Revista Brasileira de Ensino de Fisica, vol. 41, n® 2, €20180236 (2019)

www.scielo.br/rbef
DOI: http://dx.doi.org/10.1590,/1806-9126-RBEF-2018-0236

Artigos Gerais

®@®

Licenca Creative Commons

On the Counterpropagation of Waves

Roger Pizzato Nunes*'”, Gunther J. L. Gerhardt?, Felipe Barbedo Rizzato®

!Universidade Federal do Rio Grande do Sul, Departamento de Engenharia Elétrica, Escola de Engenharia, RS, Brasil
2Universidade de Caxias do Sul, Departamento de Fisica e Quimica, Centro de Ciéncias Exatas e Tecnologia, Caxias do Sul,
RS, Brasil
3Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Porto Alegre, RS, Brasil

Received on August 14, 2018; Revised on September 02, 2018; Accepted on September 04, 2018.

This work analyses the counterpropagation of transversal plane waves in a linear, homogeneous, nondispersive,
and isotropic medium. Although this is a traditional subject in disciplines associated with wave phenomena, a
propagation analysis is not found in the literature. With this purpose, the resultant wave and consecutively its
phase velocity in such system are obtained analytically. Instead of what happens with the individual waves, the
analytical results demonstrate that the phase velocity of the resultant wave actually is not a constant and depends
explicitly of the time or the spatial coordinates, and principally depends of the amplitudes of the individual waves.
This last remarkable feature, when considering as example electromagnetic systems, can be used to adequately
control and accelerate particles in a charged medium. Full agreement between the analytical and numerical results

is found.
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1. Introduction

The known physics can be essentially reduced and divided
in two branches: one associated with particle phenomena
and the other involving wave phenomena. The wave phe-
nomena permeate many areas of physics such as mechan-
ics, thermodynamics, electromagnetism, relativity, and
quantum mechanics. One important theme associated
with wave phenomena is propagation [1,|2]. Essentially,
wave propagation can be affected by the changing of
the physical medium properties (for example, in elec-
trodynamics the electrical permittivity €, the magnetic
permeability p, among others), by the changing of the
physical medium geometry (the changing in boundaries
or the inclusion of another, as obstacles), by the existence
of another waves, or by the existence of the matter. [3]
Understanding how a wave propagates in a given system
is of fundamental importance to understand the physics
it represents.

Every propagation analysis initiates obtaining what it
is called the wave vector B for a given angular frequency
w in a given physical system. Technically, the propagation
analyses initiates with the determination of the dispersion
relation w(B) of the waves in the physical system. Once
the dispersion relation is obtained, it becomes relevant
to know how fast the wave propagates in the physical
system. In other words, it is necessary to determine the
velocity of the waves in the physical system.

One typical problem involving wave propagation is
the case of waves propagating in opposite directions in
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the same physical medium. Such problem is graphically
shown in Figure[l] in which snapshots in times ¢, (in blue)
and t; (in red) are taken for two arbitrary waves ¥, and
1_. In this Figure, the wave 1, propagates in the —r di-
rection and the wave 1p_ propagates in +r direction. One
can say that wave 1)_ counterpropagates the wave 1 .
The interest in this problem resides in analyzing the resul-
tant wave 1) in the physical medium. Counterpropagating
waves are present in many applied and theoretical investi-
gations. Some applied researches involve the application
of counterpropagating waves for manoeuvring, [4,5] to
manipulate objects in the microscale, [6] and in fiber op-
tics for telecommunication. |7] Theoretical researches are
associated with the breaking of symmetry in nonlinear
resonators, [§] wave attraction in resonant systems, [9]
and its dynamics in forced systems. [10]

The problem involving counterpropagation of waves is
always in focus of mechanical and electromagnetic books
as a part of the propagation studies of wave phenomena.
However, the approach limits itself to obtain the effective
amplitude of the resultant wave as a function of charac-
teristics of the individual waves. Reference|11|goes a little
bit further and obtain the resultant wave in the medium
but still just perform an analysis of the wave amplitude.
Many books treat this problem still in a more restrict
context, in the sense that one of the waves is a result
of reflection of the other, since this configuration perme-
ates many mechanical and electromagnetic systems, such
as waves in strings of musical instruments, |12] waves
in energy and communication lines, |[13] to name a few
examples. In this situation, dimensionless quantities like
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Figure 1: Snapshots in two distinct times ¢, and ¢; of two
arbitrary waves 14 and v _ illustrating the contrapropagation
concept. Amplitudes are normalized by the amplitude of the .

standing wave ratio (SWR) and the reflection coefficient
acquire importance, which are associated with the ampli-
tude of the individual waves. [14-16] However, aspects
related to the propagation of the resultant wave — which
are associated to the phase of the resultant wave — are
not taken in to account.

