
Revista Brasileira de Ensino de Física, vol. 44, e20210279 (2022) Articles
www.scielo.br/rbef cb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0279 Licença Creative Commons

Cost-Based Approach to Complexity:
A Common Denominator?

Luciano da F.Costa1 , Guilherme Domingues*1

1Universidade de São Paulo, Instituto de Física, São Carlos, SP, Brasil.

Received on August 03, 2021. Revised on October 05, 2021. Accepted on November 01, 2021.

Complexity remains one of the central challenges in science and technology. Although several approaches at
defining and/or quantifying complexity have been proposed, at some point each of them seems to run into intrinsic
limitations or mutual disagreement. Two are the main objectives of the present work: (i) to review some of the main
approaches to complexity; and (ii) to suggest a cost-based approach that, to a great extent, can be understood as
an integration of the several facets of complexity while keeping its meaning for humans in mind. More specifically,
it is poised that complexity, an inherently relative and subjective concept, can be summarized as the cost of
developing a model, plus the cost of its respective operation. As a consequence, complexity can vary along time
and space. The proposal is illustrated respectively to several applications examples, including a real-data base
situation.
Keywords: Complexity, system modeling, complex systems.

1. Introduction

One of the most often mentioned terms in science
currently is complexity. Though we have an intuitive
understanding of this concept, to the point of often
being able to readily recognize if something is complex
or not, it turns out that it is particularly difficult
to objectively define complexity (e.g. [1–3]). Indeed,
several of the approaches that have been proposed for
defining and better understanding complexity sooner
or later run into intrinsic limitations. For instance, we
can attempt to define the complexity of a given set
of 10 images containing 200 points each distributed
uniformly, as illustrated in Figure 1. This data can be
characterized in at least three manners: (i) by storing
all the complete images, requiring 1280 bytes; (ii) by
obtaining the position of each of the points in each of
the images in the set, requiring approximately 15.6 Kb,
(iii) by just indicating that the whole set corresponds
to 10 realizations of an uniform random process with
200 points. It should be kept in mind that, though
we limited our discussion to just three possibilities,
there is a virtually infinite number of alternatives, which
contributes to making complexity even more complex.
In the above examples, in which complexity is quan-

tified in terms of the respectively required memory, we
reach three distinct conclusions, corresponding to large,
small, and medium complexities. Though it would be
tempting to conclude that the complexity of the problem
is ultimately that of the shortest of the three descrip-
tions, there are additional intricacies to be considered.
For instance, choices (i) and (ii) will both allow the
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recovery of the original data, which cannot be achieved
from the description obtained by option (iii). So, in
case the positions of the points do matter for a specific
application, we need to conclude that the original data
is not so simple and perhaps assign the complexity
corresponding to the memory size implied by option
(ii). However, if the position of the points is irrelevant
for a given problem, we can conclude that the original
data is indeed extremely simple. A number of additional
constrains can influence on the above analysis. For
instance, it may happen that we are also concerned
with the computational cost required for achieving the
different levels of compaction, and so on.
The frequent conceptualization of complexity in terms

of the length of the respective description reveals a close
relationship between complexity and scientific modeling,
more specifically the level of abstraction. As a matter of
fact, accurately describing a phenomenon as an abstract
construct consists in one of the main objectives of
modeling. Another important one is to provide subsidies
for making predictions about the observed phenomenon.
Such modelings imply mapping the real world into a rela-
tively precise and formal system of representations, such
as natural language and/or logic and/or mathematics.
In addition to the above discussed intricacies in

defining complexity, it is also important to observe that
another critical aspect that has severely constrained
attempts at defining complexity concerns the fact that
complexity is ultimately a human-related concept, there-
fore involving some level of subjectivity required for
more generality. Indeed, any more comprehensive def-
inition of complexity has to remain compatible with
the intuitive understanding of this term by humans in
general. The hypothesis here is that, though humans
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Figure 1: The size of an entity is one of the most intuitive
attempts at measuring complexity. However, this concept may
run into difficulties, such as in the case of a distribution of
many points on a space uniformly distributed. Despite its large
size, this distribution is by every means very simple, being
describable by a simple sentence. Observe that the quantifi-
cation of complexity often involves the mapping of an entity
from one space (typically nature) into another (e.g. language,
logic and/or mathematics). In addition, the complexity may also
have to take into account the computational expenses required
for implementing each of the mentioned possibilities.

may have specific differences in their understanding
of complexity at large, there should be some common
elements shared by a substantial number of people.
The alternative of proposing a definition and char-
acterization of complexity purely from mathematical
and physical considerations has proven to be rather
difficult to be accommodated generally into the human
common sense, as our simple discussion above has
already illustrated. These mathematical approaches are
nevertheless welcomed and fine in themselves, as they
provide additional insights into more specific aspects of
complexity. However, here we aim at developing a more
comprehensive approach that would be largely coherent
with the understanding of complexity shared by humans.

The approach to complexity developed in this work
is aimed specifically at trying to summarize as best,
objective and quantitatively as possible its human con-
notation. This has been achieved at the expense of
obtaining a strict, fully accurate and objective mathe-
matical definition. Instead, in the present approach we
resource to the costs, expenses or even the difficulty
of developing and operating models of the real-world.
The intrinsic advantage of this approach is that it paves
the way for accommodating the fact that complexity, as
understood by humans, often varies substantially along
time and space, depending on the available resources
and specific constraints. Indeed, the very concept of
cost was very probably developed precisely to account
for providing a quantification of these varying demands
and constraints. What is complex today, will probably
be simpler tomorrow, and what is complex for a given
scientific team in a given place may be simpler for a
team in another place that is more acquainted with the
respective area of a problem, and/or having access to
more resources.

