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Angular invariant quantum mechanics in arbitrary dimension
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Alguns dos problemas de mecanica quantica unidimensional sdo generalizados em coordenadas esféricas e em
dimensao arbitraria. S&o tratados os problemas do pogo de potencial infinito, o oscilador harménico, a particula
livre, o potencial da funcéo delta de Dirac, o pogo de potencial finito e a barreira de potencial finito. As solugdes
da equacao de Schrédinger sdo escritas em termos das funcées de Bessel e Whittaker e relacionadas a teorias

fisicas multi-dimensionais, como a teoria de cordas.

Palavras-chave: problemas quénticos em coordenadas esféricas; pogo de potencial com simetria esférica.

One dimensional quantum mechanics problems, namely the infinite potential well, the harmonic oscillator,
the free particle, the Dirac delta potential, the finite well and the finite barrier are generalized for finite arbitrary
dimension in a radially symmetric, or angular invariant, manner. This generalization enables the Schrédinger
equation solutions to be visualized for Bessel functions and Whittaker functions, and it also enables connections

to multi-dimensional physics theories, like string theory.

Keywords: radially symmetric quantum problems; radially symmetric quantum well.

1. Introduction

An introductory quantum mechanics course deals with
solutions to one-dimensional problems, as can be seen
in the commonly used textbooks on the subject. Three-
dimensional problems, like angular momentum, scatte-
ring and the hydrogen atom, are not generalizations of
one-dimensional problems, and they normally require
either a specific solution method to the Schrodinger
equation or an additional symmetry input. As a mul-
tidimensional approach to one-dimensional problems
does not necessarily lead to more relevant multidimensi-
onal models, it is merely regarded as a curiosity. Howe-
ver, the importance of multi-dimensional problems has
increased in physics, since string theory has given rise
to the possibility that there could be more than th-
ree dimensions of space. For example, the Schrodinger
equation was semi-classically solved in various dimen-
sions in order to quantize pulsating strings [, 0.

On the other hand, the more dimensions a problem
has, the more possibilities of motion, and the more sym-
metries it can have to restrict these possibilities. This
means that a generalization can be a choice, depen-
ding of the symmetries of the n—dimensional solution
of the problem. In this article we answer the question of
what happens when the Schrodinger equation is solved
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using a formalism which generalizes one-dimensional
problems into angular invariant n—dimensional cases.
Accordingly, the Schréodinger equation is transformed
into the Bessel equation, whose solutions appear in phy-
sics problems which either have cylindrical symmetry or
spherical symmetry [B,H].

The multidimensional approach provides a deeper
understanding of the physics of the one-dimensional
problems, as well as the capabilities and limitations of
the mathematical apparatus. As some of these results
may be scattered throughout literature, it is useful, for
both students and researchers, to have them presented
in a single place.

This article is organized as follows: in section two,
the infinite n—dimensional cylindrical quantum well is
solved. In the third section, the quantum harmonic os-
cillator is studied in various dimensions, and it is shown
that this problem can be described in terms of Bessel or
Whittaker functions. In section four, the free-particle
is analyzed, requiring a particular Dirac delta function.
Section five deals with the Dirac delta potential. The
finite well and the finite barrier are dealt with in the
sixth seventh sections, respectively. Finally, a brief con-
clusion rounds off this article.
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2. The infinite square well

The Schrédinger equation can be written schematically
as an Eigenvalue equation

(I + V)T = £, (1)

where ¥ is the wave-function, £ is the energy, V is the
potential and I12 is the momentum operator. Consi-
dering an (n + 1)—dimensional space, the squared mo-
mentum operator, expressed by means of spherical co-
ordinates, depends on a Laplacian operator that has a
radial term and an angular term so that

N A 1 -
I = — = (V24 5 V3), 2)
where @i:n o is the term of the Laplace operator for the
radial coordinate and for the angular coordinates. For
a radial-only dependent potential, the wave-function,
expressed as U(r, 0) = s(r)w(d), so that w(f) has n
angular variables, splits Eq. (IO) into two equations,
namely

