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Both the translational velocity and the angular velocity of the Earth change during a spacecraft launch-
ing process, in which a spacecraft is accelerated from the ground and eventually sent into space. This article
presents a systematic study of the role played by the changes in the translation and rotation of the Earth in
spacecraft launching. Neglecting these changes, which inevitably arise in the interaction between the Earth and
the spacecraft, there is an obvious conflict with the conservation laws of momentum and angular momentum.
Nevertheless, this flaw in principle is not accompanied by any technically erroneous answers when college stu-
dents solve the often-encountered exercise problems, thanks to the special reference frames students use. It is
pointed out that the technical validity of the Earth-in-constant-motion approximation cannot be generalized to
arbitrary reference frames. For example, the correct values of the second and third cosmic velocities cannot
be found in an arbitrary reference frame if the velocity of the Earth is treated as a constant. In an arbitrary
reference frame, the increase in the translational kinetic energy of the Earth, which is caused by the work done
by the gravitational pull by the spacecraft, is not negligible if compared with the increase in the kinetic energy of
the spacecraft. It is also demonstrated that the disparity in the energy consumed in launching a spacecraft from
the ground along different directions cannot be well interpreted if the angular velocity of the Earth is treated as
a constant. When the spacecraft is launched eastwards, the increase in its kinetic energy is partly gained, either
directly or indirectly, at the expense of a decrease in the rotational kinetic energy of the Earth.
Keywords: second cosmic velocity, third cosmic velocity, Earth motion, conservation of momentum, conserva-
tion of angular momentum, kinetic energy of the Earth.

Tanto a velocidade de translação quanto a velocidade angular de rotação da Terra mudam durante o pro-
cesso de um lançamento espacial, em que o véıculo é acelerada a partir do solo e, finalmente, enviado para o
espaço. Este artigo apresenta um estudo sistemático da influência das mudanças na translação e na rotação da
Terra sobre o processo de lançamento de um véıculo espacial. Negligenciando essas mudanças, há um conflito
evidente com as leis de conservação de momento e momento angular. No entanto, esta falha, em prinćıpio,
não é acompanhada por respostas tecnicamente erradas quando os estudantes universitários resolvem esse tipo
comum de exerćıcio, devido à utilização de sistemas de referência muito particulares. É importante observar que
a validade técnica da aproximação da ”Terra em movimento constante” não pode ser generalizada para sistemas
de referência arbitrários. Por exemplo, os valores corretos da segunda e da terceira velocidades cósmicas não
podem ser encontrados em um sistema de referência arbitrário se a velocidade da Terra for tratada como uma
constante. Em um sistema de referência arbitrário o aumento da energia cinética de translação da Terra, cau-
sado pelo trabalho realizado pela força gravitacional da véıculo espacial, não é insignificante quando comparado
com o aumento da energia cinética do próprio véıculo. Também fica demonstrado que a disparidade na energia
consumida no lançamento de um véıculo espacial a partir do solo ao longo de direções diferentes não pode ser
explicada se a velocidade angular da Terra for tratada como uma constante. Quando o véıculo é lançado para
leste, o aumento da sua energia cinética é parcialmente ganho, quer direta ou indiretamente, às custas de uma
diminuição da energia cinética de rotação da Terra.
Palavras-chave: segunda velocidade cósmica, terceira velocidade cósmica, movimento da Terra, conservação
do momento, conservação do momento angular, energia cinética da Terra.
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1. Introduction

As is well known, neglecting the motion of the Earth in
studying the motions of particles in the vicinity of the
Earth leads to contradictions in principle. The most
cited example seems to be that the momentum of the
particle-Earth system is not conserved when the par-
ticle is supposed to fall to a “motionless” ground [1].
Generally, however, this conceptual deficiency is not
accompanied by technically detectable mistakes. This
article systematically re-examines this topic from the
perspective of spacecraft launching. The changes in
the motion of the Earth are studied during both the
accelerating process and escaping process of a space-
craft. To maintain a rigorous application of Newton’s
second law, inertial reference frames, in which the cen-
ter of mass of the spacecraft-Earth system is either at
rest or in a uniform rectilinear motion, are employed.
Changes in the motion of the Earth play arguably an
indispensable role in the process of spacecraft launch-
ing. Omitting these changes could lead to erroneous
results.

