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Entropy production in a heat conduction problem
Produção de entropia e o problema da condução do calor
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Heat conduction along an isolated bar placed between two reservoirs at different temperatures is
studied. The entropy production is considered in detail with two different approaches. In the first one, the
whole system (the bar and the two reservoirs) is analysed in the steady state with the help of standard
thermodynamics. In the second one, the bar is divided into n cells and a simple finite difference method
is used to evaluate the time evolution of the entropy production. This approach is useful because the
transient behaviour can be studied. In this way, it is shown a simple example of a non-equilibrium system
where the entropy production (even its transient behaviour) can be evaluated with tools at hand of a
motivated undergraduate.
Keywords: entropy production, heat conduction, non-equilibrium thermodynamics.

Estudamos a condução do calor ao longo de uma barra isolada entre dois reservatórios a temperaturas
diferentes. A produção de entropia é considerada em detalhe através de duas abordagens. Na primeira
abordagem, todo o sistema (barra mais os dois reservatórios) é analisado no estado estacionário, utilizando
a termodinâmica usual. Na segunda abordagem, a barra é dividida em n células e se utiliza um método
simples de diferenças finitas para calcular a evolução temporal da produção de entropia. Essa abordagem
é útil porque assim é posśıvel estudar o comportamento transiente. Mostramos então um exemplo simples
de um sistema fora do equiĺıbrio em que a produção de entropia e até o comportamento transiente podem
ser calculados com as ferramentas dispońıveis para um estudante de graduação suficientemente motivado.
Palavras-chave: Produção de entropia, condução de calor, termodinâmica fora do equiĺıbrio.

Thermodynamics is a subtle science. Calculations
are simple, but the correct understanding and ap-
plication of basic concepts require a perspicacious
mind. The situation is even worse if non-equilibrium
systems are considered; additionally, a course of non-
equilibrium thermodynamics is rarely included in
the normal training of a physicist. For these reasons,
it seems convenient to study a non-equilibrium sit-
uation using a simple problem. This is the aim of
this paper.

A very simple problem will be analysed: heat con-
duction through a bar between two heat reservoirs
at different temperatures. First, the problem is stud-
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ied from a global point of view once the system is in
a steady state. Later, the question is considered in
more details, when the system has not yet reached
the steady state; the bar is divided into several cells
and it is assumed they are small enough as to have
well defined thermodynamic variables. A straightfor-
ward application of numerical methods allows us to
evaluate the temperature evolution and the entropy
production. Of course, once the system reaches its
steady state the numerical results agree with the pre-
vious global analysis. The numerical calculations are
repeated for a couple different boundary conditions.

The knowledge required to understand this article
is that provided by a good course in general thermo-
dynamics [1, 2]. Additionally, some familiarity with
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numerical analysis is needed [3, 4]. A keen student
should be capable of understanding this paper and
the instructor can use it as an “advanced project”
in a thermodynamics course.

1. Global analysis of the problem

The problem we want to study in this work is shown
in Figure 1. A bar is located between two reservoirs
at different temperatures. The hotter one is at a
temperature T h while the cooler one is at a tem-
perature T c. It is assumed that the bar is insulated
and it exchanges heat only through its ends. We are
interested in the production of entropy and the en-
tropy production rate which is the former quantity
per unit time.

The entropy production in the whole system is
considered. Since the system is isolated, there is no
exchange of entropy with the external world, that
is, the flux of entropy Φ is zero. The variation of
entropy ∆S is only due to the production of entropy
K inside the system itself.

The entropy production inside the system can be
easily evaluated once the steady state is reached. In
that situation, a certain quantity of heat −Q leaves
the hot reservoir, and the same amount of heat
goes into the cold one. Of course, the reservoirs are
big enough to maintain their temperature constant.
Therefore, the entropy change in the system is:

∆S = Φ +K

= 0 +
(

Q
T c − Q

T h

) (1)

Figure 1: This diagram sketches the problem considered
in this paper: the heat conduction through a bar placed
between two reservoirs at temperature Th –the hot one-
and T c –the cold one-. It is assumed that the bar is ther-
mally isolated and can exchange heat only at its ends. Two
analyses are performed. A global one that regards both
reservoirs and the bar as the relevant system, and a local
one that takes the bar as the object to be studied.

