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In this paper, we show that the Central Limit Theorem is deeply ingrained in the mathematical and physical
structure of Quantum Mechanics. We show, furthermore, that the Central Limit Theorem provides us with a
clarification of the assumptions made by other quantization processes – in particular those using the notion of
expansion of some variable up to second order.
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Mechanics.

Neste artigo, mostramos que o Teorema do Limite Central está profundamente enraizado na estrutura
matemática e física da Mecânica Quântica. Mostramos, além disso, que o Teorema do Limite Central nos fornece
um esclarecimento das suposições feitas por outros processos de quantização – em particular aqueles que utilizam
a noção de expansão de alguma variável até segunda ordem.
Palavras-chave: Teorema do Limite Central, Derivação matemática, Equação de Schrödinger, Ensino de
Mecânica Quântica.

1. Introduction

In the first two papers of this series [1, 2], we have derived
the Schrödinger equation from two quite different con-
structs: the characteristic function and the Boltzmann’s
entropy. Each approach was based upon only two axioms
and we were able to mathematically connect them. In so
doing, we were able to derive the phase space probability
density function for Quantum Mechanics which, as we
have shown in [2], gives the correct energy values and
other quantities.

Other mathematical connections were found. We
showed the intrinsic connection of the characteristic
function derivation with Feynman’s path integral for-
malism, and showed how the Bohr-Sommerfeld rules
are deeply carved into the formal structure of Quan-
tum Mechanics. Using the formal developments of [2],
we were able to address many elements of Bohmian
Quantum Mechanics to show that we can approach that
interpretation from constructs quite different from the
ones David Bohm had used [3]; such constructs, and all
those used in the derivation made in [2], are simply those
of generally used in the field of Kinetic Theory [4, 5]. We
have also shown that the phase space probability density
function F (q, p; t), derived in [2] in connection with [1], is
the only one that maximizes the entropy and minimizes
the quantum mechanical energy of a physical system [6].

*Correspondence email address: marcellof@unb.br

Using examples, we have also shown that the phase space
probability density function obtained is the one that
satisfies the first axiom of the characteristic function
derivation, which states that the momentum Fourier
transformed Liouville equation should be satisfied, if one
considers it up to second order, that is

lim
δq2→0

∫
exp

(
− ipδq

ℏ

)
dF (q, p; t)

dt
= 0. (1)

This “second order” expansion is a common feature
of the characteristic function derivation and all those
derivations formally equivalent to it, such as Feynman’s
path integral approach (in which the second order
imposition is made on the time variable[7]) and the
entropy derivation, made in [2] and others throughout
the history of Physics [8] and not only of Quantum
Mechanics.

However, it remains for us to understand what this
“second order” constraint represents mathematically
and physically. We did have a clue on that, since, as
we mentioned in [1], a second order expansion of a
characteristic function may refer to the validity of the
Central Limit Theorem. This, of course, was just a clue,
a hunch that must be mathematically proved. This is
the objective of this paper.

Thus, at this point, we have the situation shown in
Figure 1, where all the interconnections (shown as traced
lines) were already formally established. The formal

Copyright by Sociedade Brasileira de Física. Printed in Brazil.

www.scielo.br/rbef
https://orcid.org/0000-0001-8078-3065
https://orcid.org/0000-0003-4945-3169
mailto:marcellof@unb.br


e20240228-2 Derivation of the Schrödinger equation III: the Central Limit Theorem

Figure 1: Present state of the interconnections of between our
derivations and other results.

connection we are interested now is the one related to
the Central Limit Theorem.

This is not a mere whim, but plays crucial role in
the context of all derivations we are willing to present.
Indeed, in [1] and [2] we assumed an expansion up to
second order in the variable δq, but inverted the Fourier
transform defining the characteristic function, which
represents an integration in δq from −∞ to ∞. This
must be justified and it is the Central Limit Theorem
that provides such a justification.

The present approach also reinforces our argument
that each derivation of the Schrödinger equation deepens
our comprehension of Quantum Mechanics.