1. M
fos—l—e—v—T—Q:O, (3)

where € = 2mé&/h?, v = 2mV/h? and M is a separation
constant that is zero for n = 0. Equation (@) can be
solved in terms of n—dimensional spherical harmonics,
which can be found elsewhere [B,B]. In order to solve
the radial equation, it has been set

u(r)

v’

(5)

S =

and thus Eq. (B) becomes,

r*u’ 4+ (n—2v)ru'+ [(e—v)r’ +v(v—n+1)— M]u = 0.
(6)

The solution for Eq. (B) depends on the particular po-
tential v. For an infinite potential well, the potential

is
0 it
7\ ~ if

and for a radial dependent-only wave-function, M = 0,
the choice v = "Tfl leads to the Bessel equation,

r<R
> R,

(7)

r?u’ +ru' + (er® — 1) u=0. (8)

Thus, the wave-function is expressed in terms of Bessel
functions

U, (r) = T%(aJy(ﬁr) + bYu(ﬁT)), (9)

where a and b are integration constants. The choice of

v = ”T_Q would lead to the spherical Bessel equation,
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whose spherical Bessel functions, j, and y,, are related
to the usual Bessel functions as

. ™ ™
Ju(z) = %‘]v—i-% and  y,(r) = \/ %Yy—ﬁ-%? (10)

which generates an identical wave-function, thus,
Eq. (9) is indeed the most general solution to the pro-
blem. As Y, () is divergent in 2 = 0 for n > 0, then
b = 0 because otherwise the wave-function is not nor-
malizable, as we will see in a moment. The potential
is infinite at r > R, thus ¥(R) = 0. Defining r = r%l)
as the N—th zero of J%l (r), the quantized energy is

obtained from /¢ R = 7“5\7), and it is expressed as

2 [ ()72
(n) h "N
= — | = . 11

2m

As R is a free parameter and n is fixed by the geometry,
the more excited the level of the energy, the more zeros
the wave-function in the interval (0, R) has.

The wave-function is interpreted as a density of pro-
bability of finding a quantum particle in the space, and
the sum of all probabilities is defined to be equal to
one. The normalization is the condition that warrants
the probability of finding the particle to be one, namely

/ dr U0 =1, (12)
%

The integral is calculated over the entire space V using
the complex conjugate ¥* and the volume element
dr. For a three-dimensional space parameterized in
spherical coordinates, the well-known formula dr =
r2sin? 6 dr d¢ applies. Using the general wave-function
U(xz) = N®(z), the normalization constant N ajusts
the value of Eq. (@) to one. Radial wave-functions, so
that ¥ = ¥(r), permit to integrate the angular terms
of dr and absorb them in the normalization constant.
Thus, an (n 4 1)—dimensional space in spherical coor-
dinates has the effective volume element dr = r" dr.
Finally, we calculate the normalizalized wave-functions
using the integral

/drr(Jy(ﬁr)f: (13)

F[(En) = B ver) da ()]

so that [ drr™|W|? =1 implies the normalized wave-
function

1 2

YO=R | D, We hy s (Ve
2 2
Ty 41 (Ver)
= (14)
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The wave-function is rotationally invariant. In this
sense, the solution calculated above is not valid in the
n = 0 case; the usual one-dimensional n = 0 solu-
tion has anti-symmetrical states due to the negative
values that the argument of the wave-function has in
this case, which are not included in a rotationally inva-
riant (n + 1)—dimensional wave-function.

