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In this work we propose an alternative semiclassical iterative approach to obtain the Yukawa Potential, where
the temporal evolution is replaced by the number of iterations. In addition, our analytical approach was able to
provide an exact value very close to the adopted semi-empirically for the Yukawa magnitude scale constant.
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1. Introduction

Yukawa in the first half of the 20th century proposed
that the nucleons were bound in the nucleus through
an interaction that was mediated by mesons, [1] this
hypothesis was later confirmed by Lattes et al. [2] This
interaction is short-range and its potential was originally
derived as being

U = −g2

r
e−µr, (1)

where g2 is a magnitude scaling constant and e 1/µ is
the range of the potential.

Short-range potentials of type

U = −Af(r)e−µr, (2)

(where f(r) is a function that depends on the spacial
dimensions) have already been studied before Yukawa [1]
in the most varied areas, [3] namely: celestial mechanics
[4], electrostatics [5], inter-molecular interactions [6], fluid
theory [7] and electrolysis [8, 9].

Due to their importance, appearance in diverse physi-
cal systems and due to still remains an object of study
[10–16], we have decided to propose an alternative ap-
proach to obtain this short-range potential.

2. Iterative Approach

Let us consider here a semiclassical system and consider
the relative motion of a test particle of mass m in a
two-body system. At an initial time t0 its position and
momentum are r0 and p0 respectively. After the first
iteration

t1 = t0 + δt0, (3)
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r1 = r0 + δr0 (4)

and

p1 = p0 + δp0. (5)

where δt, δx and δp are the increments of their respec-
tive variables.

The system again follows a straight trajectory until its
second iteration at the instant

t2 = t1 + δt1, (6)

which changes its momentum to

p2 = p1 + δp1 (7)

in position

r2 = r1 + δr1. (8)

Thus, after the nth iteration

tn = tn−1 + δtn−1 = t0 +
n−1∑
j=0

δtj , (9)

pn = pn−1 + δpn−1 = p0 +
n−1∑
j=0

δpj (10)

and

rn = rn−1 + δrn−1 = r0 +
n−1∑
j=0

δrj

= r0 +
n−1∑
j=0

pj

m
δtj . (11)
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In the equation (11) we use the relation

δrk = pk−1

m
δtk−1. (12)

The equations (9), (10) and (11) are generic and valid
for any semiclassical physical system.

3. Obtaining the Yukawa Potential

Let us consider a law of force proportional to the inverse
of the square of the distance between two particles, i.e.
like Newton/Coulomb’s Law

δpj = σ
δtj−1

r2
j−1

, (13)

where σ is a constant of proportionality.
Let us consider that the field-generating particle (grav-

itational or electric) is at the origin of the considered
coordinate system and that the test particle is in the
position r0 with momentum p0 and that r0 < 1 with
δrj << 1, this ensures that the two particles are very
close to each other (such as inside a nucleus). We will also
consider δtj << 1, this ensures that the iterative process
approaches the continuous fields picture as expected, it
is important to note that there are analytic approaches
in which the fields are considered as discrete, [17–19] is
not the case in question. Defining the time increment as
being constant, i.e., δtj ≡ ω > 0, equations (11) and (10)
then become

rn = r0 + ω

m

n−1∑
j=0

pj (14)

and

pn = p0 + σω

n−1∑
j0=0

1
r2

j0−1

= p0 + σω

n−1∑
j0=0

(r0 + ω

m

n−1∑
j1=0

pj−1)−2

= p0 + σω

r2
0

n−1∑
j0=0

(1 + ω

mr0

j0−1∑
j1=0

pj−1)−2 (15)

respectively. The last term of equation (15) refers to
the increase in position which is much smaller than one,
consequently we can rewrite equation (15) as:

pn = p0 + σω

r2
0

n−1∑
j0=0

(1 − 2ω

mr0

j0−1∑
j1=0

pj−1). (16)

Using recursively the relation

n−1∑
j=0

(
j

k

)
=
(

n

k + 1

)
para n > k (17)

which can be proof by induction hypothesis [20] and
equality j =

(
j
1
)
, after successive reiterations we have:

pn = p0

[ n
2 ]∑

j=0

(
n

2j

)
(−2σω2

mr3
0

)j

+ σω

r2
0

[ n
2 ]∑

j=0

(
n

2j + 1

)
(−2σω2

mr3
0

)j . (18)

Equation (18) gives us the linear momentum of the
test particle after the nth iteration, however, it is clear
that the quantity here must be a continuous variable.
To recover (or approximate) the continuous picture it is
convenient to do n >>1. Thus, for n >> 1 the following
approximation is valid [20](

n

k

)
≈ nk

k! with n > k (19)

and the equation (18) then becomes:

pn = p0

[ n
2 ]∑

j=0

n2j

(2j)! (−
2σω2

mr3
0

)j

+ σω

r2
0

[ n
2 ]∑

j=0

n2j+1

(2j + 1)! (−
2σω2

mr3
0

)j . (20)

The two summations of the equation (20) are the
partial series of the hyperbolic cosine and hyperbolic
sine functions, respectively. At the asymptotic limit, i.e.,
n >> 1 these summations then become:

pn = p0 cosh
(

nω

√
2σ

mr3
0

)
−
√

mσ

2r0
sinh

(
nω

√
2σ

mr3
0

)
.

(21)
The equation (21) represents the momentum of the par-

ticle after time interval nω (equation (9)). If we consider
that the particle moves with velocity

v = rn − r0

tn − t0
, (22)

with v < c (where c is the speed of the light), then the
equation (21) becomes

pn = p0 cosh((rn −r0)µ)−
√

mσ

2r0
sinh((rn −r0)µ). (23)

with

µ ≡

√
2σ

v2mr3
0

. (24)

We are considering that the system is conservative,
so we can correlate the potential energy with the linear
momentum through the relation
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(pn − p0)v = −(Un − U0). (25)
Consequently

Un = −pnv = −p0v cosh((rn − r0)µ)

+ v

√
mσ

2r0
sinh((rn − r0)µ). (26)

Rewriting the equation (26) we have

Un = (−p0v

2 − v

2

√
mσ

2r0
)e−(rn−r0)µ

+ (−p0v

2 + v

2

√
mσ

2r0
)e(rn−r0)µ. (27)

Since µ and rn − r0 > 0, then the second term of
equation (27]), should be nil to ensure convergence of
potential. Thus

p0 =
√

mσ

2r0
(28)

and

Un = −ξe−(rn−r0)µ, (29)
with

ξ ≡

√
mv2σ

2r0
. (30)

Defining rn − r0 ≡ r and Un ≡ U(r) and by the
equations (24) and (28) and using Heisenberg uncertainty
principle we obtain

U(r) = −
√

2
8 ~c

e−µr

r
(31)

We can conclude that g2 = (
√

2/8)~c ≈ 0.18~c, a value
very close to the semiempirical adopted by Gauthier et
al. [21] of 0.1~c.

4. Discussion and Conclusions

In this work we propose an alternative iterative approach
to obtain the potential of Yukawa, based in the works M.
M. de Souza [17] where the classical electromagnetic field
of a spinless point electron was described in a formalism
with extended causality by discrete finite point-vector
fields with discrete and localized point interactions (the
same formalism were used to described the general rela-
tivity homogeneous field equations [18]). The intention
was not to propose a better or simpler approach to the
usual ones. However we were able to obtain the Yukawa
Potential without directly solving the Schrödinger equa-
tion using only the Heisenberg Uncertainty principle. In
summary therefore, even if the results presented here are
not new from a physical point of view, the analytical
method proposed here can serve as a basis for students
to create their own models.
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