The entropy production rate, that is, the produc-
tion of entropy per unit time, is called P = K / ∆t,
where ∆t is a time interval, and it is given by:

P = q

( 1
T c
− 1
T h

)
(2)

where q = Q / ∆t so that dS/dt = P.
In the Section 2 we analyse what happens in the

bar instead of in the whole system and in Section
3 we solve (2) for a particular case to compare the
result with a numerical simulation.

2. Local analysis

In this section the bar will be considered rather than
the whole system. The strategy to follow is simple.
The bar is divided into many equal slices, each one
small enough as to be always in thermal equilib-
rium. Consequently, classical thermodynamics can
be applied.

We know that heat conduction through the bar
is described by the Fourier law:

J = −k ∂T
∂x

(3)

As usual, J is the heat flux and k the thermal
conductivity.

From energy conservation, we may write a conti-
nuity equation:

∂u

∂t
+ ∂J

∂x
= 0 (4)

The internal energy at a unitary volume around
x (i.e. the internal energy density at x) is called
u. In eq. (4) it is assumed that no work is done;
this equation states that the temporal change in the
internal energy density of a small volume around x
has the same magnitude but opposite sign that the
net heat flux in that small volume.

The internal energy density change can be rewrit-
ten using the definitions of the specific heat per unit
mass c and the density ρ of the rod as: du = cρ dT
, and the temporal change comes to be:

∂u

∂t
= cρ

∂T

∂t
(5)

From eqs. (3), (4) and (5) an equation for the
temperature is found:

cρ
∂T

∂t
− k∂

2T

∂x2 = 0 (6)
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Or, considering the rod divided into n slices, eq.
(6) can be restated as:

dTi

dt
= k

cρ

(
Ti+1 − 2Ti + Ti−1

ξ2

)
i = 1, ..., n

(7)
ξ is the thickness of each slice, and Ti the tem-

perature of the ith-slice. To obtain (7), the second
derivative in x has been rewritten using a stan-
dard finite difference scheme. The former equation
shows the time evolution of temperature in slice i in
terms of the temperature of its neighbour slices. One
should remark that slice n+ 1 is the cold reservoir
while slice 0 is the hot one.

Let us see now what happens in slice i. The en-
tropy density change in it can be put as:

dSi = dUi

Ti
(8)

It should be remembered that the slices have been
chosen small enough such that the thermodynamical
variables have a well defined value.

According to (4) the time evolution of the internal
energy in the slice i is:

dUi

dt
= A (Ji−1 − Ji) (9)

A is the bar section. This equation is just a re-
statement of energy conservation: the change in the
internal energy of cell i is given by the heat coming
from cell i− 1 minus the heat leaving cell i.

From (8) and (9), it turns out that the total
change of entropy in the rod is:

dS

dt
= A

n∑
i=1

Ji−1 − Ji

Ti
(10)

It is convenient to add and subtract AJ 0/T0 and
AJ n/Tn+1 to (11). Notice that T0 = T h and Tn+1 =
T c. Eq. (10) can be rearranged as follow:

dS

dt
= AJ0

T0
− AJn

Tn+1
+A

n∑
i=0

Ji

( 1
Ti+1

− 1
Ti

)
= φ+ σ

(11)
The entropy production rate has been decomposed

into two terms. The first one, φ, is associated with
the production of entropy due to the interaction of
the bar with the reservoirs. The second term, σ, is
the entropy production inside the bar. It is helpful
to write them explicitly:

φ = AJ0
T0
− AJn

Tn+1

σ =
n∑

i=0
AJi

( 1
Ti+1

− 1
Ti

) (12)