3. The harmonic oscillator

The one-dimensional harmonic oscillator is solved
analytically in terms of Hermite polynomials, as ori-
ginally demonstrated by Schrodinger [@]. This method
uses the asymptotic behavior of the wave-function to
simplify the problem and to obtain the Hermite equa-
tion. However, using the variable p = pur? and the

index v = 2L in Eq. (B) it is obtained

1 € (n+1)(n—3)+4M
"
= 1
“+[ 1T 1602 }“ 0, (15)
where p = ¢ and the prime means differentiation re-

lative to p. Equation (I3) with M = 0 is the Whittaker
equation, whose general solution is

u(p) = a My, ,(p) +1nWx, 4(p), (16)

where A = ;- = %, n= "T and a and b are inte-
m w
gration constants. The Whittaker functions M) , and

W, may be expressed as

My n(p) =€~ gpz*”M( 0= A 1+2n,p), (17)
Wy n(p) = e~ ’z’pé+ﬂU( Ty 1+277,p). (18)

M(p,q,z) and U(p,q, z) are confluent hyper-geometric
functions known as Kummer functions. As always,
wave-functions must be normalizable, and Kummer
functions diverge if the first index p is not a negative in-
teger. Thus, normalizable wave-functions are orthogo-
nal polynomials of the order N € N, obtained through
the following relations

_1\N

M(— N, % z2> = WHQN(Z), (19)
3 N (71)NN' H2 1(2’)

M(-N. 5 2) = (2N +1)! % @

U(=N.a+1,2) = (DN NLJ () =

=(-DN(a+ 1)y M(—N,a+1, 2), (22)

where (o + 1)y is a Pochhammer symbol, Hy(z) are
the Hermite polynomials, and Ls\?)(z) are the genera-
lized Laguerre polynomials. The one-dimensional solu-
tion for the harmonic oscillator is obtained by setting
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n = 0. In this situation, b = 0 in Eq. (I3), according
to two reasons: when N is even, Eq. (E2) is divergent
in z = 0 and so the wave-function is not normalizable,
and when N is odd, the wave-function is normalizable
but the energy integral [H]

E= / drr”|12[\11‘2 (23)
is divergent, thus solutions involving Eq. (EI) have to
be discarded. The remaining conditions () and (E0)

imposed on ¥ in the n = 0 case, enables us to write the
energy spectrum of the linear harmonic oscillator

Ean = Teo (2N + %) (24)
Eansr = hw(ZN + g) (25)

Using the orthogonality condition for Hermite polyno-
mials

oo

/ doe ™ Hp(z) Hk(x) = 25X K\Wmbk. 1, (26)

— 00

the normalized wave-function for the one-dimensional
case is obtained with,

1 11,
T
where Eq. (E2) is valid for K = 2N and K = 2N + 1.
For the n—dimensional case, Eq. (E2) indicates that the
solution is given in terms of generalized Laguerre poly-
nomials, Lg\?) and thus a = 0 is established in Eq. (ID),
without loss of generality. When comparing Eqs. (I3)
and (22) we get @ = +£%1 . Asn > 0 and a > 1, the

plus sign must be chosen. Also from Egs. (I8) and
(22), we get the energy spectrum
1
En = hw(QN + %) (28)

Using the orthogonality relation

/ dea®e™ L (2) L () = T(1+a) (N§ a) Out, N

(29)
the normalized wave-function is
2I'(N + 1
Wlr) = /Ay | 2EEED
r(N+252)
7%;”"2[/(”771) 2
e N> (pre) (30)

The result shows that the energy depends explicitly on
the angular dimension n and that the wave-function
has a rotational symmetry, as expected from the an-
gular independence imposed by using M = 0 in the
Schrodinger equation.
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4. The free particle

The equation that describes a free particle is similar
to the equation for the infinite well, as both have zero
potential. The difference resides in the boundary con-
ditions. In the n = 0 case, the solution is expressed in
terms of complex exponentials, and in the arbitrary n
case, it is expressed in terms of Hankel functions, which
describe cylindrical travelling waves expressed in terms
of Bessel functions, namely,

HV(2) = J,(2) + Y, (2), and (31)
HP (2) = J,(2) — iV, (2). (32)

A general cylindrically symmetrical solution (B) of Eq.
(B) for the free particle is,

Vot (1) =~ (a B (Ver) + B, (Vo)) (3)