The paper is organized in the following way: in
section two, we present the kind of sampling we are
making on phase space, when using a momentum space
characteristic function applied to a phase space prob-
ability density function. This paves the way for us to
present, in section three, a derivation of the Central
Limit Theorem for the kind of sampling we are using.
In section four, we show the deep connections between
the characteristic function derivation and the Central
Limit Theorem. Section five presents the way our axioms
should be mathematically and physically understood for
a derivation of the Schrödinger equation, that becomes
identical to the one presented in paper I (but now
with qualifications). In section six we present our final
considerations, in which we provide brief considerations
about the potential application of the elements discussed
in this paper in the context of physics teaching.

2. Momentum Space Characteristic
Function an Sampling

In [1], we have used the Characteristic Function,
defined as

Z(q, δq; t) =
∫

exp
(
i

ℏ
pδq

)
F (q, p; t)dp (2)

to mathematically derive the Schrödinger equation,
where F (q, p; t) is the probability density defined
upon phase space. In that derivation process we have
expanded the characteristic function only up to second
order in the parameter δq and we have pointed out that
this should be connected to the Central Limit Theorem.
In [2], on the other hand, we have inverted the Fourier
transform in (2) to get the explicit expression of the
phase space probability density function.

If we express this probability density function in
terms of the characteristic function momentum moments
(see [2]), it is possible to get

F (q, p; t) = ρ (q, t)√
2πσ2 (q, t)

exp
{

− [p− p(q, t)]2

2σ2(q, t)

}
, (3)

where the average momentum is given, for each point of
the configuration space, as

p(q; t) = −iℏ lim
δq→0

∂ lnZ(q, δq; t)
∂(δq) , (4)

and the momentum variance at each q is

σ2(q; t) = −ℏ2 lim
δq→0

∂2 lnZ(q, δq; t)
∂(δq)2 , (5)

a result that corresponds exactly to what one would
expect regarding the Central Limit Theorem [9], but one
that deserves qualifications.

Indeed, the definition (2) means that the coordinate q
is being set as a label, since the characteristic function
is defined upon the momentum space for each coordinate
q. This means that the characteristic function is defined
over fibers positioned at each coordinate point q, and so
is the Gaussian function obtained in (3). Thus, we get, in
general, different Gaussian functions for different points
q of the configuration space – and this is what we mean
by “fibers” in our previous comments.

These comments are important, since they make us
understand the kind of sampling that is being performed
upon the phase space. Thus, as the physical system
evolve on phase space by assuming the points (q(t), p(t)),
the sampling is performed, for each region (q − δq/2,
q + δq/2), having q as its center, by getting each
momentum p when the system passes over this fiber, as
schematically shown in Figure 2 – the mentioned region
is what makes our probability function a probability
density. Our variable of interest is then the sums of
random variables

P (q) =
∑

j

pj(q), (6)

where the pj(q) are the momentum random variables,
while P (q) is their sum.

We thus note that the phase space sampling does
not accompanies the dynamical evolution of the system.
Nonetheless, it represents this evolution (at each instant
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Figure 2: Schematic representation of the sampling made upon
phase space over fiber regions given by (q − δq/2, q + δq/2),
with δq → 0 to get a sequence of points pk.

of time t) by letting the physical system to evolve
and making the previously mentioned sampling. It is
important to adequately comprehend this point: the
evolution of the phase space probability density function
means, in the present approach, the evolution of the
sampling of sums of momentum values at each fiber
region labeled by q on configuration space.

3. The Central Limit Theorem

We begin this section by presenting the Central Limit
Theorem and proving it for the our particular case.