In brief, the suggested approach to complexity aims
at achieving as much compatibility with its human con-
notation at the expense of a more strict mathematical
definition which would probably incur in being too
specific and not able to accommodate the fact that
complexity as understood by humans can vary along
time and space.
We start by providing a brief review of some of

the various previous attempts that have been made to
define complexity, and then present our proposal of a
potentially new way of looking at and understanding
complexity in terms of model and operation costs, as well
as how the efficiency of these solutions can be related to
complexity. Four case examples are then discussed in
order to better illustrate the proposed approach.

2. Some approaches to complexity

One important issue to be considered from the outset is
that there are two aspects to complexity: (a) definition;
and (b) quantification. In particular, the former seems
to be to a large extended implied by the latter because if
one is capable of measuring complexity, we can promptly
decide on a phenomenon being complex or not. Yet,
some of the definitions of complexity are predominantly
qualitative.
In this section, we provide a concise review of some of

the main approaches that have been advanced for quan-
tifying (and therefore defining) complexity. It should be
observed that this review is not fully comprehensive, and
additional interesting approaches can be found.

Informational Complexity: Information Theory [4]
studies the usage and transformation of information, as
well as its transmission. Information is often approached
in terms of messages involving sets of symbols. Deriving
from thermodynamics and information theory, the con-
cept of entropy allows an effective statistical means for
quantifying the amount of information (e.g. in bits) of a
set of symbols. Let’s consider the Shannon entropy [4],
typically measured in bits, given as

E = −
S∑
i=1

pi log2(pi) (1)

where S is the number of involved symbols and pi
their respective probabilities or relative frequencies. For
instance, if we have a text containing 50 times the word
‘tea’ and 50 times the word ‘time’ (observe that S = 2),
we will need, in the average, 1 bit for representing
the information in this set. However, if we change the
number of instances to 10 and 90, respectively, we have
an average minimum of only approximately 0.469 bits.
It can be verified that the situation when all symbols

have the same probability leads to maximum entropy,
while its minimum value is observed when only a
symbol has non-zero probability. The use of the average
minimum of bits obtained from entropy provides an
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interesting approach to quantify the complexity of an
entity represented as a set of symbols, and can often
lead to satisfactory results. Examples of usage can be
found in [5–7]. However, this approach typically does
not consider the interrelationship between the involved
symbols (other types of entropy can be used here) and,
more importantly, a sequence of S symbols drawn with
uniform probability will yield maximum entropy, while
being statistically trivial (such sets can be obtained by
sampling the uniform distribution, one of the simplest
density of probability). In other words, maximum infor-
mation (and complexity) can be easily obtained from
relatively simple generative models.
Geometrical Complexity: Perhaps as a consequence
of being more directly perceived, the complexity of visual
patterns, shapes, and distribution of points/shapes, has
attracted great attention from the scientific community.
While a dot and a straight line can be conceptualized
as exhibiting minimal complexity, structures such as the
border of islands, snowflakes and some types of leaves are
characterized by intricate self-affine geometries. Thus a
notion of complexity can be developed by estimating how
much these relatively more sophisticated shapes depart
from simpler ones (dots, lines, filled regions, etc.). Sev-
eral approaches have been proposed for characterizing
geometrical complexity, as in porous media analyses [8],
especially the concepts of fractal dimension (e.g. [9, 10])
and lacunarity (e.g. [11, 12]). Briefly speaking, fractal
objects exhibit self-affine structure extending over all
(or a wide range of) spatial scales, therefore imparting
high levels of complexity to such objects. Observe that
the fractal dimension takes real values not necessarily
corresponding to a topological dimension (limited to
integer values).
The concept of lacunarity, which was proposed by

B. Mandelbrot in order to complement the fractal
characterization of objects, expresses the degree of
translational (or positional) variance of an object while
observed at varying spatial scales (e.g. [11]), being used
to quantify the capability of the object to occupy empty
spaces inside its own geometry. The lacunarity can also
be understand as “gappiness”, indicating how much a
figure’s texture has "holes" or is inomogenous [13, 14].
Another important measurement in terms of geomet-

rical complexity is the succolarity, which measure the
connectivity of pores or gaps in an image or object
and, alongside with lacunarity, has been extensively used
to differentiate objects with the same fractal dimen-
sion [8, 15].
The fractal/lacunarity approaches can provide valu-

able information in many situations and with respect
to a wide range of data. However, similarly to entropy,
it is also possible to identify simple generative rules
(e.g. Koch curves or Mandelbrot sets) that will yield
self-affine structures with relatively large fractal values.
Computational Complexity: One of the interesting
approaches that have been proposed to define and

characterize complexity involves the concept of compu-
tational complexity (e.g. [16]).
Given a specific computation, the respective order

of complexity quantifies the amount of computational
resources (typically processing time and/or memory
capacity) required for its effective calculation. For exam-
ple, adding two vectors containing N elements each
is characterized by computational complexity order of
O(N), where O() stands for the ‘big O’ notation. In
this particular example, it is meant that adding the
two vectors will involve a number of additions propor-
tional to N . Observe that there are some intricacies in
determining the O(). For instance, adding three vectors
with N elements each will imply 2N additions, but we
still get the same O(N) for this case. It is not often
easy to calculate the O() of a given operation, and
the reader is referred to the respective literature for
more information on this important and interesting area
(e.g. [17, 18]). While the order of complexity provides a
formal way to quantify some aspect of the complexity
of a computation, it cannot be directly applied to
characterizing the complexity of entities and it may not
be known or determinable in certain situations.