2

T o2

in which H,El) is a travelling mode towards r = 0, and
Hl(,2) is a travelling mode towards r — oo and a and
b are integration constants. As in the n = 0 case, the
free-particle wave-function is not normalizable and it is
understood as a wave packet which obeys

/ dr U Wy = 67 (1 — 6), (34)
0

where §"*1(n — §) is an (n + 1)dimensional Dirac
delta function. By substituting two wave-functions like
Eq. (B3) with energies n and ¢ in Eq. (B3), and consi-
dering

HO(2) = isii () ), (39)
H'EQ)( ) - isii %8 ( B J_V(Z) * eiMJV(ZD’

and J_, = (—1)"J,, we find that

" Me—n) = ﬁ/dwjy(ﬁr) L.(vir),  (36)
0

which is the definition of a Dirac delta function in terms
of Bessel functions, and thus the wave-function satis-
fies the mathematical requirements in order to describe
a cylindrically symmetric free-particle. However, one
physical aspect is missing: the behavior of the wave-
function at » = 0. There is no external force or inter-
nal interaction, thus at this point the travelling wave
must change direction and maintain intensity. This me-
ans that the integration constants, which give the wave
amplitude of the incoming and outgoing waves, must
have the same modulus in order to generate equal am-
plitudes for the wave-function at » = 0. As Y,(0) is
divergent and cannot contribute to the solution, the
wave-function is simply

Vo (1) = —r o (Ver). (37)

2 r-z
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Analogous to the n = 0 case, where wave-functions can
be expressed in terms of a Fourier transform which al-
lows the free particle to be interpreted as a wave pac-
ket, the same can be achieved here by expressing the
free particle wave function as a Hankel transform [B]

Y(r) = / AVES(VE) Ju (Ver) (Ver) 2, (38)
0

for an appropriate function ¢(1/€). Thus, the analogy
between the n = 0 and the arbitrary n is complete.
Physically the general n—dimensional case is more sym-
metrical because the wave-functions can only have one
amplitude for both modes, something that does not
constrain the n = 0 one-dimensional case.

5. The delta function potential
In this case there is a Dirac delta function potential,
V=+4gd6(r—R) (39)

in which g > 0 is the coupling constant of the poten-
tial. A negative sign in Eq. (B9) means a potential well
and a positive sign means a potential barrier. Scattered
states are possible for both signs of the potential, and
a bound state occurs in the potential well for negative
energies, which is discussed in the following subsection.

5.1. Bound state

The Schrodinger equation with negative energy & =
—|€| is expressed as

V20 +45(r — R)U = €V, (40)

where v = 22 and € = 22|€|. The general solution to
this problem is given in terms of modified Bessel func-
tions I, and K,, integration constants a and b, and

V= ";1, so that

1

_T—V

T(r) (a[l,(\/gr) + bK,,(\/Er)). (41)

The modified Bessel function I, is divergent at r — oo
and at r — 0, K, — oo, thus the wave-function is

\III:aM if r<R
U(r) = v (42
r) { Uy, = b Kl i ron Y

At r = R, ¥; = ¥;; and one integration constant is

eliminated
K, R
o KelVel) (43)
I,(VeR)
On the other hand, the first derivative of the wave-
function is not continuous at r = R, as can be seen
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from integrating (EO) in a r = R neighborhood, which
gives

A(r"U') = —y¥(R). (44)
The €¥ term is eliminated from Eq. (EO) by integra-
tion, and this does not contribute to Eq. (Ed). This
means that the energy sign of the energy is not impor-
tant in order to determine whether the particle is bound
or free; all information regarding this is in the potential
sign. At r=R

A(r"\I”) = Rn( III(R) - \I'/I(R)) =
= —R"""e(al,(VeR) —bK,(VeR)). (45)
Using Egs. (£3), (£4), (£3), and the Wronskian [8],
KV<.’I}) IV+1 (.’17) + Ky(m) Iz/+l(x) = é?