For clarity, the well-known definitions of the sec-
ond and third cosmic velocities are repeated here. The
minimum velocity (or more unambiguously, speed) re-
quired for a spacecraft at the surface of the Earth to
escape the gravitational pull of the Earth is defined as
the second cosmic velocity (or the “escape velocity”).
The minimum velocity for a spacecraft at the surface
of the Earth to escape the gravitational pull of the Sun
is defined as the third cosmic velocity. In these defini-
tions, it has to be emphasized, the two cosmic velocities
are both measured with respect to the Earth center.

2. Some ambiguities in determining the
second cosmic velocity and their clar-
ifications

2.1. Possible ambiguities

The mass of the spacecraft, the mass and radius of the
Earth are denoted by m, Me and Re, respectively. As
is usually taught in textbooks, the second cosmic veloc-
ity (denoted here by v2) can be found by invoking the
theorem of kinetic energy:

0− 1

2
mv22 = −GMem

Re
. (1)

Despite the extreme simplicity of this problem, sev-
eral ambiguities could arise, including: (i) the reference
frame in which the problem is treated; (ii) the precise
meaning of the term “−GMem

Re
”; and (iii) the reason-

ableness in neglecting the kinetic energy of the Earth.

2.2. The appropriate reference frames

Newton’s second law is valid only in an inertial refer-
ence frame. With all the external forces, e.g. those

from the Sun and the Moon, omitted, a reference frame
in which the center of mass of the spacecraft-Earth
system is either at rest or in uniform rectilinear mo-
tion should be rigorously speaking an inertial reference
frame. Hereafter, a frame in which the center of mass
of the spacecraft-Earth system is at rest is termed the
“S frame” and a frame in which the center of mass un-
dergoes uniform rectilinear motion is termed the “S’
frame”.

Of course, one can also opt to use a reference frame
in which the center of the Earth is either at rest or
in uniform rectilinear motion. In this case, the refer-
ence frame is non-inertial because of the gravitational
pull received by the Earth from the spacecraft and iner-
tia forces should be introduced to guarantee conceptual
rigor [2]. The discussion in this article is restricted to
inertial frames only.

2.3. The exact meaning of the term “−GMem
Re

”

In some textbooks, it is explicitly stated and even em-
phasized that the gravitational potential energy is as-
sociated with the particle-Earth system instead of the
particle alone [3]. Nonetheless, a student might still
be dimly impressed that a particle alone has a gravi-
tational potential energy near the Earth. For example,
according to Eq. (1), during the escape of the space-
craft from the Earth, the gravitational potential energy
increases from −GMem

Re
to zero at the expense of a loss

in the kinetic energy of the spacecraft alone. That is,
the increase in the kinetic energy of the Earth does not
appear to play any role in the increase in the potential
energy. (Hereafter, the word “increase” means the dif-
ference between the kinetic energies at two states, with
the kinetic energy of the final state as the minuend and
that of the initial state as the subtrahend. An “in-
crease” can be either positive or negative.) Therefore,
it is quite natural for a student to relate the potential
energy −GMem

Re
solely to the spacecraft.

As common knowledge, the introduction of poten-
tial energy arises from the work done by conservative
forces. It should be emphasized that work is actually
done by a pair of forces in the above example. That
is, the gravitational pull exerted on the Earth by the
spacecraft also plays an indispensable role. The follow-
ing discussion is restricted to the assumption that the
force and counter force between two arbitrary particles
lie along the straight line that joins the two particles.
The work done by such a pair of force and counter force
between two particles is

dW = F12 · dr1 + F21 · dr2 = F12 · d (r1 − r2) , (2)

where dr1 and dr2 are respectively the elementary dis-
placements of particles 1 and 2 in an arbitrary reference
frame, F12 is the force exerted on particle 1 by particle
2, and F21 that on particle 2 by particle 1.



cabeçalho do t́ıtulo 3315-3

Let F12 = |F12|, ρ = r1− r2, and ρ = |ρ|. Then [4]

dW = ±F12dρ. (3)

Importantly, dρ is actually the increase in the dis-
tance between particles 1 and 2 and is independent of
the choice of reference frame in Newtonian mechanics.
Therefore, the work done by this force pair is indepen-
dent of reference frame and consequently, can be calcu-
lated in any reference frame. Generally, the most con-
venient frame for the calculation is the frame in which
one of the two particles, e.g. particle 2, is at rest. In
this case, dr2 = 0 and

dW = F12 · dr1 + F21 · dr2 = F12 · dr1. (4)

That is, calculating the work done by the force on
particle 1 only in this particle-2-at-rest frame is equiv-
alent to calculating the work done by the force pair in
an arbitrary reference frame.