Though computational complexity provides substan-
tially important subsidies for classifying types of algo-
rithms, it is possible to think of simple programs which
have high computational complexity. For instance, the
concept and code for calculating the P power of anN×N
matrix is short and simple, but involves a relatively
high computational complexity of O(PN2). It should
be observed that this operation can be performed more
effectively after the matrix is diagonalized, implying in
a substantially more complex code.
Transients and Steady-states: The state of a given
system can be characterized by a set of constants and
measurements or dynamic variables of that system. We
can also use the values of these variables to define a
point in the phase space corresponding to that state (see
Figure 2). The phase space can be understood as a space
that corresponds to the possible states of the dynamic
variables involved in a dynamical system (e.g. [19]). The
dynamics in a system can be at two main types of
regimes: transient or steady-state.

The Steady-state can also be characterized by a
configuration of parameters that makes the state of a
given system invariant in time, or locally restrict in
the phase-space (e.g. an oscillation), as it reaches an
equilibrium [20].

However, throughout the evolution of a system, it may
have a period along which its parameter and dynamical
variables suffer alterations in order to allow the system
to a change in the phase or state, going from a regime to
another. In the phase-space, that period is usually called
a transient [20].
Dynamical Systems Complexity: The area of
dynamical systems has been extensively (e.g. [9, 21–25])
developed in order to represent the interaction along
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Figure 2: A phase space with two infinitesimally close tra-
jectories departing one from the other. Here we illustrate two
examples of how the separation vectors ~D(t) and ~D∗(t) can be
measured.

time between the components of a given system. One
of the main concerns in that area is to identify if the
systems dynamics will converge to a steady state in the
long term and how the long term behavior then depends
on its initial condition [26].
Another related concept is the Lyapunov’s coeffi-

cient [27, 28], which measures how fast the distance
between two infinitesimally close trajectories in the
phase space increases when the trajectories depart one
from the other. This coefficient, henceforth expressed as
λ, can be defined in terms of the following equation:

| #»D(t)| ≈ eλt| #»D0| (2)

where #»

D(t) is an infinitesimal separation vector between
two close trajectories at a given time t. However, the ori-
entation of the initial separation vector #»

D0 can influence
the value of λ, motivating the alternative approach called
spectrum of Lyapunov’s coefficients, i.e. a set of values
obtained for the separation rate of two trajectories in
terms of several possible orientations, equal in number
to the dimensionality of the phase space. Usually the
largest Lyapunov’s coefficient is chosen to determine
the level of predictability, or complexity, of a system.
An example of numerical calculation of Lyapunov’s
coefficients for the Lorentz model [29] can be found
on [30].
Examples of application of this approach include

population models (such as the logistic approach) and
the behavior of oscillators such as a pendulum. Though
linear dynamical systems are relatively simple, non-
linear counterparts can exhibit surprising dynamic char-
acteristics, such as the fact that small perturbations
in the system input can induce large variations of the
respective output, a phenomenon that is associated to
chaotic behavior.

An important concept in Dynamical System Theory
is that of an attractor, which is a set of numerical values
that the system tend to recur along its dynamics [31].
Non-linear systems can have rather complex attractors,

such as fractals, so it makes sense to speak of the
complexity of a dynamics in terms of the complexity
of its respective attractor. The spectrum of Lyapunov’s
coefficients can also be used to estimate the fractal
dimension of a respective attractor [32, 33] and provide
an upper bound for the information contained on a stud-
ied system [34]. However, maximum unpredictability and
disorder do not, necessarily, means high complexity (we
have already seen that numbers drawn with uniform
probability are easy to understand and model from the
statistical point of view). Nevertheless, the dynamical
system approach to complexity is particularly enticing
in which concerns the idea that complexity would take
place somehow at the mid point between simple, pre-
dictable dynamics and the highly unpredictable chaotic
states. So, complexity would be mostly found at the
border of chaos (e.g. [22, 23]).
Self-Organized Criticality (SOC): There are
Dynamical Systems with many spatial degrees of free-
dom that have critical points as attractors, i.e. those
systems spontaneously evolve into unstable states of
the phase space. These so-called Self-Organized Critical
Systems [35] maintain a scale-invariance characteristic
as they evolves towards non-equilibrium states around
phase transition points via feedback mechanisms [36],
that often produces avalanche-like behaviors where a
small perturbation can cause a wide change in the
system. A typical numeric example is the sand pile
model, which is built on a finite grid where each site
has an associated value that corresponds to the height
of the pile. This height increases as “grains of sand” are
randomly added onto the pile, until the height exceeds a
threshold and cause the site to collapse, moving sand to
neighbors sites, increasing their respective heights [35].
The SOC model can be applied to many different
situations [37].
Other studies have shown that a system can have more

than one critical point as attractor in a non-continuous
phase transition, evolving to the coexistence of two
unstable states and having avalanche-like behavior not
only around one attractor, but also between both attrac-
tors on a larger scale, producing a cyclical effect. This
type of system has been called Self-Organized Bistability
(SOB) [36].
The average avalanche size ∆S can be seen as an

indicator of complexity on a system, and when ∆S →∞
the system is considered to be on a critical state.
These properties can be understood as an indication of
structural and dynamical complexity of a given system.
SOC is considered to be one of the mechanisms by which
complexity appears in nature [38], being often applied in
fields such as geophysics, ecology, economics, sociology,
biology, neurobiology and others [39–42].
Minimum Description Size (Kolmogorov Com-
plexity): Another interesting approach at defining/
quantifying complexity considers the size or length of
the minimal description of an entity or the resources
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necessary to reproduce that entity [43, 44]. More for-
mally speaking, this measurement takes into account the
coding of an operation into a Turing machine [45]. The
latter is an abstract, universal type of computing engine
in which symbols are stored in an infinite tape that can
be scanned by a head capable of performing some basic
operations, also involving some other components such
as state registers.
The Turing machine is often considered because it

represents an abstract universal model of computing,
but the quantification of description complexity can
also be approached by considering other, more generally
known, programming languages, such as C or Python,
and hardware architectures, such as parallel, pipeline,
GPU, etc. Thus, given an entity, we need to find the
shortest program that can reproduce it. The complexity
of that entity could then be gauged in terms of the length
of the respective code (e.g. number of instructions) or
the number of bits necessary to reproduce that code as
a character string.
Let’s consider the case of our distribution of points

used in our Introduction section. Here, it would be easy
to obtain an extremely short program that produces that
distribution. Such a program, in Python, could be as
follows:

import random
X = [random.random() for i in range (200)]
Y = [random.random() for i in range (200)]

