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Motivated by electrodynamics we discuss a derivation of the Stokes theorem which is based on the variations of
the fluxes and line integrals of vector fields. We show how this procedure can be extended to higher rank tensors
in the context of the explicitly Lorentz invariant equations of electromagnetism and finally we present a general
derivation of the Stokes theorem for differential forms.
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1. Introduction

The laws of electrodynamics as they were first formu-
lated are based on the Faraday’s idea of lines of field and
their fluxes through spatial surfaces and circuitations
along curves. The understanding of these laws in terms
of vector fields in R3, namely, the electric and magnetic
fields, was later introduced by Maxwell, as well as
the complete set of linear partial differential equations
describing a huge variety of electromagnetic phenomena.

The Stokes theorem provides the natural bridge
between the integral equations and the Maxwell equa-
tions; in fact, given the integral equations one can see the
corresponding differential equations as local consistency
conditions on the fields required by the Stokes’ theorem,
which is a mathematical identity.

In many occasions, the process of derivation of a given
mathematical relation can itself bring more insight into
its understanding. In physics text-books [1, 2] the dis-
cussion of the Stokes theorem is based on the projection
of R3 vector fields on plaquettes and pill-boxes. In basic
calculus text-books [3] the Stokes theorem is generally
verified directly and discussed through examples and in
more advanced texts in mathematics [4], the approach
is probably too dense for undergraduate students to
appreciate its content.

The main idea of this paper is to present a simple way
to derive the Stokes theorem based on an interesting
approach using the concept that is intrinsic to the so
called integral equations of electromagnetism: that the
behaviour or the eletric and magnetic fields is given by
the changes of their fluxes. Thus, we used the context
of electrodynamics as a motivation since this is where
generally this theorem and its applications first appear
for physics students.

The discussion of the derivation of the Stokes theorem
can be understood in three different levels: starting in
section 3, we derive the curl and divergence theorems

*Correspondence email address: gabriel.luchini@ufes.br

for vector fields in R3 in a way that is reachable
for students with vector calculus knowledge; then, in
section 4 we apply the scheme of derivation for tensors in
Minkowski space-time and present the argument using
the Lorentz invariant integral equations of electromag-
netism. Finally, in section 5 we give a more general
derivation of the Stokes theorem for differential forms
and some final considerations are given in section 6.

2. Stokes: The Connection Between
Faraday and Maxwell

The Maxwell equations of electromagnetism are a set
of linear partial differential equations which define the
dynamics of the electric and magnetic vector fields1 E
and B. These equations are in fact equations for the curl
and divergence of these fields and in the Gaussian system
of units they read

∂∂∂ · E = 4πρ (1)

∂∂∂ × B − 1
c

∂tE = 4π

c
j (2)

and

∂∂∂ · B = 0 (3)

∂∂∂ × E + 1
c

∂tB = 0 (4)

where ρ and j are respectively the electric charge and
current densities and ∂∂∂ and ∂t stand for the gradient
operator and the partial derivative in time respectively.

The Faraday idea of lines of fields was crucial in the
development of the mathematical formalism known as
field theories, on which is based the construction of
the fundamental theories of Nature and several models
describing physical phenomena. With the concept of

1 In free 3-dimensional Euclidean space R3.
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e20230218-2 A derivation of the Stokes theorem

field, the problem of action-at-a-distance in electrody-
namics, namely, the fact that electrically charged bodies
will attract or repel each other when separated in space
by a finite distance can be eliminated as the interaction
happens from one point to another, infinitesimally near,
obeying the differential Maxwell equations.

On the other hand, originally the laws of electrody-
namics were given in their integral form, namely, as
equations for the flux and circulation of the electric and
magnetic fields, obtained from empirical investigations.