As commonly practiced in most textbooks, in the
reference frame in which the Earth’s center is at rest,
the work done by the Earth’s gravitational pull on the
spacecraft is easily calculated to be “−GMem

Re
”. From

the above discussion, it is readily known that in the S
frame the sum of the work done by the gravitational
pull exerted on the spacecraft and that on the Earth is
also “−GMem

Re
”. Equivalently, the term “−GMem

Re
” can

be understood as the potential energy of the spacecraft-
Earth system instead of that of the spacecraft alone.

Consequently, in the S frame, the term −GMem
Re

should be equal to the increase in the kinetic energy of
the spacecraft-Earth system instead of the kinetic en-
ergy of the spacecraft alone. According to König’s the-
orem, the kinetic energy of the Earth, which is treated
as a rigid body here, is the sum of two parts, namely,
its “translational kinetic energy” and its “rotational
kinetic energy”. During the escape of the spacecraft,
the rotational kinetic energy of the Earth remains un-
changed and is not taken into consideration when the
theorem of kinetic energy is used.

The escape of the spacecraft from the Earth is
reached if its relative velocity with respect to the Earth
is at least zero at infinity. Because the center of mass
of the spacecraft-Earth system is motionless in the S
frame, after escape both the spacecraft and the Earth
have (at least) zero velocity in the S frame. Thus
Eq. (1) should be replaced by

− GMem

Re
= 0−

[
1

2
m (Ve + v2)

2
+

1

2
MeV

2
e

]
, (5)

where Ve denotes the initial velocity of the Earth in the
S frame when escape has just commenced. (It might
be necessary to remind possible freshman readers again
that both the second and the third cosmic velocities are
measured with respect to the Earth center. Therefore,

when measured in the S frame, the velocity of a space-
craft with the second cosmic velocity is Ve + v2, not
v2.)

Moreover, another equation derived from the con-
servation of momentum should be added

m (Ve + v2) +MeVe = 0. (6)

The process involving a spacecraft escaping the
Earth, as observed in the S frame, is illustrated in
Fig. 1. Two cases are described. In Fig. 1(a), both
the initial velocity of the spacecraft and that of the
Earth are along the straight line that joins the space-
craft and the Earth’s center. In Fig. 1(b), the space-
craft is launched along a tangent to the Earth’s surface.
Fig. 1(a) provides the most direct visualization of this
problem whereas Fig. 1(b) illustrates the use of the
Earth’s rotation in the actual launch, as will be dis-
cussed in section 4.

Figure 1 - Launching a spacecraft with the second cosmic veloc-
ity as observed in the S frame. (The initial velocity of the Earth
and the distance from the center of mass of the spacecraft-Earth
system to the Earth’s center are both greatly exaggerated.) (a)
The spacecraft is launched along the straight line that joins the
spacecraft and the Earth’s center; (b) The spacecraft is launched
along a tangent to the Earth’s surface.

2.4. On the technical validity of omitting the
increase in the Earth’s translational ki-
netic energy

Using Eqs. (5) and (6), the second cosmic velocity can
be found

v2 =

√
2G (Me +m)

Re
, (7)

from which the often-used approximate result can be
comfortably obtained after dropping m

v2 =

√
2GMe

Re
. (8)

As common practice, Eq. (8) is usually obtained
directly from Eq. (1), thus it should be interesting to
study the connection between Eqs. (5), (6) and Eq. (1).
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In fact, after eliminating Ve using Eq. (6), Eq. (5) is
rewritten as

− GMem

Re
=

[
0− 1

2
m

(
Me

m+Me
v2

)2
]
+[

0− 1

2
Me

(
− mv2

m+Me

)2
]
. (9)

Now, Eq. (1) can be obtained from Eqs. (5) and (6)
using two approximations. First, the initial speed of the
spacecraft in the S frame, Mev2

m+Me
, is approximated by

v2. Second, and more importantly, the increase in the

Earth’s kinetic energy, 0 − 1
2Me

(
− mv2

m+Me

)2

, is omit-

ted directly. Both approximations can be well justified
when the condition m << Me is taken into considera-
tion.

