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The harmonic oscillator is one of the most studied systems in Physics with a myriad of applications. One of the
first problems solved in a Quantum Mechanics course is calculating the energy spectrum of the simple harmonic
oscillator with analytic and algebraic approaches. In the algebraic solution, creation and annihilation operators
are introduced to factorize the Hamiltonian. This work presents an algebraic solution for the simple harmonic
oscillator in the context of Classical Mechanics, exploring the Hamiltonian formalism. In this solution, similarities
between the canonical coordinates in a convenient basis for the classical problem and the corresponding operators
in Quantum Mechanics are highlighted. Moreover, the presented algebraic solution provides a straightforward
procedure for the quantization of the classical harmonic oscillator, motivating and justifying some operator
definitions commonly used to solve the correspondent problem in Quantum Mechanics.
Keywords: Harmonic oscillator, classical mechanics, algebraic methods, quantization.

1. Introduction

Over the undergraduate curriculum in Physics, the
expressions for the creation (raising) and annihilation
(lowering) operators are commonly presented to the
student for the first time during a Quantum Mechanics
course. The operators are typically introduced to develop
the algebraic solution of the harmonic oscillator. Later
in the studies of Physics, these operators are extensively
used, for example, in the second quantization formalism.
Following this study timeline, it is easy to create an
incorrect opinion that this type of algebraic structure
is exclusive to the quantum context.

In Dirac’s textbook on Quantum Mechanics [1], a
solution of the quantum harmonic oscillator is developed
by using a transformation of coordinates which, as
Dirac mentions, is motivated from Classical Mechanics.
However, Dirac did not discuss the origin of this trans-
formation in Classical Mechanics nor reference where
it can be found. A brief review about the history of
the simple harmonic oscillator in Quantum Mechanics
and the introduction of ladder operators to algebraically
solve the problem can be found in [2].

The main goal of this work is to present an alge-
braic solution for the classical harmonic oscillator that
should be easy to follow by any undergraduate student
in Physics satisfying the prerequisites for a Quantum
Mechanics course. We will then discuss how this classical
solution can be adapted to the quantum version of the
problem.

*Correspondence email address: alvesb.murilo@gmail.com

2. Algebraic Solution in Classical
Mechanics

In Classical Mechanics, the Hamiltonian function for the
simple harmonic oscillator is given by:

H = p2

2m
+ mω2x2

2 , (1)

where the one-dimensional case will be solved, for
convenience. The variable x is the position of the
oscillator with respect to its equilibrium (in this case,
the coordinate system was chosen so the equilibrium
position is x = 0), and p is the momentum p = mv,
m is the oscillator mass and v the speed. The quadratic
potential V (x) = mω2x2/2 is related to a linear restoring
force F (x) = −mω2x, by F = − ∂V

∂x .
The proposal of the Hamiltonian formalism is to

transform n second order ordinary differential equations
(ODEs) (obtained by Newton’s second law) into 2n first
order ODEs, where n is the number of degrees of freedom
of the system.

Let (x, p) be the canonical variables and n = 1. The
Hamilton equations can be derived from the principle
of least action and yields the equations of motion of
a system [3, 4]. With the Hamiltonian function for
the simple harmonic oscillator defined in Eq. (1), the
Hamilton equations are:

ẋ = ∂H

∂p
= p

m
, (2a)

ṗ = −∂H

∂x
= −mω2x. (2b)
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After these equations are presented, is quite common
that ẍ = ṗ/m is calculated by taking the time derivative
of Eq. (2a) and then get ṗ from Eq. (2b) to obtain
ẍ + ω2x = 0, showing the equivalence with the New-
tonian formalism. However, this process returns to n
second order ODEs, evading the original proposal of the
Hamiltonian formalism.

We note that, since the harmonic oscillator potential
is quadratic, Hamilton equations become a linear system
of differential equations, which can be rewritten in the
matrix form:

d

dt

[
x
p

]
=

[
0 1/m

−mω2 0

] [
x
p

]
. (3)

Note that we obtained a coupled system of ODEs. We
can write the system more compactly with dη⃗

dt = Mη⃗,
where the phase-space vector is written as η⃗ = (x, p)⊺
in the canonical basis C = {êx, êp} of the phase space,
where êx = (1, 0)⊺ and êp = (0, 1)⊺. The matrix M is the
representation of the Hamiltonian time evolution in this
basis. In Appendix A there is a very brief discussion on
the symplectic formalism.