Other examples of usage can be found in [46–48].
Though representing an interesting approach to quan-
tifying complexity, the minimum description length
depends intrinsically on the sequential type of coding
and execution implied by the Turing machine. There
are, however, many different computational paradigms,
such as recursive (e.g. LISP) and parallel/distributed,
that could be considered instead of the abstract Turing
machine, implying in potentially very different code
lengths. Even non-electronic means, biological, quan-
tum, or even natural languages could be considered,
implying completely different programming and storage
organizations. A same problem, when programmed in
such different computing systems, would present varying
minimum description sizes. An additional difficulty is
that it is often a challenge to find the minimum code for
any problem [49].
While Shannon information theory is primary con-

cerned with the information contained in messages of
communication area, approaches to complexity based on
Kolmogorov’s minimal length tend to consider genera-
tive aspects of a given set of data [50, 51].

Bennett’s Logical Depth: This method can be infor-
mally understood (e.g. [2]) as a combination of the
computational complexity and minimum description
length approaches. More specifically, it corresponds to
the computational expenses required for performing the
minimal code obtained for reproducing the entity or

phenomenon of interest. As such, this method focuses
on the computational efforts required to reproduce a
phenomenon or entity.

It is important not to confound this approach with
Kolmogorov’s complexity, that takes into account the
length of the code and not the computational com-
plexity or the execution time. By defining depth as an
effort of code execution, we have that an object that
requires a long time to be reproduced cannot be quickly
obtained by joining faster generated ones [52]. In other
words, simplistically speaking, the divide-and-conquer
approach would not lead to velocity gain in these cases,
which would otherwise be better understood under the
idea that the whole is larger than the sum of its parts.

Though intrinsically interesting and with good poten-
tial, being useful in several situations and problems
(e.g. [53]), this approach inherits to some extent the
intrinsic limitations of the two approaches which it incor-
porates. For instance, if we considered the complexity
order of the simple program we derived for producing
our distribution containing N points, we would obtain
O(2N), suggesting a large complexity for that otherwise
simple set.

Network Complexity: With the impressive develop-
ment of the area of Network Science(e.g. [54]), aimed at
studying complex networks, the concept of complexity
has also become associated to the structure of networks
used to represent a given entity or phenomenon. One
of the reasons for the importance of networks science
is the capacity of a graph or network to represent
virtually any discrete system. For instance, networks
can be used to model not only entities (e.g. airport
routes, communication networks, scientific publications,
links between web pages, etc. [55]), but also procedures,
e.g. in terms of semantic networks (e.g. [3]) as well
as several types of dynamics. The complexity of a
network is related to how much its topology departs
from that of regular or uniformly random networks
(e.g. [56]). Generally speaking, a complex network tends
to exhibit a non-trivial topology of interconnections.
Such heterogeneities have to do not only with the node
degree distribution, but also with many other topological
features of the studied networks [56].

Interpretation and Descriptive Complexity: Löof-
gren [57, 58] describes an interesting approach to
complexity involving the mapping from the system of
interest into its respective description through learn-
ing, while the inverse mapping is often understood
as interpretation [2]. This concept is combined with
computational and description complexity, and a basic
language is adopted to model the proposed framework.
An alternative language-based approach to complexity
has also been proposed in [2].

Combinatorial Systems: These are systems composed
of components that can be redistributed to form new
instances, or expressions, of that system following a set

DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0279 Revista Brasileira de Ensino de Física, vol. 44, e20210279, 2022



e20210279-6 Cost-Based Approach to Complexity: A Common Denominator?

Figure 3: A possible overall framework integrating some of the several approaches to quantifying complexity, instantiated to the
specific example in Figure 1.

of rules, or grammar, that determine which arrange-
ments of components are allowed [59]. Common exam-
ples of combinatorial system are the human language,
where a combination of a given number of words on a
given order form a sentence; biochemistry [60], where
different chemical components are combined to form
new pharmacological compounds; or even institutions,
like universities, which are formed by a combination
of different departments. Given a number of possible
expressions E of a system, a number of different com-
ponent types C and an average expressions length L,
these three characteristic parameters of a combinatorial
system are usually related by the following relationship:

E ∝ CL (3)

Therefore, these systems can be classified accordingly to
the variations observed for each parameter, that is, if L
is usually invariant while C dictates the behavior of E,
or if both C and L vary and equally impact the behavior
of E, to describe just some examples.
In the case of human language, for instance, as the

number of words (C) and the length of the phrases (L)
increases, therefore increasing the number of possible

phrases (E), it can be expected that the complexity
of that language will also increase, therefore being
somehow proportional to E.

In this section, we briefly reviewed some of the several
approaches at defining and quantifying complexity. Fig-
ure 3 illustrates the application of some of those com-
plexity quantification methods. A similar construction
could be obtained for several other types of problems.
The enclosing interconnection pathway indicates that
it is possible to interrelate and integrate the results
obtained by different methods. It remains a substantial
challenge is to accommodate the discrepant indications
of complexity as provided by these various approaches.