However, the situation is different when a reference
frame in which the spacecraft-Earth system is in motion
is used. Let uc denote the constant non-zero velocity of
the center of mass of this system in the S′ frame. The
velocity of the Earth at the beginning of the escape in
the S’ frame is denoted by Ue. Apparently, the defini-
tion of v2 demands both the velocity of the spacecraft
and that of the Earth should be uc after the escape of
the spacecraft. The process of escape is illustrated in
Fig. 2. Accordingly, Eqs. (5) and (6) should be revised
to state

− GMem

Re
=

1

2
(m+Me)u

2
c −[

1

2
m (Ue + v2)

2
+

1

2
MeU

2
e

]
, (10)

and

m (Ue + v2) +MeUe = (m+Me)uc. (11)

Figure 2 - Launching a spacecraft with the second cosmic veloc-
ity as observed in the S’ frame. (For simplicity, uc and Ue are
assumed to be along the same direction.) (a) The spacecraft is
launched along the straight line joining the spacecraft and the
Earth’s center; (b) The spacecraft is launched along a special
tangent to the Earth’s surface.

Equation (7), and thus Eq. (8), can still be obtained
from Eqs. (10) and (11). That uc does not appear in
the final result is expected because v2 is the relative

speed of the spacecraft with respect to the Earth and
is independent of the reference frame.

The right side of Eq. (10) separates into two parts:
the increase in the kinetic energy of the spacecraft, de-
noted by ∆Ekm, and that of the Earth, denoted by
∆Eke. Taking into consideration m << Me, their ex-
pressions reduce to

∆Ekm =
1

2
m

[
u2
c − (Ue + v2)

2
]
=

−1

2
m

[
2uc · v2 + v22

]
, (12)

and

∆Eke =
1

2
Me

(
u2
c − U2

e

)
= muc · v2. (13)

Apparently, ∆Eke is generally not negligible in com-
parison with ∆Ekm unless |uc · v2| << v22 . Conse-
quently, when solving the problem in the S’ frame, ne-
glecting the increase in the Earth’s kinetic energy dur-
ing the escape of the spacecraft, i.e. treating the veloc-
ity of the Earth as constant, generally leads to a wrong
result.

The physical origin of this disparity in treating the
Earth’s kinetic energy in the two frames can be read-
ily understood by comparing the power applied to the
Earth by the gravitational field with that applied to
the spacecraft, here denoted by Pe and Pm, respec-
tively. The two gravitational forces here are identical
in magnitude but opposite in direction. Furthermore,
the velocity of the Earth in the S frame at a certain
moment is denoted by V and that of the spacecraft by
v. Obviously, V = |V| << v = |v| and∣∣∣∣ Pe

Pm

∣∣∣∣ = V

v
<< 1. (14)

Therefore, the increase of the kinetic energy of the
Earth is negligible. However, when one moves to the S’
frame, the corresponding ratio becomes:∣∣∣∣ P ′

e

P ′
m

∣∣∣∣ = γ
|uc +V|
|uc + v|

, (15)

where γ is a factor determined by the velocity directions
of the spacecraft and the Earth. Although

∣∣V
v

∣∣ << 1,
|uc+V|
|uc+v| is not necessarily a small quantity. That is, the

increase in the kinetic energy of the Earth is not gen-
erally negligible in comparison with the increase in the
kinetic energy of the spacecraft.