Qualitatively, it is well-known that when the ampli-
tudes of the counterpropagating waves are equal, the
resultant wave presents a stationary pattern. It is merely
an oscillation. It is a standing wave. But when the am-
plitudes of the counterpropagating waves differ, the re-
sultant wave still presents a travelling behavior. These
situations are well explored in the books in the perspec-
tive of the amplitude of the resultant wave. In the context
of these systems, the SWR and the magnitude of the
reflection coefficient respectively change from infinity to
some finite value and from unity to some smaller value
when the resultant pattern migrates from stationary to
travelling. [14H16] Every literature in the field of wave phe-
nomena stops the analysis of counterpropagating waves
exactly at this point. No further discussions about the
subject is presented. And from here the present work
starts.

Waves are not just composed by amplitudes but also
of phases. Opportunely, the existence of a phase is the
unique restriction imposed by the wave equation |17] in
its solution. To be a solution of the wave equation, a
given arbitrary function f must depend of a phase ¢,
which relates the spatial coordinates r with the time
t in an additive way. That is, in wave phenomena, as
important as to analyze the wave amplitude is to analyze
the phase of the wave. The existence of a phase ¢ that is
a combined function of the spatial coordinates r and the
time ¢ is exactly what differs a wave from an oscillation.
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In the same manner as mentioned above for the ampli-
tude, the problem of counterpropagating waves can be
explored qualitatively with a view on the phase of the
resultant wave, by the means of its phase velocity. When
the amplitudes of the individual waves are equal, the
stationary situation, the phase velocity of the resultant
wave is zero. However, when the amplitude of the individ-
ual waves differ, the phase velocity of the resultant wave
is not zero. That is, the phase velocity of the resultant
wave has changed between both situations, to say from
zero to some finite value. Moreover, since both situations
are controlled by the individual amplitudes of the coun-
terpropagating waves, so it is the phase velocity as well.
In this way, some fundamental and conceptual questions
arise in this subject: what is exactly the phase velocity
of the resultant wave in this system? Does the phase
velocity really depend of the amplitudes of the individual
waves as the simple above observation qualitatively in-
duces? If it depends, which is the expression for the phase
velocity in this system? The absence of literatures that
discuss this subject and answer the questions formulated
right above motivates us to develop the present work.

In this way, the purpose of the present work is to ob-
tain the resultant wave 1) and to determine analytically
its phase velocity for a system composed by two counter-
propagating waves. This paper is organized as follows. In
section [2] the theory associated with the phase velocity
is shortly discussed. In section |3] the resultant wave in
the medium is analytically determined, being its phase
velocity calculated. In section [4] the analytical results
are confronted with numerical simulations. In section
the conclusions are presented. Finally, in section [6] the
future works, which are consequences of all shown in this
paper, are presented.

2. The theory

Textually, the phase velocity of a given wave is defined
as the velocity an observer should develop for a given
reference phase of the wave seems to be static, without
any relative motion between the observer and the refer-
ence point of the wave. Mathematically, defining a plane
wave of amplitude ¥, (r,t) and phase ¢(r,t) as [18,[19]

P(r,t) = o (r, 1)/, (1)

and supposing a reference phase ¢, = ¢(r,,t,) to be
followed, the phase velocity is such that in another spatial
coordinate ry in time ¢1, the phase of the wave ¢ remais
constant

o(ro,to) = P(r1,t1) (2)
which implies that
Ag = ¢(r1,t1) - (b(roato) =0. (3)
The rate of equation within the interval of time At is
A¢
=Y _o. 4
Ar 0 (4)
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For equation to be valid in any instant of time ¢, the
following limit has to be applied

A¢

Am A =0 )
formally resulting in [18}/19]
d
dat (I‘,t) =0, (6>
or 5 5
5 (I‘,f) + Vi aqﬁ(rat) = 07 (7>

in which %qﬁ(r,t) is the gradient of ¢(r,t) and v¢ is the
velocity the observer must have to follow the reference
phase of the wave, the phase velocity.

The right above equations @ and mathematically
define which must be the phase velocity v of the wave
1) specified in equation . For evaluating the phase
velocity v¢, it just must be knew the phase ¢ of the
wave 1 of equation . This is what will be done in the
next section, in which the system of interest here, which
is composed by two counterpropagating waves, will be
specified and the resultant wave determined. With an
analytical expression for the resultant wave 1, and con-
sequently for its phase ), it is possible then to determine
its phase velocity.

3. Analytical results

The present problem consists of two counterpropagating
plane waves. The plane waves considered are also uni-
form, which imply that its amplitudes, although might
be different, are constants. One of the waves is repre-
sented by 1, and the other by 1 _. Considering that
both waves propagate in the same linear, homogeneous,
and isotropic physical medium, so the resultant wave 1
in the medium is

P(r, 1) =y (v, 1) + 3 (r,1). (8)

Assuming parallel polarization between waves, ¥4 =
Yiey and P_ = P_ey, the equation becomes scalar
in the form

(e, 1) =y (r,8) + o (r,8). (9)

It is time to represent mathematically the individual
waves ¢4 and ¥_. Consider that the wave ¥, is of the
form