3. A cost approach to complexity

In the remainder of the present work, we aim at
describing an approach to complexity that circumvents
the problem that several of the other existing approaches
of not being general enough, in the sense that counterex-
amples can often be found. In other words, one of the
main limitations of the previous approaches is that it
is difficult to achieve a consensus, with a same problem
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being characterized as complex by one approach and as
simple by another. This partly follows from the fact that
the several discussed approaches were developed having
specific types of problems, systems and structures in
mind.
In addition, a more general definition of complexity

should be as much as possible compatible with its
understanding by humans, which is intrinsically relative
and can vary along time and space as well as in
terms of resources availability. So, a more comprehensive
definition of complexity would need to rely on some
quantification that can itself adapt given conditions
varying in time and space. As it happens, there is one
concept that has been developed in order to account
precisely for these characteristics, and which seems
to provide an interesting approach to complexity. We
are referring to the concept of cost as understood in
economical sciences. Indeed, cost is intrinsically adaptive
to the availability of resources, reflecting also the most
relevant constraints.
All in all, the main aspects of the proposed approach

include: (a) relating complexity to scientific modeling, in
the sense that the given entity whose complexity is to
be measured is mapped from its specific domain into
a respective description (or model) in an abstraction
(incorporating the mapping aspects from the Interpre-
tation and Descriptive Complexity); (b) considering the
non-bijective nature often characterizing such mappings,
which implies in difficulties to recover/predict the orig-
inal entity (a problem often studied in pattern recog-
nition and computer vision, e.g. [61]); (c) representing
both the original object and its respective description
in terms of graphs/networks; (d) associating costs (e.g.
computational, economical or required for developing
the model) to both the mapping and the errors incurred
in recovering the original entity from its description or
operating the resulting solution; and (e) probably more
importantly, quantifying the complexity of the network
representing the original entity in terms of costs.
Figure 4 illustrates the above aspect (a). Here, we have

an entity in its original Domain A mapped by an appli-
cation f into a respective abstraction in Domain B. For
instance, Domain A could be the physical world, while
Domain B would represent the respective description
obtained by set of logic/mathematical/computational
modeling approaches to be considered. Observe that,
usually, the Domain B is more restricted than the
Domain A, in the sense of containing fewer elements
(simplifications), inherently implying the models to be
incomplete. In the present example, a blue disk is
mapped into its linguistic description. In case the inverse
mapping f−1 exists, it can be used to recover the original
entity without any error. However, this will not happen if
Domain A is the real world, as there are virtually infinite
possibilities of blue disks (e.g. varying in material or even
slightly in color and texture, and/or presenting different
sizes, not to mention the infinite range of details as one

Figure 4: The modeling of an entity understood as a mapping
f of an entity from a domain A (e.g. nature) into a respective
abstract description in domain B (e.g. English language). In case
the mapping is one-to-one (bijective), the original entity can
be uniquely recovered through the respective inverse mapping
f−1. This is unlikely to occur in the real world, because there
is a virtually infinite number of possible blue disks, so that
the inverse mapping will be one-to-many and, therefore, non-
bijective and non-invertible.

approaches the more microscopic scale).
The above conceptualization is particularly helpful

because it highlights the importance of the error in
recovering of the original entity, which suggests that
complexity would be related not only to developing a
proper mapping f and its inverse, but also depend on
the recovery error. In other words, larger reconstruction
errors can be understood as indicatives not of the
difficulty/complexity of modeling the original entity, but
also of the difficulty of applying and operating the model.
Indeed, the cost implied by modeling errors can

be complemented by the cost of the operation of the
respectively developed solution, therefore also including
other incurred expenses, such as maintenance, energy
requirements, etc.
We have so far considered the object in Domain A

to be composed of a simple object as a circle. However,
most of real-world objects can be understood as sets of
components interconnected by some relationships. By
using resources such as semantic networks and Petri
nets, it is even possible to represent actions, procedures
and programs as networks (e.g. [62, 63]).
Figure 5 illustrates another example of modeling an

entity, but now both the original object and its descrip-
tion are represented as graphs/networks (as in item
(c) above). An immediate advantage of this approach
is that some of the reasons for f being non-bijective
become evident: the potential complexity of the entities
are reflected in the intricacy of the respective graphs. In
addition, entities having similar network representations
(e.g. differing by some missing connections or nodes), can
be mapped into the same description when f fails to take
into account such differences. In the case of Figure 4,
this is reflected by the non-injective mapping of the
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Figure 5: Modeling an entity represented by a respective
network into a more abstract description involving a network.
Observe that the illustrated description is incomplete and not
fully accurate, implying in the mapping f being non-bijective.
Consequently, more than one entity in the Domain A can be
mapped into the same representation in the Domain B, implying
a degeneration in the mapping. By imposing some additional
restriction (e.g. regularization), it is possible to obtain a single
inverse reconstruction (in this case, identified by the asterisk),
whose error can be gauged in terms of some distance between
the reconstructed and original entities. In case f is bijective, the
mapping of the entity can be understood as being complete and
necessarily invertible. The higher the mapping cost f and the
error ∆, the more complex the original entity would be.

three instances of the considered entity into the same
representation.
Directly related to the above discussed multiple map-

ping is the fact that the network respective to the
description in the Domain B is simplified in the sense of
being less complete than the network representing the
original entity – e.g. by having nodes with properties
different from that of the original entity (colors in
the case of the example in this figure) and/or missing
connections or nodes.

There are, however, other possible sources of impreci-
sion in the mapping, such as those implied by incorrect
assumptions in the model construction, or also the
presence of noise and incompleteness in the observations
of the properties of the original entity. This can also
imply in a less accurate and less complete description
being obtained in Domain B.