Of course, when trying to determine the second cos-
mic velocity, few students (and teachers) would use
the S’ frame, because using such a frame only makes
the issue unnecessarily more troublesome. However, as
shown in the next section, in order to determine the
third cosmic velocity, the S’ frame could be used, per-
haps unconsciously. In this case, the correct answer
is not obtainable if the increase in the Earth’s kinetic
energy is erroneously omitted.
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3. Calculating the third cosmic velocity
directly in the Solar System

The velocity and speed of the Earth in the reference
frame fixed to the Sun are:

Ue = |Ue| =
√

GMs

Rse
, (16)

where Ms and Rse are the mass of the Sun and the
radius of the orbit of the Earth around the Sun, re-
spectively. (The orbit is approximated by a circle.)

The third cosmic velocity is denoted by v3 here. One
ostensibly plausible approach to determine v3 directly
in the fixed-to-the-Sun reference frame is to resort to
the theorem of kinetic energy for the spacecraft

− GMem

Re
− GMsm

Rse
= 0− 1

2
m (Ue + v3)

2
, (17)

from which the wrong result

v3 = 1.38× 104 m/s (18)

is obtained.
The introduction of a critical speed, ξ = |ξ|, defined

as the minimal speed required for the spacecraft in the
Earth’s orbit to escape the Solar System, can establish
a connection between Eq. (17) and the discussion in
the previous section: given that

1

2
mξ2 − GMsm

Rse
= 0, (19)

Eq. (17) can be re-written as

− GMem

Re
=

1

2
mξ2 − 1

2
m (Ue + v3)

2
. (20)

In this treatment, the left side of Eq. (20) is un-
derstood as the work done by the Earth’s gravitation
field on the spacecraft during the escape process. The
right side is the increase in the kinetic energy of the
spacecraft during this process. Right after the space-
craft escapes from the Earth, i.e., when it is sufficiently
far away from the Earth but still near the Earth’s or-
bit around the Sun, the residual speed needs to be at
least “ξ” for the spacecraft to further escape the Sun’s
gravitational pull. From the discussion in the preceding
section, the reason behind the mistake can be readily
seen: −GMem

Re
should be understood as the total work

done by the gravitational pull between the Earth and
the spacecraft and is equal to the increase in the kinetic
energy of the spacecraft-Earth system instead of that of
the spacecraft alone. That is, the erroneous omission of
the increase in the Earth’s kinetic energy leads to the
wrong answer [5].

Denoting the velocity of the Earth after the escape
of the spacecraft by Ue1, Eq. (20) is revised as

− GMem

Re
=

(
1

2
mξ2 +

1

2
MeU

2
e1

)
−[

1

2
m (Ue + v3)

2
+

1

2
MeU

2
e

]
. (21)

Assuming the spacecraft escape time from the Earth
is very short, the impulse due to the gravitational pull
from the Sun during this time is negligible. Therefore,
the momentum of the spacecraft-Earth system is ap-
proximately conserved

MeUe1 +mξ = MeUe +m (Ue + v3) . (22)

Taking m << Me and using Eqs. (16), (19), (21),
and (22), v3 is found to be

v3 =

√
ξ2 + U2

e − 2Ueξ +
2GMe

Re
=√(

3− 2
√
2
) GMs

Rse
+

2GMe

Re
= 1.66× 104 m/s. (23)

4. The change in Earth’s rotation in ac-
celerating a spacecraft

So far, the S frame has proved to be an appropriate
reference frame in studying the spacecraft escape pro-
cess from the Earth after attaining the necessary high
speed, e.g. v2, because the omission of the increase in
the Earth’s translational kinetic energy in this refer-
ence frame makes no technical difference to the final
result. However, if the S frame is further used in de-
termining the energy required to accelerate an initially
grounded spacecraft to the same high speed, caution
must be taken again not to neglect the change in the
motion of the Earth.

As is well known, in terms of energy saving, a space-
craft should be launched eastwards, so that the speed
of the Earth surface can be used [6]. However, to es-
cape the Earth, irrespective of launch direction, the fi-
nal speed of the spacecraft after the acceleration stage
has finished is always (almost) v2 as observed in the S
frame. If the increase in the kinetic energy of the space-
craft alone is considered, the energy expended would
be independent of launch direction. That is, there is
no difference in the energy consumed in launching east-
wards or westwards. As is discussed in this section,
when studied in the S frame, this difference is actually
incorporated into the change in the Earth’s rotation.
The argument is demonstrated in two scenarios. The
first is directly perceivable but unrealistic; the second
has a more factual basis in modern astronautics.
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4.1. Verne’s gun

Verne envisaged a powerful gun that could send a space-
craft to the Moon. Impractical as this approach is, it
is nonetheless interesting to study the process where
a spacecraft is accelerated to the second cosmic veloc-
ity by such a gun on the surface of the Earth in the S
frame. For simplicity, it is assumed that the gun is in
rigid joint with the Earth. That is, the relative motion
between the gun and the Earth caused by the spacecraft
launching is neglected. Instead, it is imagined that the
Earth and the gun jointly receives the recoil.