Theorem: consider, for a given fiber centered on q
on the configuration space, a sequence of independent
random variables p1, p2, . . . , pn with ⟨pi⟩ = µi(q; t) and〈
p2

i

〉
= σ2

i (q; t), i = 1, 2, . . . If we put p = p1 + p2 +
· · · +pn then, under very general conditions, the reduced
variable1

u(n) = p− µ(n)√
σ2(n)

, (7)

where

µ(n) =
n∑

k=1
µk, σ2(n) =

n∑
k=1

σ2
k, (8)

has approximately a Gaussian distribution with µ(n) = 0
and σ2(n)

= 1. Thus, if Fn is the probability distribution

1 The index n is simply saying that we have summed only up to
a finite number n of random variables.

function of the random variable p (the sum), for each
fiber centered in q, whose probability density is ρ(q; t),
then we have

lim
n→∞

Fn(q, p; t) = ρ(q; t)√
2πσ(q; t)2

exp
{

− (p− µ(q; t))2

2σ(q; t)2

}
,

(9)
where

µ(q; t) = [µ(q; t)](∞) =
∞∑

k=1
µk(q; t), (10)

and

σ(q; t)2 =
[
σ(q; t)2

](∞)
=

∞∑
k=1

σ(q; t)2
k. (11)

Proof. (We will demonstrate the theorem only for
situations in which the m = µk’s are all equal and so
are all the σ2

k = s2. However, the theorem has a much
wider applicability [10]). Under these assumptions, we
have µ(q; t)(n) = nm and σ(q; t)2(n)

= ns2 (note that
this means that s2 must go to zero with n−1 as we
make n → ∞, the same being valid for m. Consider
now the probability P (q, p; t)dp of being at some interval
(p, p+ dp) after n steps, each one within (pk, pk + dpk),
with probability

w(qk, pk; t)dpk (12)

where we are assuming that all the w(∗) are identical
and the qk are in the interval (q − δq/2, q + δq/2)). We
assume that ω(qk, pk, t) = ξ(qk; t)w(qk, pk; t), which is a
condition for the statistical independence between the
two random variables, since ξ(qk; t) is the probability
of being in the vicinity of qk and w(qk, pk; t) is the
conditional probability of being in the vicinity of pk

assuming that the system is in the vicinity of qk.

In this case, we get

ρ(q, t) =
n∏

k=1
ξ(qk; t), (13)

and, as a consequence, it is possible to get our probability
function as

F (q, p; t)dqdp

= ρ(q; t)
∫

y1

· · ·
∫

yn

n∏
k=1

w (qk, pk; t) dpk︸ ︷︷ ︸
dp

dq. (14)

We then use [11]

δ

(
p−

n∑
k=1

pk

)
= 1

2π

∫ +∞

−∞
e−iθ[p−

∑n

k=1
pk]dθ,
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and

F (q, p; t) = ρ (q; t)
∫ +∞

−∞
e−iθpdθ

×
n∏

k=1

∫ +∞

−∞
e−iθpkw (q, pk; t) dpk. (15)

Now, if instead of working with pk, we use the re-
scaled random variable (pk −m)/s, such that

z̃(q, θ; t) =
∫
eiθ(pk−m)/sw(q, pk; t)dpk, (16)

(note that z refers to each pk) then, the properties of the
Fourier transform give us

˜z(q, θ, t)

= exp
(

− imθ

s

)∫
exp

(
iθpk

s

)
w(q, pk; t)dpk

= exp
(

− imθ

s

)
z

(
q,
θ

s
; t
)
. (17)

This last result means that the re-scaled characteristic
function Z(q, θ; t) of the variable p must be given by

Z (q, θ; t) = ρ(q; t) exp
(

− inmθ√
ns

)[
z

(
q,

θ√
ns

; t
)]n

,

(18)
since we are considering the pk independent variables,
a demand of the Central Limit Theorem. Indeed, in
this case, the characteristic function of their sum is just
the product of the characteristic functions of each pk

(actually, this is one of the most important features of
characteristic functions).

Thus,

lnZ (q, θ; t) = ln(ρ(q; t))

− i

√
nm

s
θ + n ln

[
z

(
q,

θ√
ns

; t
)]

, (19)

and we can develop z(θ) in Maclaurin series as

z (θ) = 1 + z′ (0) θ + z′′ (0)
2 θ2 +R, (20)

where all the derivatives are with respect to θ and R is
the remainder of the expansion. Since the definition of
z (q, θ; t) implies that

z′ (0) = im z′′ (0) = −
(
m2 + s2) , (21)

we end with2

z (q, θ, t) = 1 + imθ −
(
m2 + s2)

2 θ2 +R, (22)

2 The remainder R will be a complicated expression of these
quantities and powers of n.

and, thus,

lnZ (q, θ; t) = ln(ρ(q; t)) − i

√
nm

s
θ

+ n ln
[

1 + i
m√
ns
θ −

(
m2 + s2)

2ns2 θ2 +R

]
.