One should remember that the total entropy pro-
duction rate was called P in the previous section,
then P = φ+σ, and the entropy change ∆S at time
t will be:

∆S =
∫ t

0
P (t′)dt′.

The heat flux from cell i to cell i + 1 can be
written, from the Fourier law, as follows:

Ji = −kTi+1 − Ti

ξ
(13)

Our task is almost finished. Replacing (13) in (12)
and remembering (7), it turns out that the system
of differential equations to be solved numerically is:

dTi

dt
= k

cρ

Ti+1 − 2Ti + Ti−1
ξ2 i = 1, ..., n

φ = Ak

ξ

(
T1 − T0
T0

+ Tn+1 − Tn

Tn

)

σ = −Ak
ξ

n∑
i=0

(Ti+1 − Ti)
( 1
Ti+1

− 1
Ti

)
(14)

The boundary conditions depend on the particular
simulation in which we are interested.

3. Numerical results

To solve the ordinary differential equation system
(15), a computational code was implemented. A sim-
ple Euler scheme was enough to solve the equations,
although some care is needed in the value of the
temporal step to avoid instabilities in the solution.

The physical parameters of the rod were chosen
as follow. We assume its length is l = 10 cm with a
cross section A = 1 cm2. It is made of copper with a
density ρ = 8.954 g cm−3, a specific heat c = 0.385
J g−1K−1 and a thermal conductivity k = 4.01 W
cm−1K−1. The hot reservoir is at T h = 373.15 K
(boiling water) and the cold one at T c = 293.15 K
(room temperature).

For the first simulation the following boundary
conditions were used:
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T0 = 373.15 K ∀t
Tn+1 = 273.15 K ∀t
Ti = 273.15 K for t = 0 and i 6= 0

(15)

The physical situation described by (15) is easy
to understand: the bar is originally at room temper-
ature, and one of its ends is introduced into boiling
water.

In Figure 2 the results of the numerical simu-
lation are shown. In Fig. 2a the internal entropy
production σ is shown as a function of time. After a
relatively high entropy production at the beginning,
it reaches a stationary value: σ → 0.024 J K−1s−1.
The entropy production due to the interaction with
the reservoirs goes quickly to zero: φ → 0. This
means that once the steady state is reached, the
entropy production takes place inside the bar and
not at the interface with the reservoirs. Figure 2c
shows the total entropy produced as a function of
time

This result can be compared with the one ob-
tained in section 2. There, an expression was found
–eq. (3)- that gives the entropy production in the
steady state. To evaluate that expression, we need
the heat flux rate q. To obtain it, we should remem-
ber that once the steady state has been reached, the
temperature in the rod falls linearly from the hot
reservoir to the cold one. This is a well-known result
in heat conduction [5], and it also comes out from
our simulations. Consequently, we may write:

q = Ak
dT

dt
= Ak

T h − T c

l
(16)

And replacing (16) in (2):

P = Ak

l

(
T h − T c

)
T hT c

2

(17)

The numerical evaluation of (17) gives P = 0.0234
J s−1K−1 in excellent agreement with the numerical
simulation.

The advantage of dividing the bar into a finite
number of cells is now obvious. The numerical sim-
ulation shows where the entropy production takes
place and gives us information about the entropy
production before the system is in its steady state.
A usual thermodynamical analysis as the one per-
formed in section 2 tells us about the global be-
haviour of the system in its steady state.