Py (r,t) = hoqe? PTTeD (10)

in which 4,4 is its constant plane wave amplitude, 8
is its wave vector, and w is its angular frequency. The
counterpropagating problem is closed proposing another
wave, to say 1_, which propagates in opposite direction
of the wave 1, of equation (10]). This wave ¥_ can be
mathematically represented in two distinct ways. One
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consists of flipping the signal of the spatial term of the
phase ¢ associated with the wave 1 of equation

Yo (1, 1) = thp_ el AT (11)

and the other consists of flipping the signal of the tem-
poral term of the phase ¢ associated with the wave 9

of equation
T (r,1) = th_ed B0, (12)

In equations and (12)), ¥, is the constant ampli-
tude of the plane wave ¢_, B is its wave vector, and w is
its angular frequency. As can be seen, the only difference
that exists between the wave 1, and both mathematical
representations of the wave 1¥_ and {/;_, besides the direc-
tions of propagation, resides on its constant amplitudes.

In this way, the resultant wave 1) can be represented
as

th = thop e PTH g, I (ArHl) o (13)

if the wave ¢4 of equation and the wave 1_ of
equation are inserted in equation (9)), or the resultant
wave 1 can be represented as

IZ = wo+€j(,@-r+wt) + %— ej(,@-r—wt)’ (14)

if the wave 1 of equation and the wave ¢_ of
equation are inserted in equation @ Although
physically equivalent, both ¢ and {/; representations of
the resultant wave are mathematically distinct. In this
way, it can be also expected that the amplitude ¥, and
the phase ¢ are also different in both representations
1 and 1 of the resultant wave. And, as a consequence,
distinct phase velocities v¢ will be potentially obtained
in both representations.

In order to determine the phase velocity vi of the
resultant wave, it is necessary to express the resultant
wave, in both representations ¢ and v right above, in
the format of equation . When the representation v of
the resultant wave of equation is chosen, one finds
that its phase velocity v¢ is described as a function of
just the spatial coordinates r. This approach is detailed
in the next subsection [3.1] and called spatial approach,
due to the functional dependence of the phase velocity
of the resultant wave. However, when the representation
1 of the resultant wave of equation (14]) is chosen, one
finds that its phase velocity vi now can be described
as a function of just the temporal coordinate ¢. This
approach is treated in the next subsection [3:2] and called
temporal approach, due to now the functional dependence
of the phase velocity of the resultant wave to be of
the time t. Both approaches, although mathematically
distinct, are physically equivalent and can be employed
to understand the propagation of the resultant wave
with a spatial or temporal view of its phase velocity.
This physical equivalence between both approaches is
discussed in detail in the subsection 3.3
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3.1. Spatial approach

For expressing the resultant wave 1 in the format of
equation , one can rearrange the equation as
follows

Y= et (wo+6jﬂr + q/)0—eijﬁ.r)' (15)

By the use of Euler and De Moivre relation e/ = cos @ +
jsinf on the spatial terms e*787T of the right above
equation, it is obtained

vo= D [(or + 1o )cos(B 1)
+ J(¢o+ — 1o )sin(B - 1)]. (16)
Looking for matching the equation with the expres-

sion right above of equation , it is obtained respec-
tively the amplitude 1),

=/ Wos + 1o )2 c082(B 1) + (Yot — 1o )2sin2( - x) (17)

and the phase ¢

¢(r,t) = wt + arctan [(i: n ZZ_) tan(g8 - r)} , (18)
being the resultant wave 1 of the form
b(r, 1) = o(r)e! 0. (19)

Note that the resultant amplitude ), is a function of
the spatial coordinates r and the resultant phase ¢
is also a function of the time t. If ¥,y — 1,_, then
o(r) = 2thoy cos(B - 1), é(r,t) — wt, and consequently
the resultant wave v is merely an oscillation, representing
the well-known standing wave pattern. If [t,4| >> |th,—],
then ¥, (t) = o4, and ¢(r,t) — B - r + wt, which is es-
sentially the 1, wave, as should be predicted. Similarly,
if [tho—| >> [|tho4], then ¥o(t) — 9o, and é(r,t) —
B - r — wt, which is essentially the 1)_ wave, as should be
also expected.

The phase velocity vy is directly obtained inserting

equation in equation resulting in

W (Yot 28y
Ve = B |:(wo+w0—)cos (ﬂ )
¢o+ % .2
+ (w0++1/}0_)sm (ﬁ-r)} es, (20)

in which eg = B/5. One can directly verify that the
phase velocity vy is a function of the spatial coordinates
r with mean value along one wavelength A = 27/

w_”<%}+%;>%. (21)
ﬁ o+~ Yo—

It can be also observed that the phase velocity is indeed
function of the individual wave amplitudes 1,4 and ¥,_,
as the previous qualitative analysis in Section [1} - and
that was the reason of this work - has predicted. If
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Yot — Yo, thus vi — oo (and also v¢ — oo), which is
the phase velocity of the standing wave if one considers
the phase in equation , which in this case ¢(r,t) — wt,
being B = 0, as previously observed. If |t | >> [1,—],
then v — —%eg (and also v¢ — —%eg), which is the
phase velocity of the ¥, wave, as expected. Finally, if
[Yo—| >> [thot|, then vi — Zes (and also vi — Zeg),
which is the phase velocity of the ¥_ wave, as would be
also expected.