Let vi = viê (vi = |vi|) and Vi = −Viê (Vi = |Vi|),
where ê is the eastward unit vector, denote the respec-
tive velocities of the spacecraft grounded at point “A”
on the Earth surface and the center of the Earth “O”
in the S frame before the launching. In the S frame,
the center of mass of the spacecraft-Earth system “C”
is at rest, thus

mvi +MeVi = 0. (24)

Before launching, as depicted in Fig. 3, the space-
craft is motionless with respect to the surface of the
Earth and its velocity in the S frame is purely the “ve-
locity of following”. For simplicity, the spacecraft is
assumed to be on the equator.

vi = Vi +Ωi ×OA, vi = −Vi +ΩiRe, (25)

where Ωi is the angular velocity of the Earth before
launch, and Ωi = |Ωi|. Thus,

Vi =
mΩiRe

Me +m
and vi =

MeΩiRe

Me +m
. (26)

Figure 3 - Launch of an initially grounded spacecraft using
Verne’s gun, as observed in the S frame. (a) Before launch; (b)
after an eastward launch; (c) after a westward launch.

When the accelerating process concludes, the space-
craft gains a relative velocity v2 with respect to the
Earth’s center. That is,

vf −Vf = v2 = ±v2ê, (27)

where the upper sign corresponds to an eastward launch
and the lower sign to a westward launch. Again, us-
ing momentum conservation, the final velocities of the
spacecraft and the Earth’s center can be calculated

vf = ± Mev2
Me +m

ê and Vf = ∓ mv2
Me +m

ê. (28)

For both eastward and westward launches, the in-
crease in the spacecraft’s kinetic energy is

∆Ekm =
1

2
mv2f − 1

2
mv2i =

1

2
m

(
Me

Me +m

)2 (
v22 − Ω2

iR
2
e

)
. (29)

Similarly, in both eastward and westward launch-
ings, the increase in the Earth’s translational kinetic
energy is

∆Ekt =
1

2
MeV

2
f − 1

2
MeV

2
i =

1

2
Me

(
m

Me +m

)2 (
v22 − Ω2

iR
2
e

)
<< ∆Ekm. (30)

Furthermore, the recoil of the powerful gun in-
evitably changes not only the velocity of the Earth’s
center, but also, more importantly, the angular veloc-
ity of the Earth. Neglecting external forces, the angu-
lar momentum of the spacecraft-Earth system is con-
served. Also, the period of acceleration is approximated
as being very short, so that the change in the space-
craft’s position during acceleration can be neglected.
The most straightforward reference point (not neces-
sarily the most convenient one) for calculating angular
momenta is the center of mass, i.e. point C. The axis
that passes the Earth’s center O and is perpendicular
to the equator plane is approximated as a principal axis
of inertia and the corresponding moment of inertia is
denoted by I. Then,

CA×mvi +CO×MeVi + IΩi =

CA×mvf +CO×MeVf + IΩf , (31)

where Ωf is the angular velocity of the Earth after the
accelerating process.