The flux of a vector field v in R3 is defined by its
projection on a 2-dimensional orientable surface Σ as

Φ(v, Σ) ≡
∫

Σ
v · dS, (5)

with dS standing for the surface’s area element; the line
integral of this vector field is defined by its projection
along a 1-dimensional orientable curve γ as

f(v, γ) ≡
∫

γ

v · dℓ, (6)

with dℓ giving the curve’s line element.
With these definitions, the integral equations of elec-

tromagnetism read

Φ(E, ∂Ω) = 4πQ, (7)

f(B, ∂Σ) − 1
c

dΦ(E, Σ)
dt

= 4π

c
Φ(j, Σ) (8)

and

Φ(B, ∂Ω) = 0, (9)

f(E, ∂Σ) + 1
c

dΦ(B, Σ)
dt

= 0. (10)

with Ω and Σ a 3-dimensional spatial volume and a 2-
dimensional spatial surface respectively and

Q ≡
∫

Ω
ρ dV, (11)

the total electric charge in the volume Ω.
While the differential Maxwell equations define local

relations between the fields, the integral equations deal
with globally defined quantities. Moreover, these integral
equations establish relations between fields on the border
of volumes and surfaces with fields inside them. It is
through the divergence and curl theorems, which here
are referred to as the Stokes theorem, that one can
move from the integral laws to the differential Maxwell
equations since this theorem defines relations between
fields on borders with fields inside volumes and surfaces.

3. A Derivation of the Curl and
Divergence Theorems

In the context of the integral equations of electromag-
netism we deal with the flux and circulation of the

electric and magnetic fields and how these quantities
change due to the presence of electrically charged matter
sources. Let us take, for instance, the Ampère-Maxwell
law (8): it relates the circulation of the magnetic field
around the border of the surface Σ with the flux of
electric current and the variation in time of the flux of
electric field inside this surface. So, in order to establish a
local equation between these fields it is necessary to find
how the circulation of the magnetic field can be written
in terms of something evaluated also in the surface Σ,
for instance. Let us now see how this can be done.

Consider the line integral of the field v (generically
the electric or magnetic fields) along the path γ0 with
coordinates xi, i = 1, 2, 3, which we will parameterize
with σ conveniently chosen to vary from 0 to 2π
corresponding to the initial and final points of the path,
x0 ≡ xµ(σ = 0) and x2π ≡ xµ(σ = 2π) respectively2:

f(v, γ) ≡
∫ 2π

0
vi

dxi

dσ
dσ. (12)

Let us then consider a smooth infinitesimal transfor-
mation of γ0 given by xi → xi + δxi, such that its end-
points are kept unchanged, i.e., δxµ|x0,x2π = 0.

As we vary the path so does the line integral of the
vector field change and its infinitesimal variation can be
calculated as follows

δf =
∫ 2π

0
δvi

dxi

dσ
dσ +

∫ 2π

0
vi

dδxi

dσ
dσ

=
∫ 2π

0
∂jviδxj dxi

dσ
dσ

−
∫ 2π

0
∂jvi

dxj

dσ
δxidσ +

(
viδxi

) ∣∣∣2π

0

=
∫ 2π

0
(∂jvi − ∂ivj) dxi

dσ
δxjdσ,

where we have used that at first order, δvi ≡ vi(x+δx)−
vi(x) with vi(x + δx) = vi(x) + ∂jvi(x)δxj and ∂i ≡ ∂

∂xi .
Defining Cij ≡ ∂ivj − ∂jvi we have

δf = −
∫ 2π

0
Cij

dxi

dσ
δxj dσ. (13)

The above relation defines how the line integral
changes infinitesimally under a respective infinitesimal
change of the curve. There are two independent ways of
deforming the curve γ0 at a given point: along its tangent
direction and perpendicular to it.

The variations along the tangent direction will simply
define a reparameterization of the curve and conse-
quently will not contribute to any change of the line
integral. So, we consider only variations along the
perpendicular direction at each point of γ and we
conveniently parameterize them by τ ∈ [0, 2π] such

2 We adopt Einstein’s summation convention for indices.
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Figure 1: The variation of the path γ0 along its normal direction
will be parameterized by τ ∈ [0, 2π] and the path γ−1

0 ◦ γ2π will
define the border of the surface Σ.

that τ = 0 will label the points of the curve γ0 while
τ = 2π, those of a curve γ2π, obtained from γ0, sharing
its borders x0 and x2π (see Fig. 1). Then, we have that
δxi = ∂xi