The Figure [2] graphically illustrates the analytical re-
sults for the resultant wave 1), the phase ¢, and the phase
velocity vf obtained in this section. It has been considered
dimensionless amplitudes ¢,4+ = 0.1 and ¥, = 1, an-
gular wave number 5 = lrad/m, and angular frequency
w = Irad/s. Panel (a) of Figure [2|illustrates the propa-
gation of the resultant wave ¢ of equation . In this
panel, the resultant wave v is plotted along the spatial
coordinates r for 3 distinct times, ¢ = 0s, t = 0.1s, and
t = 0.2s. Panel (b) of this same figure presents just the
phase ¢ of equation along the spatial coordinates
for these same times. Finally, the panel (c) of this figure
shows the amplitude-dependance of the phase velocity
vt of equation along the spatial coordinates. In this
last panel, besides the previously mentioned value of 1, ,
it has been also considered 1,1 = 0.2, and ¥+ = 0.3.
One can observe in this last panel that the phase velocity
always satisfies vf > 0, since for each case V,4+ < ¥,—,
being the direction of propagation thus governed by the
wave P_.

A final analysis of the analytical results of this section
must confront the behaviour of the phase velocity plotted
in Figure c) with the propagation of the resultant wave
plotted in Figure Figure a). For that, consider the
spatial coordinates comprised in the interval 1.5 < r < 3.
Looking the phase velocity v¢ for ¥,+ = 0.1, the blue

[ t = 0s t=0.5s t=1s (a)
—~ 1
§°?§§§§>42257§§§§>422
= 0
-2 . . . . . ,
0 2 4 6 8 10 12
T
2 t = 0s t=0.5s t=1s (b)
Tk
T /2F
< /0
—n /2t
g
-2 L L L L L )
0 2 4 6 8 10 12
”
s Por=0.1 Por= 0.2 Yor=0.3 (0
5

0 2 4 6 8 10 12

Figure 2: Graphical illustration of (a) the resultant wave v, (b)
the phase ¢, and (c) the phase velocity vs.
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curve of Figure c), one can observe that vf increases
with the increase of r. This behaviour of v is in full
accordance with what is observed in Figure [2[(a), in
which, for a phase reference that turns ¥ = 0, it can be
observed, as time evolves, that the distance between the
spatial coordinates in which ¢ = 0 also increases. In this
way, since the interval of time between the snapshots of
the resultant wave is constant, then the phase velocity
of the resultant wave are also increasing in this interval.

The next subsection will treat of the second approach,
which is associated with the representation i of the
resultant wave described by equation .

3.2. Temporal approach

Instead of what has been performed in the previous
section evidencing the term e/(#) in equation
it is possible to obtain

b=l BD (Yor e b eI, (22)
which becomes
o= &P [(Yhor + o )cos(wt)
+ (ot — tho-)sin(wt)], (23)

when the Euler and De Moivre relation is applied to the
temporal terms e*7“* and some algebra is performed.

From the matching of equation with the expres-
sion between the squared brackets of equation , it is
obtained respectively the amplitude 1ZO

Bolt) =\ (o + 0 )? cos2(wt) + (Yo — o )2sin? (1)
(24)

and the phase ¢

z/}oJr B 1/107
wo-i— + wo—

being the resultant wave J of the form

¢(r,t) = B -r + arctan [( ) tan(wt)] . (25)

D(r,t) = o (1) 9D

Note that the resultant amplitude {bvo is a function of time
t and the resultant phase ¢ is also a function of space
coordinates r. If 1,1 — 1¥,—, then 1),(t) = 2ty cos(wt),
5(1‘715) — B - r, and consequently the resultant wave

(26)

% is merely an oscillation, representing the well-known
standing wave pattern. If |[¢o4| >> [tho—|, then 9,(t) —
Yoy, and ¢(r,t) — B -1+ wt, which is essentially the 1,
wave, as should be predicted. Similarly, if [t | >> [to ],
then 1ho(t) — Vo, and ¢(r,t) — B -r — wt, which is
essentially the 1_ wave, as should be also expected.
The phase velocity v¢ is directly obtained inserting

equation in equation (7)) resulting in
Vi = _B .
(wo+ + ?/10—)(1/10+ - %—)
(s T 0% cor2(@t) + (s — o) P )

€g. (27)
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One can directly verify that the phase velocity vy is a
function of the time ¢ with mean value along one period
T =2r/w

- w

(Vi) = *ESignW’oJr — Yo-)eg, (28)
in which sign(z) = 1 for x > 0, sign(z) = —1 for z < 0,
and sign(z) = 0 for x = 0.