For all the reasons discussed above, the mapping f can
be imprecise and non-bijective, leading to errors in the
reconstruction of the original entity from its description.
In the case of being non-bijective, the inverse mapping
can result in more than one potential entity in Domain
A, so that it is necessary to impose some restriction
on the modeling (an approach knows as regularization,
e.g. [64]), so that one of the recovered instances can
be selected as being, potentially, the most likely and
accurate.

Possible such restrictions may include the expected
number of nodes, edges, and/or other properties. In the
case of the example in Figure 5, the chosen inverse map-
ping, selected by the set of restrictions R, is identified
by an asterisk. The error ∆ of the reconstruction can
then be quantified by taking some distance between the
original entity and the selected reconstruction. It seems
reasonable to understand that more complex entities
will lead to less accurate mappings and descriptions,
ultimately implying in larger reconstruction errors ∆.
This line of reasoning leads to a possible alternative
definition of complexity as:

complexity ∝ (cost(f) + cost(∆)) (4)

where cost(f) is the development cost, and cost(∆) is
the error and operation expenses. In other words, the
complexity of an entity would be related (not necessarily
in the linear sense) to the sum of the cost of obtaining
the model, as well as the cost associated to the error in
the recovery (or prediction) of the original entity and
operation of the respectively obtained solution. We can
also consider the following more general definition:

complexity = g (cost(f), cost(∆)) (5)

where g() is a potentially generic function integrating
the modeling and operation costs.
The formula above reflects the hypothesis that the

complexity of the original entity or phenomenon would
be given by a function g() of the two considered costs,
and very likely in such a way that higher development
and operation costs would reflect in higher complexity.
This function is not fixed in order to better adapt to the
demands and characteristics of each specific situation.
Alternative operations could be considered to compose

g() in ways other than the sum of costs. However,
the typically expected proportionality of the complexity
with both costs immediately discard some possibilities.
Fractions are discarded by the fact that the complexity
must increase with the costs (modeling and operational),
having no inverse relationship with any type of cost. The
product may also not be suitable, as even a zero operat-
ing cost, for instance, would imply in some complexity, as
a perfect model (zero operating cost meaning that the
model makes predictions with zero errors) must have
a high complexity to be created, perhaps infinite. An
interesting alternative is the possibility to adopt a linear
combination of costs, i.e. αcost(f) + βcost(∆).
An immediate advantage of the approach above is

that it directly accommodates the often observed trade-
off between these two costs, in the sense that more
efforts are invested into developing a more complete and
accurate model, therefore increasing cost(f), the error
and associated cost cost(∆) tend to decrease. On the
contrary, in case the model is developed more quickly
and less systematically, a larger error and operation cost
will probably follow. So, there seems to be a kind of
trade-off between the costs cost(f) and cost(∆). This
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Figure 6: The modeling cost of an entity can be related to a
wide range of possible effects, e.g. as an economic cost or as
an energy cost, being more or less dependent of a chosen type.
Different types of costs also can present an interdependence,
varying with the application.

definition of cost for complexity takes into account the
specificity of a model when applied to a given problem,
and that cost may vary according to the problem
complexity. For instance, the most one learns about a
given problem, the simpler it tends to become.
Observe that the two involved costs can be defined in

terms of several aspects, reflecting each specific modeling
problem. For instance, we can take into account, as
costs, the time (computational or taken for development)
required for observing/measuring the original entity,
obtaining/implementing f , obtaining its inverses, and
calculating the errors. Alternatively, we could con-
sider the computational complexity or the economical
expenses required for the modeling project (e.g. wages,
resources, energy, etc.). Costs of different natures are
illustrated in Figure 6 and a combination of these costs
can also be adopted. Interestingly, the choice of costs,
and the costs themselves, can vary in time and space, but
it is important that the reflect the specific demands and
expectation while modeling or solving a specific problem.
For example, numerical computation was much more
expensive and considerably less powerful in the 50’s or
60’s than it is today. In other words, what was complex
in the past is likely to have become simpler.
Regarding the cost to be associated with the

error/operation cost, it seems to be reasonable to under-
stand that it is related (not necessarily in the linear way)
to the reconstruction error ∆, i.e.:

cost(∆) ∝ ∆ (6)

In particular, it is expected that the cost is zero
when ∆ is zero, which would seem to imply that the

model is complete and therefore optimal given the design
objectives.
An intrinsic feature of the here suggested approach

to quantifying complexity is that it is potentially more
closely related to the conceptual way in which us,
humans, intuitively tend to discern between complex
and simple (at least in a more informal way). In
other words, when we say that a given entity, task or
phenomenon is complex, we are inherently considering
the expenses and/or difficulty required for its under-
standing (e.g. through studying and modeling) instead
of some more abstract quantification such as derived
from entropy or description length (though these aspects
could also be complementary relevant). In fact, probably
we humans also consider these concepts by taking into
account our previous modeling experiences with similar
problems.
The observed discrepancy between usual definitions of

complexity and the human concept of it, as well as the
difficult for quantify the costs involved, seems to indicate
why there is an ambiguity and lack of consensus on the
subject. As already suggested, complexity should not
be understood as absolute mathematical quantification
associated to a given model or problem, but remain
relative in time and space, as in informal human concep-
tualization, allowing a given problem to be understood
as more or less complex while taking into account the
available techniques and instruments. The proposed cost
approach not only contemplates that demand, but can
also be adapted to each situation, translating the simpler
problem of how to quantify the involved costs.
Another point to be taken into account is that a

given problem often has many different solutions with
respective advantages and disadvantages that may be
more or less adequate to certain situations and, there-
fore, the complexity of a problem can also depend
of the conditions that it are presented. For instance,
when implementing a computational solution a common
question is to choose either if that solution should
prioritize a smaller execution time or a smaller use of
memory or other resource. There is not an universal
solution, but a set of solutions more adequate to specific
demands of each situation.
More complete examples of the application of the

suggested cost approach to the characterization of the
complexity, including real-world data, will be discussed
in Section 5.