∂τ δτ and δf = df
dτ δτ so the relation (13) will

define a differential equation for the line integral with
respect to the deformations of the curve:

df

dτ
= −

∫ 2π

0
Cij

∂xi

∂σ

∂xj

∂τ
dσ. (14)

For a finite transformation taking γ0 to γ2π we can
obtain the variation of the flux from one curve to another
by directly integrating this equation in τ which gives

∆f ≡ f(v, γ2π) − f(v, γ0)

= −
∫ 2π

0

∫ 2π

0
Cij

∂xi

∂σ

∂xj

∂τ
dσ dτ. (15)

Rewriting the l.h.s using the definition of the line
integral given in (12) we get

∆f =
∫

γ2π

v · dℓ −
∫

γ0

v · dℓ (16)

and reversing the direction of the normal vector to the
curve γ0 it becomes

∆f =
∮

γ

v · dℓ, (17)

where γ ≡ γ−1
0 ◦ γ2π.

Next, for the r.h.s we can use the identity ∂ivj −∂jvi ≡
ϵijkϵklm∂lvm = ϵijk (∂∂∂ × v)k and therefore∫ 2π

0

∫ 2π

0
Cij

∂xi

∂σ

∂xj

∂τ
dσ dτ =

∫
Σ

∂∂∂ × v · dS, (18)

where the area element is given by dSk =
ϵijk

∂xi

∂σ
∂xj

∂τ dσ dτ .
Finally, the relation given in (15) can be written as∮

∂Σ
v · dℓ = −

∫
Σ

∂∂∂ × v · dS, (19)

which is the Stokes theorem or the curl theorem, relating
the evaluation of the line integral of the vector field v
along the (closed) border of the 2-dimensional surface Σ
with its curl inside it.

The sign on the r.h.s. expresses the convention on
the basis orientation. While the vector dx

dσ is along the
tangent direction of the path, the vector dx

dτ points along
its normal direction. The orientation of these vectors
agrees with the choice where the tangent direction
is defined counter-clockwise along the curve and the
normal direction is opposite to the direction defined by
the path variation. Thereby, a positively oriented surface
is obtained when its normal is given by dx

dσ × dx
dτ . On the

other hand, in the case of Σ on r.h.s. of equation (19),
the normal direction of the surface follows this basis
convention but its border ∂Σ has the opposite direction
because its orientation is clockwise.

Now the Ampère-Maxwell law and also the Faraday
induction law (10) can be rearranged as

Φ(∂∂∂ × B − 1
c

∂tE, Σ) = 4π

c
Φ (j, Σ) (20)

and

Φ(∂∂∂ × E + 1
c

∂tB, Σ) = 0, (21)

from where the local differential Maxwell equations
follow directly.

Now, the Gauss law for the electric and magnetic fields
(7) and (9) define relations between the flux of these
fields through the border of a volume and the charges
inside this volume (which vanishes for the magnetic
case). In order to connect the flux of these vector fields
with something inside the volume so that this can be
associated locally with the charge density we use the
relation established by the Stokes theorem which is now
derived.

We start by considering the flux of a generic vector
field v through the 2-dimensional surface Σ0 whose
coordinates xi are conveniently parameterized by σ ∈
[0, 2π] and τ ∈ [0, 2π]:

Φ(v, Σ0) ≡
∫

Σ0

v · dS =
∫ 2π

0

∫ 2π

0
vkϵkij

∂xi

∂σ

∂xj

∂τ
dσ dτ

≡
∫

Σ0

Hij
∂xi

∂σ

∂xj

∂τ
dσ dτ, (22)

where we have defined the antisymmetric tensor Hij =
ϵijkvk for simplicity.

Our aim is to understand how this flux on the border
of a 3-dimensional volume can be related to something
inside it, so, we construct such a closed surface corre-
sponding to this volume from the given surface Σ0 by
continuously deforming it.