(23)

Note that
√

nm
s is a finite quantity, while m√

ns
and

(m2+s2)
2ns2 are infinitesimal, because of the infinitesimal

character of m and s2 (in the sense that they go to
zero as n−1 when n → ∞). Note, however, that there
is a factor n multiplying the logarithm. This means that
we will have to seek for the expanded expression in the
logarithm.

Since we want results for n → ∞, we develop the
logarithm in power series to find

lnZ (q, θ; t))

= ln(ρ(q; t)) − i

√
nm

s
θ

+ n

[(
i
m√
ns
θ −

(
m2 + s2)

2ns2 θ2 +R

)

− 1
2

(
i
m√
ns
θ −

(
m2 + s2)

2ns2 θ2 +R

)2

+ · · ·

 .
(24)

Note that the first two terms cancel out and we end up
with

lnZ (t) = ln(ρ(q; t)) − 1
2θ

2 + Ωn (θ) , (25)

where Ωn(θ) depends upon n as some inverse power law
of the type n−α with α > 0. Thus, if we take the limit
n → ∞ we get

lim
n→∞

lnZ(q, θ; t) = ln(ρ(q; t)) − 1
2θ

2, (26)

which, upon inversion, gives the Gaussian probability
function (u = u(∞))

F (q, u; t) = ρ(q; t)√
2π

e−u2/2, (27)

which is the result we were willing to show.♢
This result has an enormous importance for our

developments made so far. Indeed, in [2], we have made
the inversion of the characteristic function in terms of
δq to get the expression (3). However, we have also
expanded the characteristic function only up to the
second order in δq. These two calculations would have
been contradictory, if the expansion of the characteristic
function up to second order was meaning that δq is an
“infinitesimal” quantity (then, the integration of δq from
−∞ to ∞ that appears in the inversion of the Fourier
transform would have no meaning whatsoever). In the
next section, we address this point in connection to the
characteristic function derivation.
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4. Connection with The Characteristic
Function Derivation

In this section we will unravel the connections between
the characteristic function derivation of [1] and the
Central Limit Theorem. The clarifications to emerge will
apply equally well to all other derivations already seen
that also use the notion of an expansion up to second
order in some parameter. This ultimate connection sheds
the final light upon the correct interpretation of the
quantum formalism, which we will address elsewhere.

The characteristic function derivation in [1] begins
with the integrated Fourier transform of the Liouville
equation and the definition of a characteristic function
(at this point we write it as ζ (q, δq; t) since we do not
know if it should correspond to z (q, δq; t) or Z (q, δq; t))

ζ(q, δq; t) =
∫ +∞

−∞
exp

(
i

ℏ
pδq

)
F (q, p; t)dp, (28)

imposing also that

ζ(q, δq; t) = ψ∗
(
q − δq

2 ; t
)
ψ

(
q + δq

2 ; t
)
, (29)

and using

ψ (q; t) = ω (q; t) exp
[
i

ℏ
λ (q; t)

]
. (30)

If we expand expression (29) up to second order as

ζ(q, δq; t)

= ω(q; t)2

{
1 + 1

2

(
δq

2

)2
[

1
ω

∂ω

∂q2 − 1
ω2

(
∂ω

∂q

)2
]}

× exp
(
i

ℏ
∂λ

∂q
δq

)
, (31)

which may be written, using

ρ(q; t) = ω(q; t)2 ; µ = nm (q; t) = ∂λ (q; t)
∂q

;

σ2 = ns2 (q; t) = −1
4
∂2 ln ρ (q; t)

∂q2 , (32)

as

ζ(q, δq; t)

= ρ(q; t)2

[
1 − (δq)2

2 σ2

]
exp

(
i

ℏ
µδq

)

= ρ (q; t)
[

1 + i

ℏ
µδq −

(
µ2 + σ2)

2ℏ2 (δq)2 +O
(
δq3)] ,

(33)

which is nothing but the expression for Z(n) (q, δq; t),
where we stress the appearance of the number n, since
ζ = Z(n) (q, δq; t) is the characteristic function for the

sum of n random variables pk. Note that the term within
brackets in (31) is just z(q, δq; t)n. This means that the
term O

(
δq3) is, in fact, a term depending on n−α, for

some positive real number α. This term disappears as
we make n → ∞.