In the same manner as performed in the previous sub-
section, it can be also observed that the phase velocity
is indeed function of the individual wave amplitudes
Yo+ and ¥,_, as the previous simple qualitative analysis
in Section [1l - and that was the reason of this work -
has predicted. If 1,1+ — t,—, thus Vi — 0 (and also
(v¢) — 0), which is the phase velocity of the stand-
ing wave. If |tpoq| >> [tho—|, then V¢ — —Feg (and
also (v¢) = —%eg), which is the phase velocity of the
¥ wave, as expected. Finally, if [1)o—| >> [to4|, then
vi — %eg (and also (Vi) = Feg), which is the phase
velocity of the ¢_ wave, as would be also expected. In
this way, the phase velocity v¢ of the resultant wave can
be adequately adjusted to absolute values smaller than
the phase velocity w/S of the individual plane waves.

As performed in the previous section, the Figure
graphically illustrates the analytical results for the re-
sultant wave 1, the phase ¢, and the phase velocity
V¢ obtained in this section. It has been also considered
dimensionless amplitudes ¢, = 0.1 and ¥,— = 1, an-
gular wave number 3 = lrad/m, and angular frequency
w = lrad/s. Panel (a) of Figure [3|illustrates the propa-
gation of the resultant wave 1Z of equation . In this
panel, the resultant wave {/; is plotted along the time ¢
for 3 distinct spatial coordinates, » = Om, r = 0.1m, and
r = 0.2m. Panel (b) of this same figure presents just the

phase ¢ of equation along the time for these same

-2
0 2 4 6 8 10 12
27 ¢
r = 0m r=0.5m r = 1m (b)
mE
/2
e 0
—m/2
g §
—27 . \ L L \ ),
0 2 4 6 8 10 12
t
s hor=0.1 Por=0.2 Yor=0.3 (©

0 2 4 6 8 10 12

Figure 3: Graphical illustration of (a) the resultant wave 0, (b)
the phase ¢, and (c) the phase velocity vs.
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spatial coordinates. Finally, the panel (c) of this figure
shows the amplitude-dependance of the phase velocity
vt of equation along the time. In this last panel, be-
sides the previously mentioned value of ¢,4, it has been
also considered 9,4+ = 0.2, and ¥4+ = 0.3. One can also
observe in this last panel that the phase velocity always
satisfies vy > 0, since for each of these cases ¥, < ¥,
being the direction of propagation thus governed by the
wave P_.

Similarly with what has been done in the previous
section, to conclude the analysis of the analytical results
of this section, one must confront the behaviour of the
phase velocity plotted in Figure c) with the propaga-
tion of the resultant wave plotted in Figure [3[(a). For
that, consider the interval of time 1.5 < ¢ < 3. Looking
the phase velocity vf for 1,4+ = 0.1, the blue curve of
Figure (C), one can observe that vr decreases with the
increase of t. Again, this behaviour of v¢ in this interval
of time is in full accordance with what can be seen in
Figure (a), since the time elapsed between each cross-
ing of ¥ by 0 increases. In this way, since the distance
between the spatial coordinates in which the resultant
wave is analysed is constant, then the phase velocity of
the resultant wave are also decreasing in this interval.

3.3. The equivalence between both approaches

The spatial and temporal approaches presented before
produced different expressions for the phase and ampli-
tude of the resultant wave. However, it is expected that
the analytical results for the wave i of equation
and 7:/; of equation 7 which involves the product of
the resultant wave amplitudes and phases in both repre-
sentations, describes absolutely the same wave, although
they have different mathematical representations. Rigor-
ously, the numerical results shown in the next section
comprove that the analytical equations and for
the resultant wave in both representations are physically
equivalent and are absolutely correct. However, quanti-
ties derived of just the amplitude or of just the phase
(not of the product of both) of the resultant wave do
not necessary match for every spatial coordinate r or
the time ¢. This is the case of the phase velocity of the
resultant wave, which is an expression derived from just
the phase of the resultant wave. It is then necessary a
detailed inspection of these expressions to connect the
results produced by both approaches.

For evaluating compatibility between the phase ve-
locities v¢ and Vi it is necessary that the reference in
the waves 1 and 1 adopted is the same. If the reference
adopted is exactly the same in both representations, it
is expected the expressions of the phase velocity in both
approaches produce the same result. An adequate phase
reference to choose is

o(r,t) = d(r,t) = mm /2, (29)
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since Re{y)} = Re{¢} = 0, eliminating the influences of
the different aspects of the resultant wave amplitude in
both representations. m = 2n + 1, and n is an integer
number. Inserting this reference phase in equation
results in

tan(mn /2 — wt) = <H> tan(B-r), (30)
while inserting in equation results in
tan(mn/2 — B -r) = (m) tan(wt).  (31)

Considering that tan(mn/2 — z) = 1/ tan(z), then both
equations (30]) and produces exactly the same ex-
pression

1/)o+ - wo—

<¢o+ n 1/Jo> tan(wt) tan(B - r) = 1. (32)
Essentially, the equation establishes, for any given
time ¢ in which ¢ = mm /2, which is the spatial coordinate
r in which the ¢ is also m /2. That is, this is the relation
between the spatial coordinates r and the time ¢ to follow
the same reference phase in both spatial and temporal
approaches employed to represent the resultant wave. In
this situation, since the reference phase adopted is the
same in the approaches, it is expected that the phase
velocities v¢ and vy match its results.