To decouple the system, we must diagonalize the
matrix M and solve the problem on the basis of eigenvec-
tors. Solving for det(M − λI) = 0, we get the eigenvalues
λ± = ±iω, where i2 = −1. The corresponding eigenvec-
tors components written in the canonical basis C are

v⃗± = α

[
1

±imω

]
. (4)

The non-zero constant α was introduced and just affects
the length of the eigenvectors v⃗±. In Linear Algebra it is
often convenient to apply an orthonormalization process
to the eigenvectors and choose the constant α such
that the eigenvectors have unit length. Then, these unit
eigenvectors form an orthonormal basis for the vector
space. In our solution, however, physical arguments will
be employed to choose the constant α.

Let E = {v⃗+, v⃗−} be the basis of eigenvectors. We
should calculate how the components of the phase-space
vector η⃗ are written in the basis E , in which the matrix
M is known to be diagonal and the problem is decoupled.
With the components of v⃗± written in the canonical
basis C, shown in Eq. (4), we calculate the matrix of
change of basis from C to E and its inverse.

TEC = α

[
1 1

imω −imω

]
, (5a)

TCE =
(

TEC
)−1

= 1
2α

[
1 − i

mω

1 + i
mω

]
. (5b)

To change from the original canonical basis C to the
eigenvectors’ basis E , the matrix TCE must be applied to
η⃗C and we will define the resulting vector as a⃗:

a⃗ := η⃗E = TCE η⃗C = 1
2α

[
x − ip

mω

x + ip
mω

]
. (6)

Writing a⃗ = (a−, a+)⊺, note that one vector compo-
nent is related to the other by a− = a∗+, where the
symbol ∗ denotes the complex conjugate. Then, since
one component can be simply obtained from the other,
let us define a := a+, from which a∗ = a− follows.

From the vector components in Eq. (6), we note that
the modulus of the component a can be related to the
Hamiltonian by

2α2a∗a = p2

2m2ω2 + x2

2 = H

mω2 .

Let us choose the constant α be α = 1/
√

2mω and
define J = a∗a = |a|2, then H = ωJ follows. The reason
for choosing this particular value of constant α was to
create a simple link between the product a∗a and the
Hamiltonian function H, representing the total energy
of the system.

The expression for the Hamiltonian H = ωJ can also
be achieved through a canonical transformation to the
well-known action-angle variables, (x, p) → (J, ϕ). In
these variables, the Hamilton equations are

ϕ̇ = ∂H

∂J
= ω, (7a)

J̇ = −∂H

∂ϕ
= 0. (7b)

This result shows that the action variable J = a∗a, is a
constant of motion.

Furthermore, we conclude that components of the
phase-space vector η⃗ in the basis of eigenvectors are:

a =
√

mω

2

(
x + i

p

mω

)
, (8a)

a∗ =
√

mω

2

(
x − i

p

mω

)
. (8b)

Given two functions of the canonical variables, f =
f(x, p) and g = g(x, p), the Poisson brackets between
the functions are defined as [3]:

{f, g} := ∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
. (9)

A transformation (x, p) → (X, P ) is called canonical
in Classical Mechanics if {X, P} = 1 follows. Calculating
the Poisson brackets of the new variables yields to
{a, a∗} = −i. Therefore, with this particular choice for
the constant α, the transformation (x, p) → (a, a∗) is
not canonical1.

1 To ensure the transformation’s canonical property, we could have
chosen the constant to be α = 1/

√
2imω, which is complex. This

would lead to a complex Hamiltonian and also would break the
simple relation of complex conjugation between the new phase-
space vector components. The canonical transformation would
then be similar to the one presented in Appendix B. By relaxing
the requirement for canonical transformation in our solution, we
can avoid such complexities and simplify the transition to the
quantum treatment of the problem.
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We calculate the time evolution of the functions a, a∗

via Poisson brackets with the Hamiltonian:

ȧ = {a, H} = −iωa, ȧ∗ = {a∗, H} = +iωa∗,

where H = ωa∗a was considered. As intended, the
system on this basis is decoupled:

d

dt

[
a∗

a

]
=

[
+iω 0

0 −iω

] [
a∗

a

]
. (10)

In that form, the differential equations can be solved
by simple integration from t0 to t and the result is

a(t) = a(t0)e−iω(t−t0), a∗(t) = a∗(t0)e+iω(t−t0).