Therefore, its disappearance is not due to some
infinitesimal character of the variable δq. This variable
can be of any magnitude but the last term is such that
limn→∞ O

(
δq3) → 0, and the characteristic function

must be expanded up to second order in δq.

5. The Central Limit Theorem
Derivation of the Schrödinger
Equation

The axioms of the theory coming from this derivation are
the same already presented in [1], but with an important
qualification:

Axiom 1: The Fourier transformed Liouville equation
is valid for the description of any quantum system that
can be described by the Schrödinger equation.

Axiom 2: The characteristic function Z(n) (q, δq; t) of
the random variable p =

∑n
k=1 pk can be written (in the

limit n → ∞) as the product

Z∞(q, δq; t) = ψ∗
(
q − δq

2 ; t
)
ψ

(
q + δq

2 ; t
)

(34)

for any quantum system, and Quantum Mechanics refers
to the universality class defined by the Central Limit
Theorem3.

The present approach thus furnishes us the extra
assumption which was lacking in the developments of [2];
the one that gives coherence to the development of the
characteristic function up to second order and the inver-
sion of the Fourier transform. This extra assumption is
the one regarding the reference of Quantum Mechanics
to the universality class defined by the Central Limit
Theorem, which is now fully clarified.

This result underpins, from a different perspective, our
argument, already presented in [1], that it is important
to make these derivations using different constructs,
since they may clarify important points of each other.
Indeed, it is worth saying that the characteristic function
presented in (34) is nothing but the density matrix in
its 1 × 1 version. Indeed, the approach can be easily
extended, for example, to encompass the definition of
the characteristic function as

Z(q, δq; t) =
∑

i

ψi
∗
(
q − δq

2 ; t
)

Miiψi

(
q + δq

2 ; t
)
,

(35)

3 Note that this statement already implies that the characteristic
function should be developed up to second order in δq – these two
statements are equivalent.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0228 Revista Brasileira de Ensino de Física, vol. 46, e20240228, 2024



e20240228-6 Derivation of the Schrödinger equation III: the Central Limit Theorem

to represent statistical mixtures, where M is some
diagonal matrix M = diag(p1, . . . , pn). In this case, one
has

lim
δq→0

Z = tr (ρM) , (36)

where tr(∗) is the trace operation. This reinforces the
interpretation of the preceding calculations as a statisti-
cal approach without having to postulate it.

6. Final Considerations

We showed in this paper that the Central Limit Theorem
is part of the formal and physical structure of Quan-
tum Mechanics. Moreover, we have used this result to
understand the “second order” expansion made in [1]
regarding the characteristic function derivation of the
Schrödinger equation. Indeed, the present result allows
us to understand why we can make the expansion of
the characteristic function in the variable δq and invert
the Fourier transformation related to it to get the phase
space probability density function. Thus, in this paper,
we have used intensively papers’ I [1] and II [2] results.
This shows, in fact, how the quantization processes are
interwoven making a complex web of results based on
different constructs, despite connected with each other.

Thus, at this point we have the situation shown in
Figure 3.

However, there is something missing yet. Indeed,
we have not furnished the dynamical equations that
furnishes the points (q, p) on phase space, that is, the
systems trajectories. These dynamical equations are not
Newton’s equation, and we must know their expression.

We leave this result for a future paper in which we
mathematically show that these dynamical equations are
the Langevin Equations of Quantum Mechanics. With
that, we cover the last and greatly important node
shown in gray in Figure 3 and conclude our series of

Figure 3: Current status of our approach to the derivation of
the Schrödinger equation by different perpectives.

deductions of the Schrödinger equation from different,
but complimentary, perspectives.