At each point of Σ0 we take the deformation xµ →
xµ + δxµ changing this surface everywhere except for
its border ∂Σ0, which is kept fixed. Because tangent
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variations to the surface will simply reparameterize the
integral which defines the flux in (22), we shall only
regard variations along the normal direction at each
point of Σ0. Then, the infinitesimal change of the flux
can be determined by considering the flux as a functional
in parameters σ and τ as follows:

δΦ =
∫

Σ0

δHij
∂xi

∂σ

∂xj

∂τ
dσdτ +

∫
Σ0

Hij
∂δxi

∂σ

∂xj

∂τ
dσdτ

+
∫

Σ0

Hij
∂xi

∂σ

∂δxj

∂τ
dσdτ

=
∫

Σ0

∂kHij
∂xi

∂σ

∂xj

∂τ
δxk dσdτ

−
∫

Σ0

d

dσ

(
Hij

∂xj

∂τ

)
δxi dσdτ

−
∫

Σ0

d

dτ

(
Hij

∂xi

∂σ

)
δxj dσdτ

=
∫

Σ0

∂kHij
∂xi

∂σ

∂xj

∂τ
δxk dσdτ

−
∫

Σ0

∂kHij
∂xk

∂σ

∂xj

∂τ
δxi dσdτ

−
∫

Σ0

∂kHij
∂xi

∂σ

∂xk

∂τ
δxj dσdτ,

where in the second line we have integrated by parts
the second and third terms and we have dropped all the
terms which are evaluated on the border since they will
vanish. Finally, using the antisymmetry of Hij we can
rewrite the above expression as

δΦ =
∫ 2π

0

∫ 2π

0
(∂iHjk + ∂jHki + ∂kHij)

· ∂xi

∂σ

∂xj

∂τ
δxk dσdτ. (23)

The equation above gives the infinitesimal variation
of the flux of v through a 2-dimensional surface as this
surface is deformed while its border remains fixed.

We may then parameterize these deformations with
ζ ∈ [0, 2π] such that the points on the surface Σ0 are
labeled by ζ = 0 and those on Σ2π by ζ = 2π (see
Fig. 2). in this case, equation (23) becomes a differential
equation for the change of the flux due to smooth
changes of the surface:

dΦ
dζ

=
∫ 2π

0

∫ 2π

0
(∂iHjk + ∂jHki + ∂kHij)

· ∂xi

∂σ

∂xj

∂τ

∂xk

∂ζ
dσdτ. (24)

Now, for a finite variation of the surface, the change
of the flux can be obtained from the integration of this

Figure 2: The variation of the surface Σ0 along its normal
direction will result in a change of the flux of the vector field v
through it. This change will be related to the divergence of this
field inside the volume bounded by Σ−1

0 ∪ Σ2π.

differential equation in ζ, giving

∆Φ ≡ Φ(v, Σ2π) − Φ(v, Σ0)

=
∫ 2π

0

∫ 2π

0

∫ 2π

0
(∂iHjk + ∂jHki + ∂kHij)

· ∂xi

∂σ

∂xj

∂τ

∂xk

∂ζ
dσdτdζ. (25)

Using the definition of the flux to rewrite the l.h.s of the
equation above we have

∆Φ =
∫

Σ2π

v · dS −
∫

Σ0

v · dS (26)

and reversing the orientation of Σ0 it becomes

∆Φ =
∫

Σ
v · dS, (27)

where Σ = Σ−1
0 ∪ Σ2π.

For the r.h.s of (25) we can use∫ 2π

0

∫ 2π

0

∫ 2π

0
(∂iHjk + ∂jHki + ∂kHij)

· ∂xi

∂σ

∂xj

∂τ

∂xk

∂ζ
dσdτdζ

= 1
3!

∫
Ω

(∂iHjk + ∂jHki + ∂kHij) ϵijk d3x

=
∫

Ω
∂ivi d3x =

∫
Ω

∂∂∂ · v dV,

where Ω is the 3-dimensional volume enclosed by Σ.
Finally, we arrive at the relation∮

∂Ω
v · dS =

∫
Ω

∂∂∂ · v dV, (28)

which is more commonly known as the divergence
theorem relating the flux of a vector field across a 2-
dimensional closed surface with its divergence inside it3.