Using conservation of momentum, Eq. (31) can be
rewritten as

Re ·mvi + IΩi = ±Re ·mvf + IΩf . (32)

Equation (32) demonstrates that the most conve-
nient reference point to calculate the angular momen-
tum of the spacecraft-Earth system is actually the spa-
tial point in the S frame that momentarily coincides
with the Earth’s center O during the accelerating of
the spacecraft. Rearrangement of Eq. (32) yields

Ωf = Ωi +
Rem

I
(vi ∓ vf ) . (33)

Now the increase in the rotational kinetic energy of
the Earth can be calculated
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∆Ekr =
1

2
IΩ2

f − 1

2
IΩ2

i =

Rem (vi ∓ vf ) ·
[
Rem

2I
(vi ∓ vf ) + Ωi

]
. (34)

As a good approximation, it is assumed that I =
kMeR

2
e. Obviously, in Eq. (34),

∣∣Rem
2I (vi ∓ vf )

∣∣ =∣∣∣ m
2kMe

(vi∓vf )
Re

∣∣∣ << Ωi. Hence, by using Eqs. (26), (28),

(29), (30), (34) and approximating Me

Me+m and m
Me+m by

1 and 0, respectively, the increase in the kinetic energy
of the spacecraft-Earth system is calculated to be

∆Ek = ∆Ekm +∆Ekt +∆Ekr =

∆Ekm +∆Ekr =
1

2
m (v2 ∓ ΩiRe)

2
. (35)

This result is in agreement with that obtained in
the reference frame fixed to the ground. Irrespective of
whether observed in the S frame or the frame fixed to
the ground, the conclusion is the same: launching the
spacecraft eastwards consumes less energy than launch-
ing westwards. Nonetheless, the interpretations in the
two frames differ. In the frame fixed to the ground,
the initial spacecraft speed is zero. The final spacecraft
speed in an eastwards launch, v2−ΩiRe, is smaller than
that in a westwards launch, v2 +ΩiRe. In the S frame,
when the spacecraft is launched eastwards, the gun’s re-
coil slows the rotation of the Earth and ∆Ekr < 0. That
is, a certain amount of the Earth’s rotational kinetic en-
ergy is converted into kinetic energy of the spacecraft;
thus less chemical energy from the gunpowder is con-
sumed. When the spacecraft is launched westwards, the
recoil pushes the Earth to rotate faster and ∆Ekr > 0.
In this case, the expended chemical energy from the
gunpowder is used to increase both the kinetic energy
of the spacecraft and the rotational kinetic energy of
the Earth.

4.2. Tsiolkovsky’s rocket

The derivation of Tsiolkovsky’s ideal rocket equation
can be routinely found in college textbooks. It is re-
peated here with all velocities written in vector form.

The total mass of the rocket before launching is m0.
The mass of the spacecraft, which is the payload of the
rocket, is m. The initial velocity of the grounded rocket
observed in the S frame is vi = viê, where ê is still the
eastward-pointing unit vector, and the final velocity of
the spacecraft after depletion of all fuel is vf = ±vf ê.
The effective exhaust velocity of the fuel is η = ∓ηê.
Here vf = |vf | > 0 and η = |η| > 0. Again, upper
signs refer to eastward launchings and lower signs to
westward launchings. The velocity of the rocket at a
given moment is v. The mass of the rocket at this mo-
ment is denoted also by m. The increase in the rocket’s

mass due to the expended fuel over an infinitesimal time
interval is dm < 0. Correspondingly, the increase in the
velocity of the rocket is dv.

The conservation of the momentum of the rocket
system requires:

mv = (m+ dm) (v+ dv) + (−dm) (v+ dv∓ ηê) .
(36)

Therefore,

∫ ±vf ê

viê

dv = ∓ηê

∫ m

m0

dm

m
, (37)

from which the relation between the mass of the space-
craft and the initial mass of the rocket can be estab-
lished:

m0 = me
vf∓vi

η . (38)

That is, for identical final speed vf (> vi), a rocket
can have a smaller mass when launched eastwards than
launched westwards. Unlike Verne’s gun, here the ad-
vantage in launching eastwards is apparent without the
need to consider the increase in the rotational kinetic
energy of the Earth. The reason is very simple. In
obtaining the ideal rocket equation, the rocket, includ-
ing payload and fuel, is approximated as an isolated
system. For Verne’s gun, the accelerating of the space-
craft requires accelerating the ground in the opposite
direction. For Tsiolkovsky’s rocket, the accelerating of
the spacecraft is negated by expelling spent fuel in the
opposite direction.