4. Efficiency

Often, we enhance the complexity of models in the hope
of obtaining a more complete representation, therefore
diminishing the prediction error. However, this increases
the modeling cost. Therefore, the concept of efficiency
becomes important in order to quantify the advantage
of more accurate modeling, or how much is gained by
decreasing the error of the predictions of the model,
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which can be defined as a benefit, at the expense of higher
modeling costs.
The concept of benefit is intrinsically relative to

each situation, and needs to be specified respectively.
Examples of benefit would be how much the quality of
living may increase by a new product, or how much a new
bridge may contribute to reducing the average traveling
time, the increase of accuracy, or the reduction of the
chances of operation errors. Often what is sought is a
combination of these improvements.
A possible approach to quantifying efficiency of the

modeling approach could be

efficiency ∝ benefit
cost (7)

where cost refers to the overall cost of the solution,
including modeling and operation.
Considering that the overall cost is related to the

complexity of the solution (as discussed in Section 3),
we can rewrite the previous definition of efficiency as

efficiency ∝ benefit
complexity (8)

5. Case-examples of the cost approach

5.1. Statistic distribution

Given a generic function P (x) sampled at a sufficient
number of values of x and respective ordinates y = P (x),
forming a set of samples represented in terms of Dirac’s
delta functions δ(x), it is often necessary to obtain an
interpolation between these sampled points. This can
be done in several manners, including by applying a

convolution [65] between that set of δ and a kernel such
as the Gaussian function, so as to interpolate smoothly
between the missing information (gaps). This provides a
simple example of the concept of regularization, in which
smoothness is adopted as a constraint to complement the
missing information in a dataset.

The convolution between a Gaussian G(X) with
standard correlation matrix K and a set of N Dirac’s
delta functions δ(X − xi) with the set of positions
X = [x1, x2, . . . , xN ], denoted as (δ ∗ G)(X), consists
of a sum of element-wise products of the set of δ(X−xi)
and G(X) displaced by j over each δ of the set. That is

(δ ∗G)(X) =
N∑
i=1

G(X − xi) (9)

It should be observed that the above equation refers
to a simplification of the more general convolution
expression, allowed by the symmetry of the Gaussian
function and the sampling property of the Dirac’s delta
function (e.g. [65]).

The above principle is also called a Kernel density
estimation [66] and its outcome consists of a new
function that approximates P (x) with a precision that
depends on the number of samples taken, as can be seen
in Figure 7.

We can understand the computational cost (process-
ing and storage) as our modelling cost, depending of the
number of samples taken, while the operation cost of our
model could correspond to the quadratic error between
the convolution outcome and P (x). By normalizing the
modelling and operation costs for different numbers of
samples, as shown in Figure 8, we can analyse the
relationship between the involved costs.

Figure 7: The convolution of a set of Dirac’s delta functions and a Gaussian function approximate of the original function P (x)
with a precision that depends of the number of samples taken.
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Figure 8: The relationship of modeling and operation costs, as
well as their sum, for different numbers of samples taken for
reconstruct a statistic distribution by convolution. The costs
have been normalized so as to be within the interval [0, 1].

As this result shows, the model cost increases with the
number of samples, as expected, reflecting the increasing
complexity of the model. However, the error decreases
with the number of samples, implying the total cost to
reach a minimum for 500 samples, indicating an optimal
sample size (for this example) to reduce the error of
approximation on the face of the cost of applying a
higher number of samples, as beyond the mark of 500
samples the efficiency of the solutions tends to decrease,
producing a more complex model without effective gain
in accuracy, considering the adopted hypothesis.

5.2. Simulated annealing

Inspired on metallurgic processes, simulated anneal-
ing [67, 68] consists of an optimization method that
incorporates a temperature-like parameter and relative
variations of an objective function. The objective func-
tion is a measurement of the effectiveness of a solution
of a problem, being often understood in terms of an
associated energy. The above mentioned temperature
parameter T is used to control the probability of making
a modification leading to higher energy, and is progres-
sively decreased according to a certain strategy. The
decision to take specific configurations is based on the
Boltzmann distribution:

pi = Z exp(−∆Ei
kT

) (10)

where Z is a normalization constant, ∆Ei is the objective
function variation, and k is the Boltzmann constant. The
progressive reduction of T implies smaller probabilities
of taking choices leading to higher energy, which are nec-
essary for eventual convergence to the global extreme.
Simulated annealing can be used to improve the

gradient descent method [67] by allowing larger and less
direct steps to be taken at high T to avoid local minima.
The gradient descent can be associated to the trajectory
of an agent that moves according to the gradient of
the given field. As T decreases, the descent becomes

Figure 9: The modeling and operation costs in terms of the
number of employed agents, as well as the sum of these costs,
obtained while trying to find, by using simulated annealing gradi-
ent descent, the overall minimum of a scalar field corresponding
to a linear combination of Gaussian functions. The costs have
been normalized so as to be within the interval [0, 1] and the
vertical error bars are depicted to only 20% of its real size.

more controlled and similar to the traditional gradient
descent, therefore increasing the chances of reaching a
suitable minima.
As our second cost approach example, we consider a

surface generated by a linear combination of five three-
dimensional Gaussian functions, with the same covari-
ance matrices and different magnitudes and centers, and
perform gradient descent with simulated annealing in
order to try to find the global minimum value. The
temperature decrease strategy consisted of subtracting
10% from the current temperature after each 100 steps
of simulation.

As modeling cost, we take the sum of times spent
by each agent while searching for the minimum, and
for operation cost the Euclidean distance between the
known global minimum point and the closest answer
of the simulated agents. The results can be seen in
Figure 9 in terms of the number of agents employed
to simultaneously perform the simulated annealing-
controlled gradient descent.