With this identity it is direct to obtain the differential
Gauss law for the electric and magnetic fields from their

3 The Gauss’ theorem in 2 dimensions is given in the appendix.
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integral equations by replacing the flux of these fields
by their corresponding divergences integrated over the
spatial volume:

Φ(E, ∂Ω) =
∫

Ω
∂∂∂ · E dV = 4π

∫
Ω

ρ dV (29)

and

Φ(B, ∂Ω) =
∫

Ω
∂∂∂ · B dV = 0. (30)

4. The Lorentz Invariant integral
Equations of Electromagnetism:
The Stokes Theorem in Minkowski
Space-Time

The reconciliation of the Maxwell equations of elec-
tromagnetism with the principle of relativity has in
its core the observation that the electric and magnetic
fields in R3 are not vectors (i.e., they do not transform
covariantly) under Lorentz transformations. Instead,
these quantities appear as components of a more funda-
mental field, the electromagnetic field: an antisymmetric
rank-2 Lorentz covariant tensor Fµν , µ, ν = 0, 1, 2, 3 in
Minkowski 4-dimensional space-time with metric ηµν =
diag(1, −1, −1, −1). So, what we read as the electric or
magnetic fields E and B depends on our choice of inertial
frame of reference since the components F0i = Ei and
Fij = −ϵijkBk can be mixed from one frame to another
after a Lorentz transformation.

If, on one hand, the direct substitution of the electric
and magnetic fields in terms of the electromagnetic
field components into Maxwell equations leads us to an
explicit Lorentz covariant form of these equations, on the
other hand, it is not that direct to obtain the Lorentz
invariant integral equations in this way, the reason being
that these integral equations are defined in terms of
fluxes and circulation of fields over specific surfaces and
curves, namely, with a specific splitting of space-time
into space and time.

Nevertheless, let us discuss how the straightforward
application of the Stokes theorem derivation as proposed
in the previous section defines the differential covariant
Maxwell equations from a proposed set of integral equa-
tions for the electromagnetic field, which can therefore
be recognized as the desired Lorentz invariant integral
equations of electromagnetism [6, 7].

In 4-dimensional Minkowski space-time, one can natu-
rally define a flux over a 2-dimensional surface Σ given in
terms of the electromagnetic field and its Hodge dual [5]

F̃µν = 1
2ϵµναβF αβ (31)

as

Φ(Fµν , Σ) ≡
∫

Σ
Fµν

∂xµ

∂σ

∂xν

∂τ
dσ dτ and

Φ(F̃µν , Σ) ≡
∫

Σ
F̃µν

∂xµ

∂σ

∂xν

∂τ
dσ dτ. (32)

Then, we postulate the integral equations of electro-
magnetism to be given by the following relations4

Φ(Fµν , ∂Ω) = 0, (33)

Φ(F̃µν , ∂Ω) = −4π

c
Q, (34)

where Ω is a 3-dimensional volume in the 4-dimensional
space-time and

Q ≡
∫

Ω
JµdVµ, (35)

with dVµ = ϵµνλγ
∂xν

∂σ
∂xλ

∂τ
∂xγ

∂ζ dσdτdζ the 3-dimensional
volume element and Jµ = (cρ, j) the electric 4-current
thus defining Q as the electric charge and/or current.

The differential Maxwell equations can then be
obtained as local relations for the fields which give the
consistency of the above integral equations with the
Stokes theorem.

In order to see this we take the flux of the field strength
and of its Hodge dual over a 2-dimensional surface Σ0
parameterized by σ ∈ [0, 2π] and τ ∈ [0, 2π] as given
above and then consider continuous deformations of this
surface keeping its border fixed, as done before. Writing
Bµν for either Fµν or F̃µν , a completely analogous
calculation to the case where we derived the divergence
theorem leads us to