Finally, we have already stressed the importance of
bringing the discussion of these themes to the classroom
when teaching Quantum Mechanics. It provides not
only a deepened understand of the meaning of the
theory, but also, and more importantly, a critical and
careful general behavior regarding science. Moreover,
when each quantization process uses a different physical
construct, it thus correlates the learning of Quantum
Mechanics with different areas of Physics, giving to it
a more synthetic comprehension, as we did at [12–14],
as well as a critical and meaningful view of physics
teaching, as done in [15–19]. Characteristic functions,
Boltzmann’s entropy, maximization of entropy, mini-
mization of energy, Central Limit Theorem and many
others already used in this and the previous papers show
that Physics is a interwoven enterprise of concepts and
theories – a view that is not generally reinforced in
physics courses.

Acknowledgments

The National Council for Scientific and Technological
Development (CNPq).

References

[1] O.L. Silva Filho and M. Ferreira, Rev. Bras. Ens. Fís.
46, e20240183 (2024).

[2] O.L. Silva Filho and M. Ferreira, Rev. Bras. Ens. Fís.
46, e20240219 (2024).

[3] D. Bohm, Phys. Rev. 85, 166 (1952).
[4] R.L. Liboff, Kinetic Theory (Prentice-Hall, Englewood

Cliffs, 1990).
[5] T. Takabayasi, Prog. Theoret. Phys. 11, 341 (1954).
[6] R.G. Parr and W. Yang, Density-functional Theory of

Atoms and Molecules (Oxford Academic, New York,
1986).

[7] R.P. Feynman, Statistical Mechanics, a Set of Lectures
(Addison-Wesley, Reading, 1998).

[8] M. Born, Natural Philosophy of Cause and Chance
(Oxford University Press, Oxford, 1949).

[9] A.I. Khinchin, Mathematical Foundations of Statistical
Mechanics (Dover, New York, 1949).

[10] P. Levy, in: Oeuvres de Paul Levy (Ecole Polytechnique,
Paris, 1976).

[11] F. Reif, Fundamentals of Statistical and Thermal
Physics (McGraw-Hill, Singapore, 1965).

[12] O.L. Silva Filho and M. Ferreira, Rev. Bras. Ens. Fís.
43, e20200508 (2021).

[13] O.L. Silva Filho, M. Ferreira and R.G.G. Amorim, Rev.
Bras. Ens. Fís. 44, e20220109 (2022).

[14] O.L. Silva Filho and M. Ferreira, Rev. Bras. Ens. Fís.
45, e20230231 (2023).

[15] M. Ferreira, O.L. Silva Filho, M.C. Batista, A. Abrão
Filho, A. Strapasson and A.E. Santana, Rev. Bras. Ens.
Fís. 45, e20230254 (2023).

Revista Brasileira de Ensino de Física, vol. 46, e20240228, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0228



Filho e Ferreira e20240228-7

[16] M. Ferreira, O.L. Silva Filho, M.A. Moreira , G.B. Franz,
K.O. Portugal and D.X.P. Nogueira, Rev. Bras. Ens. Fís.
42, e20200057 (2020).

[17] M. Ferreira, R.V.L. Couto, O.L. Silva Filho, L. Paulucci,
F.F. Monteiro, Rev. Bras. Ens. Fís. 43, e20210157
(2021).

[18] A. Strapasson, M. Ferreira, D. Cruz-Cano, J. Woods,
M.P.N.M Soares and O.L. Silva Filho, International
Journal of Educational Technology in Higher Education
19, 5 (2022).

[19] M. Ferreira, O.L. Silva Filho, A.B.S. Nascimento and
A.B. Strapasson, Humanities & Social Sciences Commu-
nications 10, 768 (2023).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0228 Revista Brasileira de Ensino de Física, vol. 46, e20240228, 2024


	Introduction
	Momentum Space Characteristic Function an Sampling
	The Central Limit Theorem
	Connection with The Characteristic Function Derivation
	The Central Limit Theorem Derivation of the Schrödinger Equation
	Final Considerations