The total cost reaches its minimum value for 3 agents
(or 4 agents if we consider probabilistic fluctuations pro-
portional to the error bar), suggesting that an increase
in complexity (implied by operation with more agents)
would lead to lesser efficiency.

5.3. Airport network

In order to study a real-world example, we considered
an airport network that represents flight connections in
the United States [69]. Considering the variation of the
airplane fuel-per-gallon price between years 2000 and
2019 [70] as the operation cost, we can vary the number
of edges (model cost calculated as the total length of
the edges of the network) starting from the minimal
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Figure 10: The modeling and operation costs, as well as their
sum, obtained for the total length of edges and the fuel price,
respectively, when considering modifications on the minimum
spanning tree of the airport network and the variation of the
fuel price. The minimum value of the model cost corresponds
to the minimum spanning tree total length, while the maximum
value stand for the original network total length. The operation
and model costs have been normalized so as to remain within
the interval [0, 1].

spanning tree [71] of the network, using the distances
between airports as respective edge weights.
For an experiment with the airport network we can

reintroduce portions of the original edges into the mini-
mal spanning tree, as to represent an improvement to the
topology of the network across the years, at the expense
of additional model cost. A fraction of the original
edges is randomly chosen and added into the network
at each time step, yielding the interrelation between
the modeling and operation costs as can be seen in
Figure 10. For a reduced topology satisfying the problem
and a reduced fuel cost, as in the left end of the curve,
this system is perceived as simpler than when a higher
number of airlines is needed to satisfy a solution or
when the costs of operate the system increases. The need
of more airlines, to deal with an increasing number of
passengers or to better administrate longer flights, is a
reflex of a more complex problem and, therefore, has
greater costs involved.

5.4. Kuramoto model

The Kuramoto model [72] is a dynamic model that
reproduce the appearance of synchronization effects
on systems of many elements having some coupling.
Typically an example of application of this model is the
set of N coupled harmonic oscillators, represented with
phases θi(t) and frequencies ωi for each oscillator. By
calculating the governing equations of this set

dθi
dt

= ωi +Rλsin(ψ − θi) (11)

where ψ(t) is the average phase of the oscillators and λ
is the coupling force, we can estimate the time required

for system synchronization, in case it exists, as measured
by the order parameter R, given as

Reiψ(t) = 1
N

N∑
j=0

eiθj(t) (12)

We can calculate Equation 11 using the Heun dif-
ferential equation numerical method [73], for instance,
varying the size of increment in time dt in different real-
izations and adopt the computational cost as our mod-
elling cost, while the operation cost could correspond to
the difference between the time necessary for the order
parameter to reach 0.8 relative to the case of dt = 0.01,
which is assumed to be the more precise among the
considered cases. The mean values of the evolution of the
order parameter R for 1000 repetitions of 100 oscillators,
calculated for two representative time steps can be seen
in Figure 11, while the normalized modelling, operation
and total costs are shown in Figure 12. Observe that
the error (operation cost) increases as the model cost

Figure 11: Evolution of the order parameter R of the Kuramoto
model for 100 oscillators, calculated for two different time steps
dt. These curves correspond to the mean values of R for 1000
repetitions each.

Figure 12: The modeling and operation costs, as well as their
sum, obtained for the Kuramoto model for 100 oscillators,
calculated for different time steps dt with the Heun’s method.
The costs have been normalized so as to remain within the
interval [0, 1].
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diminishes, presenting a sharp divergence near step size
0.09 while the total cost, or complexity, of this modeling
has two major peaks, representing the situations where
this solution for the problem is considered complex as
it is not enough for reaching accurate predictions (the
operation cost is too high in the case of the present
approach) or where too much computational power was
employed to solve it, making it a complex task (high
model cost).

6. Concluding remarks

Complexity is a word that has been recurrent and
frequently used not only in science, but also in vir-
tually all human-related activities. Yet, it remains an
elusive concept, despite a large number of respective
approaches, to obtain a respective definition flexible
enough to account to most of the structures and dynam-
ics normally considered complex.
In the present work, we have revised how complexity

has been approached from several points of view, from
entropy to description length. That a more complete
understanding of complexity involves so many aspects
is hardly surprising, given that complexity is inher-
ently subjective and challenging. So, we have discussed
complexity considered from perspectives including data
and coding size/length, geometrical intricacy, critical
divergence of dynamics, and network topology. Tough
each of these approaches offers its intrinsic contribution
to better understanding and quantifying complexity
while studying an entity and/or dynamics, they tend
to be specific to the type of problems and area in which
they were developed.
In addition to reviewing some of the many insight-

ful ways in which complexity has been characterized,
we also tried to integrate several of the principles
underlying these approaches, as well as incorporate
concepts from areas such as pattern recognition and
network science, into a more conceptual and general
model of complexity which is primarily based on the
completeness of representations understood as mapping
of an entity from a domain into another. In addition,
concepts from scientific modeling, pattern recognition
and network science were also incorporated, giving rise
to an approach in which the complexity of an entity
can be understood in terms of the cost of obtaining
a proper mapping and the cost implied by the almost
unavoidable reconstruction errors and operation. The
adoption of cost is particularly interesting because this
concept has been developed along ages in economy-
related areas precisely as a quantification of the difficulty
or scarcity of resources that can adapt along time and
space, while also reflecting distinct specific demands.
After presenting and discussing the cost-based

approach to complexity, we also provided a sequence of
examples ranging from the simple random field example
presented at the beginning of this work to situations

involving algorithms and real-world data. In all these
considered situations, the proposed cost-based approach
provided an effective, flexible, and general conceptual-
ization and quantification of the respectively involved
complexities.
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