δΦ =
∫

Σ
δBµν

∂xµ

∂σ

∂xν

∂τ
dσdτ +

∫
Σ

Bµν
∂δxµ

∂σ

∂xν

∂τ
dσdτ

+
∫

Σ
Bµν

∂xµ

∂σ

∂δxν

∂τ
dσdτ

=
∫

Σ
∂λBµν

∂xµ

∂σ

∂xν

∂τ
δxλ dσdτ

−
∫

Σ

d

dσ

(
Bµν

∂xν

∂τ

)
δxµ dσdτ

−
∫

Σ

d

dτ

(
Bµν

∂xµ

∂σ

)
δxν dσdτ

=
∫

Σ
∂λBµν

∂xµ

∂σ

∂xν

∂τ
δxλ dσdτ

−
∫

Σ
∂λBµν

∂xλ

∂σ

∂xν

∂τ
δxµ dσdτ

−
∫

Σ
∂λBµν

∂xµ

∂σ

∂xλ

∂τ
δxν dσdτ

where in the second line we have integrated by parts
the second and third terms and we have dropped all the

4 The generalization of these integral equations to electrodynamics
in 2 + 1 and 1 + 1 dimensional space-times is straightforward:
while the equation of the field strength states that the flux of
a rank-2 tensor over a closed 2-dimensional surface vanishes, the
equation for the Hodge dual field defines that the flux of a D − 1
rank tensor over a closed (D − 1)-dimensional hypersurface in a
(D +1)-dimensional space-time equals to the electric charge inside
its hypervolume.
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terms which are evaluated on the border since they will
vanish. Then we can rewrite the above expression as

δΦ =
∫

(∂λBµν + ∂µBνλ + ∂νBλµ) ∂xµ

∂σ

∂xν

∂τ
δxλ dσdτ.

(36)
Next, parameterizing the variations of the surface with

ζ ∈ [0, 2π] such that the points on the surface Σ0 are
labeled by ζ = 0 and those on Σ2π by ζ = 2π, the above
relation becomes a differential equation for the change
of the flux due to smooth changes of the surface:

dΦ
dζ

=
∫

(∂λBµν + ∂µBνλ + ∂νBλµ) ∂xµ

∂σ

∂xν

∂τ

∂xλ

∂ζ
dσdτ.

(37)
So finally, integrating over ζ we get the change of the

flux from the initial to the final surface:

∆Φ ≡ Φ(B, Σ2π) − Φ(B, Σ0)

=
∫

Ω
(∂λBµν + ∂µBνλ + ∂νBλµ)

· ∂xµ

∂σ

∂xν

∂τ

∂xλ

∂ζ
dσdτdζ. (38)

Using the definition of the flux to rewrite the l.h.s
and reversing the orientation of Σ0 the above equation
becomes∮

∂Ω
Bµν

∂xµ

∂σ

∂xν

∂τ
dσdτ =

∫
Ω

(∂λBµν + ∂µBνλ + ∂νBλµ)

· ∂xµ

∂σ

∂xν

∂τ

∂xλ

∂ζ
dσdτdζ. (39)

where Ω is the 3-dimensional volume enclosed by the
closed surface ∂Ω = Σ−1

0 ∪ Σ2π.
So, we have now that the integral equations can be

rewritten as∫
Ω

(∂λFµν + ∂µFνλ + ∂νFλµ)

· ∂xµ

∂σ

∂xν

∂τ

∂xλ

∂ζ
dσdτdζ = 0 (40)∫

Ω

(
∂λF̃µν + ∂µF̃νλ + ∂ν F̃λµ

)
· ∂xµ

∂σ

∂xν

∂τ

∂xλ

∂ζ
dσdτdζ

= 4π

c

∫
Ω

ϵµνλγJγ ∂xµ

∂σ

∂xν

∂τ

∂xλ

∂ζ
dσ dτ dζ, (41)

from where we derive the local conditions. The first
equation gives immediately the Bianchi identity, corre-
sponding to the Faraday law of induction and the Gauss
law for the magnetic field:

∂λFµν + ∂µFνλ + ∂νFλµ = 0. (42)

For the second equation we have

∂λF̃µν + ∂µF̃νλ + ∂ν F̃λµ = 4π

c
ϵµνλγJγ , (43)

from where taking the contraction with ϵαλνµ and using5

ϵµναλϵµνρσ = −2(δα
ρ δλ

σ − δλ
ρ δα

σ ) and ϵµνλαϵµνλγ = −6δα
γ

we get

∂µF µν = 4π

c
Jν (44)

corresponding to the Gauss law for the electric field and
the Ampère-Maxwell law.