I, (VeR) K, (VeR)

1
=— is obtained.
YR
Equation (D) is a transcendental equation and it ena-
bles us to determine the energy numerically or graphi-

J

5.2. Scattering state

3307-5

cally for each n. However, some particular cases can be
calculated. For

1
T — 00, K,(x) I, (z) — . and thus
x
2 2
v mg
EZZ or ‘S‘ZW) (46)

which is the unique bound state of this regime. On the
other hand if z < 1, then

Ko (@) I (2) - — — _ (47)
v v v 2v(v?-1)
where v > 1 and the energy for this regime is
v? -1 2v
—9 (1 - —) 48
€ 7 TR (48)

which is also a one—state solution only, as has been
observed in the well-known one-dimensional case.

In this problem, the particle comes from infinity towards r = 0 and is scattered by a Dirac delta well at r = R. In
fact, the transmitted wave is totally reflected at » = 0, thus in the r < R region the waves have the same intensity

in directions; accordingly, the wave-function in

\If[ =a 7J"(\{ET)
v(r) = |

r<R

U, = T%(le(,l)(\Er) ¥ Hﬁ”(\/ér)) ifr >R

so that v = "7’1 and H'? describes the incident wave. From the continuity of the wave function and the integration

of the Schrodinger equation, we obtain

ad,—bHY = H®
Y
CLJV+1 + b (\%Hl(ll) +

All Bessel functions are evaluated at /e R. Using a
Wronskian for Hankel and Bessel functions, the above
system can be solved for a and b, whose modulus give
us the reflection rate and the transmission rate, namely

R=|d?=1, and 50
lal (50)
16
(ryRJ,Y,)" + (myRJZ —2)°

T=|b?=

A reflection rate equal to one is understandable consi-
dering the fact that at » = 0 the wave is totally reflec-
ted, and as the wave-function describe stationary sta-
tes, everything coming from infinite will be reflected.
On the other hand, the transmission rate is something
altogether more subtle. It may be greater than one,
and if R = 1, it would be expected that T" = 0. Howe-
ver, there is a reflection of the wave inside the region

1 2
Hﬁﬁl) = Hﬁﬁl -

(49)
7 @
—H®,
Ve

r < R at r = R, and thus it is understandable that,
within this region, the intensity of the wave will be gre-
ater than outside the region; the incoming wave is not
immediately reflected to infinity and in fact a statio-
nary wave-function is generated by totally reflection at
the origin » = 0 and a partial transmission at » = R.
Thus, T cannot be interpreted as a transmission of the
incoming wave, but as a relative intensity of the beams
in the confined region and open region. Inside each re-
gion, the incoming beam and the outgoing beam have
equal intensities. The intensity of the stationary wave
drops to zero if the position of the potential R — oo,
but in the zeros of the Bessel functions, it is four times
greater than the incoming wave, irrespective of how far
the zero is from the origin of the coordinate system.

The relative intensity of the wave-functions also ena-



3307-6

bles energy quantization according to the value of T,
which is an oscillating function. For each particular va-
lue of T, there is an infinite spectrum of energy where
the transmission has this particular value. Thus, it can
be said that the energy is quantized for this system,
because only particular values of the energy are per-
mitted.

One last comment about this case must be made
about the wave-function. In the region r > R there
are incoming and outgoing waves represented by Han-
kel functions. The intensity of these waves is equal, so
|b|2 = 1, although the coefficients are not necessarily
equal, thus, by ansatz, b # 1. In the r < R region, the
situation is different, and the intensity and the Hankel
functions coefficients functions must be equal in both
of the directions because Y,, — 0o at r — 0, something
which does not occur in the r > R region,thus the gre-
ater generality of the wave-function there.

5.3. Dirac delta function barrier

The case of the Dirac delta function is totally analo-
gous to the scattering of the Dirac delta function well
tackled above, the only difference being that the sign
of « sign in the potential term is flipped from plus to
minus. This change, however, does not alter any of the
results, which depend only on 2, so the well and the
barrier are physically indistinguishable.