The figure [4] shows the absolute value of the phase
velocity v along the spatial coordinates r = re,. Also,
in this figure, the phase velocity v; is presented. The
phase velocity v is outlined along the spatial coordinates
r by the means of the equation . For each spatial
coordinate v¢ is plotted, the corresponding value of the
time t is obtained through the equation and then
vt is plotted. This procedure assure that any value of
vr is compared with vy for exactly the same reference

vf

+ U

Figure 4: Comparison between the phase velocities v, plotted
as a continuous line, and v, plotted with crosses, for the same
reference phase along the spatial coordinates 7.
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phase. It can be observed a perfect agreement between
both expressions of the phase velocity. For completeness,
the figure [b| presents the results for the phase velocity
vt along the time ¢ together with the phase velocity vy.
The phase velocity v is determined calculating, for each
time ¢, which is the corresponding spatial position r
through the equation . It can be observed again a
nice agreement. In figure [ and [f] it is adopted 1), = 0.1
and 1, = 1, which are dimensionless, with w = 1rad/s
and 8 = lrad/m.

The analytical expressions of both approaches satisfied
the expected results in the limit situations explored above
in each subsection. Also, it has been observed that both
approaches are equivalent when the same reference phase
of the resultant wave is considered. However, for full vali-
dation, the analytical expressions obtained for the phase
velocity through both approaches must be confronted
with the results obtained from the direct numerical sim-
ulation of equation @ with equation and equation
or equation . In this way, in the next section, a
direct comparison between the analytical and numerical
results for the resultant wave and its phase velocity will
occur.

4. Comparison with numerical
simulations

The analytical results presented in the previous section
Bl are confronted here with numerical simulations of the
counterpropagating waves. In Figure [6 and Figure [7] as
the first comparison, it is shown the analytical and nu-
merical results for the resultant wave 1) respectively as a
function of time ¢ and of spatial coordinates r = re,.. The
numerical results consist of the direct simulation of the
real part of the resultant wave 1 described in equation @D
with the individual waves of equation and equations

1.25 T T T T

1.2

1.15

1.1

0.9

0.85

§
0.8
0

Figure 5: Comparison between the phase velocities v, plotted
with crosses, and v¢, plotted as a continuous line, for the same
reference phase along the time t.
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Figure 6: Comparison between the numerical and analytical
results for the resultant wave v in the medium as a function
of time ¢ for r = 4m. The results of the spatial and temporal
approaches are respectively represented with crosses and circles.

Figure 7: Comparison between the numerical and analytical
results for the resultant wave in the medium as a function of
spatial coordinate r for ¢ = 1s. The results of the spatial and
temporal approaches are respectively represented with crosses
and circles.

or , depending of the representation adopted.
The analytical results consist in evaluating the real part
of the resultant wave of equation with the resultant
amplitude of equation and the resultant phase of
equation , for the spatial approach (represented with
crosses), and in to evaluate the real part of the resultant
wave of equation with the resultant amplitude of
equation (24]) and the resultant phase of equation ,
in the case of the temporal approach (represented with
circles). A perfect agreement with numerical simulations
is achieved in both analytical approaches as expected.
The dimensionless waves amplitudes are 1,4+ = 0.2 and
Yo— = 1, the angular wave number is § = lrad/m, and
the angular frequency is w = 1rad/s. Perfect agreement
is also found for other values of waves amplitudes, wave
number, and angular frequency, being satisfactory to com-
prove that the analytical expressions for the resultant
wave 1 in both approaches are correct.

The phase velocity vy can be computed numerically
choosing a specific phase ¢, (r,t) and following it along
the spatial coordinates r or along the time ¢. Since wave
propagates, the reference phase ¢, (r,t) will be found in
distinct and successive times ¢ as the spatial coordinates
are followed. For each interval of time At, it is possible
to calculate the displacement Ar. In other way, the ref-
erence phase ¢, (r,t) can also be found in distinct and
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successive spatial coordinates r as time t evolves. For
each displacement Ar, it is possible then to calculate the
necessary time interval At. Independently of following
the spatial or temporal coordinates, the absolute value
of the phase velocity estimated numerically is

v &~ Ar/At, (33)

in which the subscript n stands for numeric. To follow
spatial or temporal coordinates will be suitable when
the comparison of the numerical results for the phase
velocity occurs respectively with the analytical results
provided by the spatial and temporal approaches. Since
the resultant wave 1 is periodic, it only must be assured
that Ar << 27/8 and At << 27 /w, avoiding ambiguity
problems when tracking the reference phase ¢, of the
wave respectively along the spatial coordinates r or the
time t. This numeric procedure will be applied right below
when the analytical results from both approaches will
be confronted with the numerical results for the phase
velocity.