5. A general Proof of Stokes Theorem

One of the consequences of the principle of equivalence
is that physical equations must be tensorial equations
so that each of the terms transforms covariantly under
the respective symmetry group. Besides tensors, the
differential forms [5, 8] are a very elegant language
to describe physical laws and in particular, for gauge
theories such as electrodynamics, it becomes a powerful
tool.

A differential form [9, 10] may be seen as something
which is naturally integrated over a curve or a surface
or a volume or anything else with more dimensions. We
shall refer to these geometrical structures in a generic
way as hyper-surfaces. So, a 0-form is nothing but a
function f(x) which can be evaluated at each point
of space-time6. A 1-form can be defined as something
which is ready to be integrated over a 1-dimensional
hyper-surface: ω = ωµdxµ. Next, a 2-form will be
naturally integrated over a 2-dimensional hyper-surface,
ω = 1

2 ωµνdxµ ∧ dxν , where dxµ ∧ dxν = −dxν ∧ dxµ

and therefore the components of the 2-form, the tensor
ωµν is antisymmetric. Generally speaking, a p-form is
defined by

ω = 1
p!ωµ1...µp

dxµ1 ∧ · · · ∧ dxµp , (45)

which is something that is integrated over a p-
dimensional hyper-surface.

In particular, the electromagnetic field is defined by
the components of a 2-form [11], F = 1

2 Fµνdxµ∧dxν and
therefore, its flux, and analogously the flux of its Hodge
dual is nothing but the integration of a 2-form over a
2-dimensional hyper-surface; the most natural thing one
can think of doing with a 2-form.

The scheme we have used to obtain the relation known
as the Stokes theorem for the case of a 2-form can be
generalized in a straightforward manner to a p-form and
that is what we are going to show in what follows.

We consider an orientable hyper-surface Σ of dimen-
sion p to be immersed in space-time M of dimension
D > p, with local coordinates xµ1 , . . . , xµD . The flux of
the p-form ω is defined as the integration of that form
over Σ:

5 We use ϵ0123 = 1.
6 In particular, the Stokes theorem for a 0-form, which is the
Fundamental Theorem of Calculus, is derived explicitly in the
appendix.
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Φ =
∫

Σ

1
p!ωµ1...µp

dxµ1 ∧ · · · ∧ dxµp =
∫

Σ
ωµ1...µp

∂xµ1

∂σ1
. . .

∂xµp

∂σp
dσ1 . . . dσp. (46)

Under an infinitesimal “orthogonal deformation” of this hyper-surface, x → x + δx, keeping its border fixed, the
flux will change by

δΦ =
∫

Σ
∂λωµ1...µpδxλ ∂xµ1

∂σ1
. . .

∂xµp

∂σp
dσ1 . . . dσp

−
∫

Σ

d

dσ1

(
ωµ1...µp

∂xµ2

∂σ2
. . .

∂xµp

∂σp

)
δxµ1dσ1 . . . dσp + ... +

−
∫

Σ

d

dσn

(
ωµ1...µp

∂xµ1

∂σ1
. . .

∂xµn−1

∂σn−1

∂xµn+1

∂σn+1
. . .

∂xµp

∂σp

)
δxµndσ1 . . . dσp + ... +

−
∫

Σ

d

dσp

(
ωµ1...µp

∂xµ2

∂σ2
. . .

∂xµp−1

∂σp−1

)
δxµpdσ1 . . . dσp (47)

where we have integrated by parts the derivatives of the hyper-volume element, throwing away the terms which
vanish at the border, where δx = 0.

Now the derivatives of the remaining terms will be as follows∫
Σ

d

dσn

(
ωµ1...µp

∂xµ1

∂σ1
. . .

∂xµn−1

∂σn−1

∂xµn+1

∂σn+1
. . .