Note that a∗(t)a(t) = a∗(t0)a(t0), explicitly showing
that a∗a is a constant of motion.

The variables x(t) and p(t) can be written in terms of
a(t) and a∗(t):

x =
√

1
2mω

(a∗ + a) =
√

2
mω

Re(a), (11a)

p = i

√
mω

2 (a∗ − a) =
√

2mωIm(a). (11b)

Without loss of generality, let us set the initial time
as t0 = 0 and the corresponding initial conditions to be
x(0) = x0 and p(0) = p0. Thus, from Eq. (8a), the initial
condition for the complex variable a(t) is:

a(t0) = a0 =
√

mω

2

(
x0 + i

p0

mω

)
.

Note that, since a(t) is complex, to determine its
initial value, two real numbers must be given, which
can be related to two initial conditions of position and
momentum that are commonly used. Thus, after all,
two initial conditions are still required to determine
the solution, since we are solving a second-order ODE.
We showed that the time dependence of a(t) is simply
a(t) = a0e−iωt. Then, with Euler’s identity and the
expression for a0, we obtain:

Re [a(t)] =
√

mω

2

[
x0 cos(ωt) + p0

mω
sin(ωt)

]
(12)

Im [a(t)] =
√

mω

2

[ p0

mω
cos(ωt) − x0 sin(ωt)

]
(13)

Finally, applying this result to Eqs. (11a) and (11b),
we reach to the well-known solution of the simple
harmonic oscillator.

x(t) = x0 cos(ωt) + p0

mω
sin(ωt), (14a)

p(t) = p0 cos(ωt) − mωx0 sin(ωt), (14b)

Note that Eq. (14a) and (14b) can be written in a matrix
form [

x(t)
p(t)

]
=

[
cos(ωt) sin(ωt)/mω

−mω sin(ωt) cos(ωt)

] [
x0
p0

]
.

In this form, the time evolution of the harmonic oscil-
lator can be interpreted as a time-dependent transfer
matrix Ut←t0 that propagates the variables x and p
from t0 to any t. Therefore, the phase-space vector
η⃗(t) = (x(t), p(t))⊺ is obtained from the initial condition
η⃗(t0) = (x0, p0) with η⃗(t) = Ut←t0 η⃗(t0).

3. Quantization

The developments on the understanding of phenomena
in atomic and subatomic scales from the early 20th
century lead to a set of results that are currently referred
as “old quantum theory”. In 1900, Max Planck had to
introduce a paradigm-breaking concept to fully explain
the spectrum of black body radiation: the energy must
assume discretized values that are integer multiples
of a quantum of energy. The concept of quantization
revolutionized Physics, being employed to solve open-
problems and discover new phenomena related to the
nature of matter and radiation in the small scale.
Niels Bohr formulated an atomic model postulating that
electrons could only be in specific discrete orbit around
the nucleus. Bohr proposed that the electrons orbiting
in each one of these discrete states should have an action
that is an integer multiple of a quantum of action h ≈
6.6 × 10−34m2kg/s, a constant named after Planck that
was introduced on his works on the black body radiation
problem. The process of quantization of action variables
proposed by Bohr was further formalized in Arnold
Sommerfeld’s generalizations of the atomic model and
had become the main tool to the old quantum theory,
called Bohr-Sommerfeld quantization condition [6].

The full development of modern quantum theory
came in the mid-1920s, mainly by the works of Erwin
Schrödinger, Werner Heisenberg, Paul Dirac and others
who established a rigorous mathematical formulation
that generalized the often heuristic methods from the
old quantum theory [6]. From a modern perspective, the
old quantum theory can be viewed as the semi-classical
approximation to the modern quantum mechanics.

