towards that.
We thus refrain from making wild interpretations using
these constructs and keep ourselves within the stringent
epistemological decision of saying something about the
interpretation of Quantum Mechanics only after having
it proved in the mathematical formalism. This will help
us not assuming, a priori and ad hoc, the existence
of many worlds, “wholenesses” (as was shown for the
Bohmian approach), and other assumptions generally
found in the interpretation of Quantum Mechanics.

These results will be shown to be valid in future
papers.
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Supplementary material

The following online material is available for this article
Appendix A – Maple program to study the Harmonic
Oscillator problem.
Appendix B – Maple program to study the Hydrogen
Atom problem.
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