Figure [§] and Figure [J] presents the results along the
spatial coordinates r for respectively ¥, = 0.1 and
Yo+ = 0.2 in distinct times. This is the only difference
between both Figures. For both, ¢,_ = 1, § = lrad/m,
and w = lrad/s. For simplicity, the reference phase ¢,
chosen is such that turns the resultant wave ¥ = 0. This
assumption substantially simplifies the tracking of the
reference phase ¢,, along the spatial coordinates r, once
the amplitude of the resultant wave also depends of the
spatial coordinates 7, and it can induces to errors in
following the reference phase point ¢,,. The 1) = 0 curve
is plotted together in the panels (a) of Figures[§and [9]

Re{}

161
- (b)
numeric
14t analytical
- /’/'/——\
1 . . . . ,
1.5 2 25 3 3.5 4

Figure 8: Cumulative plots of the resultant wave 1 along the
spatial coordinate r for 100 successive times ¢,, with At,, = 0.01s
are shown in panel (a). A comparison between the numerical
and analytical results for the absolute value of the phase velocity
vy is shown in panel (b). In both panels, 1, = 0.1.
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Figure 9: Cumulative plots of the resultant wave 1) along the
spatial coordinate r for 100 successive times t,, with At,, = 0.01s
are shown in panel (a). A comparison between the numerical
and analytical results for the absolute value of the phase velocity
vy is shown in panel (b). In both panels, 1o+ = 0.2.

for analysis purposes. The reference phase ¢,, is tracked
along 1s < t,, < 2s, in steps of At,, = 0.01s. The resultant
wave 1 along the spatial coordinates r for each one of
these times ¢,, is cumulatively plotted in the panels (a) of
Figures [§ and [9] In these Figures, each color represents
the resultant wave picture along the spatial coordinates
r in each one of the times t,,. The total number of curves
plotted in the panels (a) of Figures[8|and [9|are 100, which
shows to be adequate to describe the phase velocity in
the interval of spatial coordinates 1.5m < r < 4m with
a reasonable accuracy. The crossing by ¥ = 0 of the
Y (r, t,,) for each time t,, occurs in a spatial coordinate r,,
and is detached by a '+’ sign. The spatial displacement
Ar of equation computed numerically is exactly the
spatial displacement Ar, between each consecutive '+’
sign. Figuredetails and illustrates how Ar is evaluated
numerically for the first two waves plotted in Figure
Figure represents a zoom of Figure [§| for —0.01 <
1 < 0.05 and 1.5m < r < 4m. The interval of time
At of equation is exactly the previously specified
At,, = 0.01s, a constant. The phase velocity is numerically
calculated inserting all the spatial displacement Ar,
computed with At,, = 0.01s in equation (33). Panel (b)
of Figures [8 and [0] compares the numeric and analytical
results for the absolute value of the phase velocity v
for respectively the wave amplitudes ¥, = 0.1 and
Yo+ = 0.2 described above. The analytical result for
the phase velocity v uses the expression described in
equation . Nice agreement can be observed.
Similarly, the Figure [11] and Figure [I2] presents the
results for respectively 1,4+ = 0.1 and ¥, = 0.2 along
the time ¢ in distinct spatial positions. This is the only

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2018-0236



Nunes e cols.

0.05 —

0.04 -

0.03F T

0.01r

-0.01

2.475 2.48 2.485 2.49

t

Figure 10: A detailed description of the crossing spatial coordi-
nates by ¢ = 0 of the first two waves plotted in Figure[§] The
difference between this consecutive crossing spatial coordinates
is exactly the displacement interval Ar used to evaluate the
phase velocity in this specific interval.
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Figure 11: Cumulative plots of the resultant wave 1; along the
time ¢ for 100 successive spatial positions 7, with Ar,, = 0.0lm
are shown in panel (a). A comparison between the numerical
and analytical results for the absolute value of the phase velocity
vy is shown in panel (b). In both panels, 1,+ = 0.1.

difference between both Figures. For both, ¢, =1, § =
lrad/m, and w = 1rad/s. For simplicity, the reference
phase ¢,, chosen is such that turns the resultant wave ¢ =
0. This assumption substantially simplifies the tracking
of the reference phase ¢, along the time ¢, once the
amplitude of the resultant wave also depends of the
time ¢ in this approach, and it can induces to errors in
following the reference phase point ¢,,. The ¥ = 0 curve
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Figure 12: Cumulative plots of the resultant wave {/; along the
time t for 100 successive spatial positions 7, with Ar,, = 0.0lm
are shown in panel (a). A comparison between the numerical
and analytical results for the absolute value of the phase velocity
vy is shown in panel (b). In both panels, ¥+ = 0.2.