In the following part we will apply concepts from
the old and modern quantum theory to the algebraic
solution of the classical harmonic oscillator.

3.1. Bohr-Sommerfeld

As presented on the previous section, a∗a is an invariant.
Explicitly calculating this product, we have

a∗a = mω

2

(
x2 + p2

m2ω2 + i

mω
(xp − px)

)
, (15)

where the term (xp − px) is zero in Classical Mechanics,
but it was intentionally kept on Eq. (15) to highlight
the relevance of commutativity between products of
variables on the derivation.

We observed that the Hamiltonian function can be
written simply as H = ωa∗a = ωJ . A first attempt
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to study the quantum analog of the classical harmonic
oscillator consists in applying the Bohr-Sommerfeld
quantization rule, imposing the condition J = nℏ, where
n is an integer and ℏ = h/2π is the reduced Planck
constant. Thus, the energy levels of the system, obtained
by the Hamiltonian, are En = nℏω. Note that in this
case the ground state energy obtained is E0 = 0, which
is currently known to be incorrect. Nevertheless, this is
a first step on the path of quantization of energies and
its relation to the oscillation frequencies. Furthermore,
we see that J = a∗a = nℏ, which is an indicative that
the product of the variables a∗a should be related to an
integer number n that can be associated to the oscillator
energy level.

3.2. Dirac’s correspondence

Another attempt, currently known to be the correct one,
is applying the correspondence principle proposed by
Dirac for the quantization of classical systems [1], also
known as canonical quantization. In this procedure the
canonical variables and their functions become operators
in a Hilbert space and the Poisson brackets are replaced
by commutators of operators {·, ·} → 1

iℏ [·, ·], where[
f̂ , ĝ

]
= f̂ ĝ − ĝf̂ . From this point of the work, operators

will be denoted with hats.
The first observation is that the classical relation

between the variables (a, a∗) given by {a, a∗} = −i,
becomes

[
â, â†

]
= ℏ with this correspondence. The

symbol † denotes the Hermitian adjoint of an operator.
We noted that J = |a|2 is the action variable for
the harmonic oscillator and mentioned that the Planck
constant h is the quantum of action, thus it is quite
reasonable to express J in units of the elementary action
quantity h in the quantized version of the problem.
This can be done by modifying the definition for the
constant α to be α =

√
ℏ/2mω. With this modification

for the constant α, the length of the eigenvectors of
the Hamiltonian time evolution matrix are affected by a
change of scale, with values on the order of the small
quantity ℏ. The change also makes the commutation
relation be

[
â, â†

]
= 1, as is typically defined in the

literature, and the operators â, â† are:

â =
√

mω

2ℏ

(
x̂ + i

p̂

mω

)
, (16a)

â† =
√

mω

2ℏ

(
x̂ − i

p̂

mω

)
. (16b)

These are the creation and annihilation operators
that are commonly introduced in a Quantum Mechanics
course [5], often without prior motivation, during the
development of the algebraic solution of the quantum
harmonic oscillator. The number operator is also com-
monly defined ad hoc as N̂ = â†â. With our approach,
the reason for those definitions can be justified.

With Dirac’s correspondence, the fundamental rela-
tion {x, p} = 1 translates to [x̂, p̂] = iℏ. Then, the

explicit calculation of the product â†â, as done in
Eq. (15), results in

â†â = Ĥ

ℏω
+ i

2ℏ [x̂, p̂]

= H

ℏω
− 1

2 .

Then, the Hamiltonian operator is

Ĥ = ℏω(â†â + 1/2). (17)

Let a basis of autokets be such that N̂ |n⟩ = n |n⟩
and the operator number N̂ defined as N̂ = â†â. Thus,
Ĥ = ℏω(N̂ + 1/2). Note that the energy levels are
En = ℏω(n + 1/2) and the ground state energy is
E0 = ℏω/2 ̸= 0. It also becomes explicit that the non-
zero energy of the ground state of the harmonic oscillator
is related to the fact that the product between the
operators x̂ and p̂ is non-commutative, which in turn is
closely related to the Heisenberg’s uncertainty principle.