However, as illustrated in Fig. 4, because of the in-
teraction between the spent fuel and the Earth, launch-
ing of a spacecraft still inevitably changes the motion of
the Earth. To obtain analytical expressions appropriate
for college-level physics, a number of approximations,
some of which could not be very well justified in the
actual situation, have to be employed. For example,
the accelerating process is assumed to take place over a
short duration, so that the displacements of the space-
craft, fuel, and the Earth from their original positions
can be neglected. (For clarity, in Fig. 4, spacecraft
and fuel are drawn as being separated by a large dis-
tance after launching. In the calculation, this separa-
tion is neglected.) Furthermore, Earth’s atmosphere is
disregarded. In reality, the spent fuel leads directly to
changes in the motion of the surrounding atmosphere
and eventually changes the Earth’s motion. In this ar-
ticle, for simplicity, it is assumed that spent fuel falls
to the ground and adheres to the Earth in a perfectly
inelastic collision.
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Figure 4 - Launching of an initially grounded spacecraft using
Tsiolkovsky’s rocket as observed in the S frame. (a) Before the
launching; (b) after an eastward launching; (c) after a westward
launching.

For an eastward launching, the rocket’s velocity be-
fore launching is vi = (−Vi +ReΩi) ê, and the veloc-
ity of the fuel after the launching, which is first ex-
pelled from the rocket and eventually falls to ground,
is [− (Vi +∆V ) +Re (Ωi +∆Ω)] ê, where ∆V and ∆Ω
are the increase in the speed and angular velocity of
the Earth caused by the adhesion of the fuel. Momen-
tum conservation of the spacecraft-fuel-Earth system
expressed in the S frame requires

m0 (−Vi +ReΩi)−MeVi = mvf + (m0 −m)×
[−Vi −∆V +Re (Ωi +∆Ω)]−Me (Vi +∆V ) = 0. (39)

The angular momentum of the system is also con-
served. Here the spatial point that coincides with the
Earth’s center at the moment of launch (not the Earth’s
center itself) is taken as the reference point. Therefore,

Rem0 (−Vi +ReΩi) + kMeR
2
eΩi =

Remvf +Re (m0 −m)

[− (Vi +∆V ) +Re (Ωi +∆Ω)] +

kMeR
2
e (Ωi +∆Ω) . (40)

As in the preceding section, it is easy to verify that
the increase in the Earth’s translational kinetic energy
is negligible in comparison with the increase in the
spacecraft’s kinetic energy.

From Eqs. (39) and (40), ∆Ω can be found

∆Ω =
−m (Vi + vf −ReΩi)

Re [kMe + (k + 1) (m0 −m)]
=

−m (vf −ReΩi)

kMeRe
< 0. (41)

The increase in the rotational kinetic energy of the
Earth is thus calculated to be

∆Ekr =
1

2
kMeR

2
e

[
(Ωi +∆Ω)

2 − Ω2
i

]
=

−mReΩi (vf −ReΩi) < 0. (42)

The spacecraft’s accelerating eventually slows down
the Earth’s rotation when the spent fuel falls to the

ground. In this sense, it is still reasonable to argue that
the spacecraft gains its kinetic energy at the expense of
the rotational kinetic energy of the Earth.

In a westward launch, the corresponding results are

∆Ω =
m (vf +ReΩi)−mVi

Re [kMe + (k + 1) (m0 −m)]
=

m (vf +ReΩi)

kMeRe
> 0, (43)

and

∆Ekr =
1

2
kMeR

2
e

[
(Ωi +∆Ω)

2 − Ω2
i

]
=

mReΩi (vf +ReΩi) > 0. (44)

5. Conclusion

When one tries to solve an astronautics problem, such
as finding the second and third cosmic velocities, in an
inertial reference frame in which the spacecraft-Earth
system is moving, the increase in the kinetic energy of
the Earth should be considered, because the power of
the gravitational pull from the spacecraft doing work
on the Earth is not negligible in comparison with the
power of the gravitational pull from the Earth doing
work on the spacecraft.

The launching of an initially grounded spacecraft
into space inevitably changes the Earth’s rotation.
Launching the spacecraft eastwards is more economi-
cal in terms of energy consumption because part of the
rotational kinetic energy of the Earth is converted into
kinetic energy of the spacecraft. For Verne’s gun, the
conversion is direct; for Tsiolkovsky’s rocket, the con-
version is indirect.
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