Figure 2: Numerical results for the first situation simulated:
the bar is originally at room temperature and, at t = 0, one
of its ends is introduced in boiling water. These figures show
the time evolution of the entropy production inside the bar
σ –Fig. 2a-, at the interfaces of the bar with the reservoirs
– Fig.2b- and the time evolution of the produced entropy
(∆S) –Fig. 2c- Initially entropy is produced both inside the
bar and at the interface with the reservoirs, however once
the system is in a steady state the entropy is produced only
inside. The numerical value of the entropy production in the
steady state agrees with that found in the global analysis
of the problem. However the local approach allows us to
study the transient behaviour of the entropy production.
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In Figure 3 the results of other simulation are
shown. The boundary conditions used are:

T0 = 373.15 K for t < 25 s
T0 = 273.15 K for t > 25 s
Tn+1 = 273.15 K ∀t
Ti = 273.15 K for t = 0 and i 6= 0

(18)

In words, the bar is initially at room temperature,
and then one of its ends is introduced into boiling
water. After 25s that end is removed from the boiling
water and it is set at room temperature.

As can be seen from Figure 3, there is a clear
discontinuity at t = 25s due to the change in the
boundary conditions. This is not surprising. Notice
that the internal entropy production does not change
sign when the heat flow changes from inwards to
outwards. However, the external entropy production
does change its sign. This is not hard to understand:
for t < 25s heat goes into the bar while for t > 25s
heat goes out of it. Since the entropy is a state
function and the initial and final states of the rod
are the same, the entropy at the beginning and at
the end of the simulation should be the same, and
this is what is shown by Fig. 3c.

One can simulate other situations, changing in
a proper way the boundary conditions. However,
the above examples are enough to show the power
of this approach. A simple finite difference scheme
applied to the rod lets us follow the time evolution
of the entropy in a non-equilibrium situation.

4. Conclusions

In this paper we have studied an everyday problem,
but a conceptually rich one. The heat conduction
along a rod between two heat reservoirs at different
temperatures is the most simple non-equilibrium
thermodynamics problem one can analyse. Besides
its simplicity, the system reaches a steady state
where the usual thermodynamical considerations
are valid.

A global analysis of the whole system (reservoirs
+ bar) lets us obtain an expression for the total
entropy production rate in the steady state –eq. (2)
–. However, that analysis does not tell us anything
about the place where the entropy is produced or
about the transient behaviour of the system. A local
analysis of the bar is fruitful. The rod is divided
into n equal cells and each one is considered to be

Figure 3: This figure shows the same quantities as Figure
2, but for a different situation. The bar is originally at
room temperature, and one end is put into contact with
boiling water for 25s. After this time interval, the bar end is
removed from the boiling water, and the whole rod reaches
room temperature in a short period of time. In Fig. 3a the
internal production of entropy is shown as a function of
time. Notice that the entropy production inside the bar
is always positive. In Fig. 3b the entropy produce at the
interfaces of the bar with the reservoirs is shown. At the
beginning, the entropy produced there is positive since heat
flows from the hot reservoir (boiling water) to the bar. Once
the bar end has been removed from the boiling water, the
heat flows from the bar to the surroundings and the entropy
production changes its sign. The total entropy produced is
shown is Fig. 3c. Since the initial and final states of the bar
are the same, there is no net change in the entropy
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in equilibrium. Those cells are the fundamental ele-
ments for a numerical calculation based in a finite
difference approach. In this way, the analysis of the
temporal evolution of the system becomes possi-
ble. This particular example shows the power of
the “local equilibrium approach” to non-equilibrium
thermodynamics; the interested reader is referred
to advanced textbooks for further developments [6,
7, 8]

The computational code has been used to study
two different situations. The results are summarised
in Figures 2 and 3. This analysis allows us to discrim-
inate between the entropy produced inside the bar
and that produced at the interface bar-reservoirs.
The calculations show that the entropy is only pro-
duced inside the bar once the system is in its steady
state. Of course, the global analysis agrees with the
local one in the steady state.

In summary, a thermodynamics system out of
equilibrium has been analysed without using the
cumbersome tools of non-equilibrium thermodynam-
ics. Moreover, the time evolution of the entropy
production has been calculated with elementary
concepts. A keen student should be able to repro-
duce the results of this paper that can be used as
an “advanced project” in an undergraduate course.
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