Following Heisenberg description [5], time evolution
takes place on quantum operators instead of quantum
states, according to the Heisenberg equation:

dÂ

dt
= 1

iℏ

[
Â, Ĥ

]
, (18)

for an operator Â. In this description, we can follow
exactly the same steps used in the calculation of the
classical time evolution of the variables a and a∗, in
order to calculate the evolution of the operators â and
â† and finally obtain solutions with expressions identical
to Eqs. (14a) and (14b), but with the operators position
x̂ and momentum p̂.

4. Conclusion

We presented an algebraic solution for the classical
harmonic oscillator exploring the Hamiltonian formal-
ism. In this solution the components of the position-
momentum vector in the phase space written in the
basis that diagonalizes the Hamilton equations have an
expression very similar to the creation (raising) and
annihilation (lowering) quantum operators. It was pos-
sible to develop a motivation from Classical Mechanics
for the origin of these operators in Quantum Mechanics
and also justify the number operator definition. Using
the correspondence principle for quantization of classical
systems proposed by Dirac, the algebraic solution to the
quantum problem is obtained as a natural consequence
of the classical solution. Furthermore, it was possible
to explicitly highlight one of the differences between a
classical and a quantum theory manifested in the ground
state energy of the harmonic oscillator, which is directly
related to the commutative property of the variables in
the classical theory in contrast to the non-commutativity
of the corresponding operators of the quantum theory.
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Appendix A: Symplectic notation

Using the symplectic notation the Hamilton equations
can be written as [4]:

dη⃗

dt
= J∇η⃗H, (A1)

where η⃗ = (x, p)⊺ e ∇η⃗ =
(

∂
∂x , ∂

∂p

)⊺
.

The matrix J in the one-dimensional case has the
expression

J =
[

0 1
−1 0

]
, (A2)

and it is called fundamental symplectic matrix. The
description can be generalized to N dimensions and the
matrix J satisfy the relations

J2 = −I, J⊺ = −J,

from which J⊺J = I follows.
A matrix Ω is symplectic if satisfies J⊺ΩJ = Ω. The

term J∇η⃗ is also known as symplectic gradient.
The harmonic oscillator time evolution matrix M is

symplectic. If the coordinate transformation P = p/
√

m
and X = ω

√
mx is applied, the Hamiltonian function

is written as H = (P 2 + X2)/2 and the matrix M in
these coordinates is equal to the fundamental symplectic
matrix J.

Appendix B: Canonical transformation

In the third edition of Goldstein’s textbook of Classical
Mechanics [3], there is an exercise in the chapter about
Canonical Transformation (Chapter 9) that asks the
reader to prove that the transformation

X = p + iax, P = p − iax

2ia
,

is canonical, where a is a constant. Then, the exercise
suggests using this canonical transformation to solve the
linear harmonic oscillator.

With Poisson brackets, it can be shown that
{X, P} = 1 then the transformation is canonical
({X, X} = {P, P} = 0 are obvious). Furthermore,
2iaXP = p2 + (ax)2 readily follows. From the Hamil-
tonian function for harmonic oscillator, we note that
2mH = p2+(mωx)2, then the choice of constant a = mω
is quite natural. With a = mω, the two expressions
can be compared to obtain the new Hamiltonian after
this canonical transformation as H ′ = iωXP . Thus, the

Hamilton equations are

Ẋ = ∂H ′

∂P
= iωX, (A3a)

Ṗ = −∂H ′

∂X
= −iωP, (A3b)

which can be compared to Eq. (10), by identifying the
similarities X ∼ a− and P ∼ a+. Note that this
identification should not be taken as one-to-one, since
in our solution a− = a∗+ but here X ̸= P ∗. The time
evolution of X(t) and P (t) can be obtained by simple
integration as X(t) = X(t0)eiωt and P (t) = P (t0)e−iωt

as well. By inverting the canonical transformation to
write x(X, P ) and p(X, P ), one obtains the oscillatory
solutions as in Eqs. (14a) and (14b).

The transformation proposed by Goldstein’s exercise
is canonical, since {X, P} = 1 is verified. With this
canonical transformation the new Hamiltonian is com-
plex: H = iωXP . The transformation presented in this
paper is not canonical, since {a, a∗} = −i, but the
corresponding Hamiltonian is real, given by H = ωa∗a.
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