A physical analogy of these models can be executed
with a laser beam, which is produced from an oscil-
lating light-wave inside a partially reflecting chamber.
A light wave is produced inside the device and when
the intensity of the wave inside it is high enough, the
coherent light escapes through one of the sides of the
chamber, which acts as a barrier, in a situation similar
to the Delta scattering. To be more realistic, the model
would, of course, need a source at r = 0.

6. The finite potential well
In this case the potential is

_{w:—vo:—%{gvo if r < R,

r> R,

(51)

U][:O if

where Vy > 0 and the potential describes a cylindrical
well whose center is located at » = 0. There are two

6.2. Scattering states
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possible solutions: a bounded-state solution with nega-
tive energy and a scattering-state solution with positive
energy.

6.1. bound states

This problem has negative energy £ = —|€| and v =
”T_l and M = 0 were chosen in Eq. (B), thus obtaining

r2u +rd + (Qarz—VQ)u:Q (52)
so that,
| Qr=wo—|¢ if  r<R;
Qo= { Qrr = —|e if  r>R. (53)

The general solution to both regions is

uy = aJy(@r) —l—bY,,(@r), and (54)
urr = cl,(Ver) +d K, (Ver). (55)

The wave-function must be finite at r = 0 and at
r — 00, thus b = ¢ = 0. The continuity of the wave-
function and its first derivative at r = R generates

Ky (VeR) Joa(VeR) | € (56)
K, (VeR) Jo(VeR)

Vo — €]
This transcendental equation is solved numerically for
each n, and the intersection points of the graphs of
both sides give us the quantized energy. Quantized
energy may be obtained for specific cases. If £ = Vy,
then J, — 0, thus the quantized energy comes from,

VOiR =z

@\ 2
2m [ x
gN = Vo - ﬁ (g) ) (57)

where 15\7) is the Nth zero of J,. In this situation

R> xg\';) . If n = 0, Bessel functions turn to trigono-
metric functions and the known regular spacing among
these zeros for the one dimensional well appears. Other
quantizing possibilities come from the Vy > & regime.
In this case the quantized energy comes from the zero
of J,4+1, namely \/e R = xs\';) . This case can be unders-
tood as a deep well or tiny energy. |

In this case the state has positive energy and the potential is the same used in the bounded states (E1l). As discussed
in the case of the free particle, the intensity of the wave-function is maintained at r = 0, and so the solution is

simply,
) = w, — 277 it <R
\1111 =a H,Sl)(\/gr) + H’SZ)(\/ET) if r> R,

rv

rv
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so that P = € + vg. From the continuity of the wave-function and its first derivative, we obtain |b|? =1 and,
16/ (m e R?)
N - 2 N N 2
(Ju Jl/+1 — K Jl/ Jv+1> + (Ju Yu+1 - ,U,YV Jqul)

T: |a|2 =

where p = /X +1, J, = J,WPR), J, = J,(VeR) and Y, = Y,(v/eR). The result is compatible with the
situation for scattered states observed in the delta function model, where the incoming wave is totally reflected at
r = R because it is totally reflected at r = 0, and the intensity of the wave-function is greater in the r < R region
because the outgoing wave is partially transmitted at r = R. For each particular value of T', which is an oscillating
function, there is an infinite energy spectrum that gives us this value, and then the energy is quantized according

to this particular value. This result has also already been obtained for the scattering in the Dirac potential.

[

by Capes.

7. Conclusion

In this article several one-dimensional quantum mecha-
References

nics problems have been generalized in an angular inva-
riant manner. The results confirm expectations such as
a contribution to the zero-point energy of the harmo-
nic oscillator due to the angular dimension, and several
results are not so obvious: the equality of the wave-
function intensities to free particles, the existence of
various quantized states in the Dirac delta potential
and the quantum scattering states for the finite well. It
is hoped that this set of results will be useful in unders-
tanding quantum-mechanics problems that link angular
invariance and multi-dimensionality.
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