∂xµp

∂σp

)
δxµndσ1 . . . dσp

=
∫

Σ
∂λωµ1...µp

(
∂xµ1

∂σ1
. . .

∂xµn−1

∂σn−1

∂xλ

∂σn

∂xµn+1

∂σn+1
. . .

∂xµp

∂σp

)
δxµndσ1 . . . dσp

+
∫

Σ

(
ωµ1...µp

∂2xµ1

∂σn∂σ1
. . .

∂xµn−1

∂σn−1

∂xµn+1

∂σn+1
. . .

∂xµp

∂σp

)
δxµndσ1 . . . dσp + ...

+
∫

Σ

(
ωµ1...µp

∂xµ1

∂σ1
. . .

∂2xµn−1

∂σnσn−1

∂xµn+1

∂σn+1
. . .

∂xµp

∂σp

)
δxµndσ1 . . . dσp + ...

+
∫

Σ

(
ωµ1...µp

∂xµ1

∂σ1
. . .

∂xµn−1

∂σn−1

∂2xµn+1

∂σn∂σn+1
. . .

∂xµp

∂σp

)
δxµndσ1 . . . dσp + ...

+
∫

Σ

(
ωµ1...µp

∂xµ1

∂σ1
. . .

∂xµn−1

∂σn−1

∂xµn+1

∂σn+1
. . .

∂2xµp

∂σn∂σp

)
δxµndσ1 . . . dσp.

So that relabelling all the indices and using the anti-symmetry of the tensor ωµ1...µp
, all terms involving second

derivatives in the r.h.s of (47) will cancel and what remains is

δΦ = (−1)p

∫
Σ

(
∂λωµ1...µp

+ . . .
) ∂xµ1

∂σ1
. . .

∂xµp

∂σp
δxλdσ1 . . . dσp. (48)

We notice that the rearrangement of the indices involves permutations leading to an anti-symmetric tensor
∂λωµ1...µp + . . . which will be later recognized as the components of a (p + 1)-form in a given basis.

This variation can be parameterized by s ∈ [0, 2π] so that we obtain a differential equation for the flux as

dΦ
ds

= (−1)p

∫
Σ

(
∂λωµ1...µp

. . .
) ∂xµ1

∂σ1
. . .

∂xµp

∂σp

∂xλ

∂s
dσ1 . . . dσp (49)

=
∫

Σ

(−1)p

(p + 1)!
(
∂λωµ1...µp . . .

)
dxλ ∧ dxµ1 ∧ · · · ∧ dxp, (50)

which can be directly integrated and the l.h.s will give
the difference of the flux calculated at the hyper-surface
at s = 0 and at s = 2π.

Changing the orientation of the hyper-surface at
s = 0, the border shared by these two hyper-surfaces
will disappear as they can be merged as a closed
oriented hyper-surface ∂Ω, enclosing the hyper-volume
Ω of dimension p + 1. Then, we get the Stokes theorem

for a p-form: ∮
∂Ω

ω = (−1)p

∫
Ω

dω. (51)

The minus sign appearing for the odd differential
forms can be changed by a redefinition of the orientation
of the closed hyper-surface ∂Ω.
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6. Conclusions

The development of the ideas of physics depends upon
and, at the same time, boosts the construction of new
mathematical knowledge and techniques. The Stokes
theorem finds in the study of electrodynamics a per-
fect “pedagogical match” concerning its applications: in
many important physical situations for which symmetry
arguments can be used, this theorem makes the task of
finding solutions to the Maxwell equations much simpler
than solving them directly. In the present discussion we
have explored the natural insights one can obtain by
looking at the fact that electrodynamics deals exactly
with fluxes and circuitations in order to propose a
derivations of the Stokes’ theorem which defines math-
ematical identities exactly for the variations of fluxes
and circuitations. Thus, we have found a quite simple
way to determine these identities by analysing how the
fluxes and circuitations change when we change the cor-
responding surfaces and curves where they are defined.
We believe that this method of deriving Stokes theorem
fills an important gap for undergraduate and graduate
students concerning their learning of this important
theorem.

Supplementary material

The following online material is available for this article:
Appendix
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