is plotted together in the panels (a) of Figures|L1{and
for analysis purposes. The reference phase ¢, is tracked
along Im < r, < 2m, in steps of Ar, = 0.0lm. The
resultant wave v along time ¢ for each one of these spatial
coordinates 7, is cumulatively plotted in the panels (a) of
Figures[IT] and [12] In these Figures, each color represents
the resultant wave picture along time ¢ in each one of
the spatial coordinates r,,. The total number of curves
plotted in the panels (a) of Figures[11|and [12| are 100,
which shows to be adequate to describe the phase velocity
in the interval of time 2.5s <t < 3.5s with a reasonable
accuracy. The crossing by 1) = 0 of the v (ry,,t) for each
spatial coordinate r, occurs in a time ¢,, and is detached
by a '+’ sign. The interval of time At of equation
computed numerically is exactly the interval of time At,,
between each consecutive '+’ sign. Figure [I3] details and
illustrates how At is evaluated numerically for the first
two waves plotted in Figure Figure [13| represents a
zoom of Figurefor —0.01 <9 <0.05and 2.475s <t <
2.49s. The spatial displacement Ar of equation (33) is
exactly the previously specified Ar,, = 0.01lm, a constant.
The phase velocity is numerically calculated inserting all
the At,, computed with Ar, = 0.0lm in equation .
Panel (b) of Figures [11] and [12| compares the numeric
and analytical results for the absolute value of the phase
velocity vy for respectively the wave amplitudes 1,4 = 0.1
and 9,4+ = 0.2 described above. The analytical result
for the phase velocity v uses the expression described in
equation . Nice agreement can be observed.
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Figure 13: A detailed description of the crossing times by {Z; =0
of the first two waves plotted in Figure[I] The difference between
this consecutive crossing times is exactly the time interval At
used to evaluate the phase velocity in this specific interval.

5. Conclusions

The superposition of plane waves in a physical medium
can produce a resultant wave with a phase velocity dis-
tinct from the former plane wave components. Such is
the case of a wave incident obliquely over an infinite and
perfect conducting surface, in which the phase velocity
of the resultant wave in the incident medium becomes
also — although it remais constant — a function of the
incidence angle.

In the present situation of counterpropagating waves, it
was demonstrated that the superposition of plane waves
can also produce a resultant wave with phase velocity
that depends of the spatial coordinate r or the time
t, depending of the approach adopted. As shown, both
approaches are equivalent, since they provide results that
are identical to each other when the same reference phase
is considered.

Considering the temporal approach, mathematically,
the phase velocity of the resultant wave could be ex-
pressed as v = vflane -~ f(hou,ho_,t), in which vflane =
w/ B represents the absolute value of the well-known phase
velocity expression for the plane waves, such as v, and
{/;, are in this work. The dimensionless factor f accounts
the propagative effects — resultant of the superposition
of counterpropagating waves — in the present case, which
is a function of the amplitudes of the individual waves,
1y and ¢_, and the time ¢. It must be also observed
that, although v is function of time ¢, (vr) is a constant
exactly equal in magnitude to vf lane " Thig is physically
reasonable, since in this case there is no changes in the
physical medium or boundaries, which are generally the
mechanisms responsible to effectively impact the phase
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velocity. Over a period 27 /w, the resultant wave i) prop-
agates in the same way as the individual waves ¥4 and
zz, alone in the physical medium.

One interesting feature identified in this work is asso-
ciated with the fact of the phase velocity of the resultant
wave to depend of the individual wave amplitudes. This
interesting feature can be explored in electromagnetics as
will be right now discussed. In charged particle accelera-
tors, resonant interaction between charged particles and
the generated electromagnetic waves is intended to cause
particle acceleration. If the resultant wave of the system
studied in this work is electromagnetic and propagates
in a plasma, the resonant interaction of the resultant
wave with the charged particles of the medium can be
controlled by the amplitudes of the individual waves.
More, by counterpropagation, superluminal waves can
lower down its phase velocities to interact resonantly
with charged particles of the medium.

This mechanism identified in this work is relevant to
develop new charged particle acceleration concepts and
structures. The controlling feature of the phase velocity
of the resultant wave through the individual amplitudes
of the plane wave components is practical from the imple-
mentation point of view. Although the amplitude control
can occur through two distinct generators, it is more
suitable to establish counterpropagation through reflec-
tion. In this way, instead of controlling individually the
amplitude of the counterpropagating waves, one can just
control the reflection coefficient, and then so the phase
velocity of the resultant wave for accelerating purposes.

By the end, the analytical expressions in both rep-
resentations predict the well-know results of the limit
situations involving the amplitudes of the individual
waves. Perfect agreement of both representations with
the numerical simulations is also found.

6. Future works

Future works will explore this amplitude-dependant char-
acteristic of the phase velocity of the resultant wave in
the wave-particle interaction phenomena in a electro-
magnetic system. For that, counterpropagating waves
will be considered to evolve in a plasma, and the res-
onant interaction between the resultant wave and the
charged particles of the medium will be analysed. An
analytical description of how the individual counterprop-
agating wave amplitudes control the resonant interaction
is expected to be obtained.
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