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We consider the properties of one-dimensional oscillations of a relativistic particle under a driving harmonic
force. It is found that in the general case the speed oscillations are an infinite sum of odd sinusoidal and even
cosinusoidal waves. In the limiting case of the ultra-relativistic particle, they represent a square wave. There is also
the oscillation suppression for large values of the force amplitude and particular values of its initial phase. In this
case, the particle performs only drift motion. The topic is addressed to undergraduates studying the applications
of the theory of oscillations.
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1. Introduction

There are many paradoxes and extraordinary phenom-
ena appearing in the theory of relativity [1]. Of particular
interest are the effects of relativistic dynamics. For
example, the magnitude and direction of the acceleration
of a relativistic particle are determined not only by the
force but also by its instantaneous velocity. Moreover,
in the general case, the acceleration and force vectors do
not coincide in direction [2]. It is also shown that a nega-
tive acceleration component can exist in the direction of
the biggest force component and that acceleration does
not decrease monotonically to zero [3].

In Ref. [4], the basic properties of projectile motion
in special relativity were established. Shahin [5] has
found that, unlike non-relativistic projectile motion, the
launching angles that maximize both the horizontal
range as well as the area under the trajectory are func-
tions of the initial speed. The classical dynamics of the
one-dimensional relativistic oscillator in the presence of
both linear and Coulomb-like restoring force is explored
in Ref. [6] and [7].

In this paper, we consider the properties of one-
dimensional oscillations of a relativistic particle under
a driving harmonic force. This type of oscillation can
be realized, for example, by a charged particle located
between the plates of a parallel-plate capacitor con-
nected to an ac voltage. The motion of a charged
particle in an oscillating electric field is also of interest in
plasma physics, as many non-linear phenomena have a
simple explanation in terms of the ponderomotive force
(or Miller force) [8]. Finally, it has been suggested that
the motion of charged particles in an oscillating electric
field can be used in particle separation [9]. The issues
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covered in this paper will be useful to undergraduates
studying the applications of the theory of oscillations.

2. Time Dependence of the Velocity

Let us consider a relativistic particle with the rest mass
m that moves along the Ox-axis under the driving
harmonic force

Fx = F0 cos φ, (1)

where φ = ωt; ω is the angular frequency and F0 > 0 is
the amplitude value of the oscillating force. We assume
that at the initial time t = 0 vx = 0, where v⃗ is the
particle velocity. In this paper, we neglect the radiation
damping force [10], which causes the weak damping of
the oscillations over time. It allows us to apply the
relativistic form of Newton’s second law.

In special relativity, Newton’s second law is expressed
as

dpx

dt
= Fx (2)

where

px = mvx√
1 − v2

x/c2
(3)

is the relativistic momentum. Separating the variables in
equation (2) and taking into account equations (1), (3)
along with the initial condition vx(0) = 0, we get:

vx√
1 − v2

x/c2
= F0

mω
sin φ. (4)

Solving equation (4) with respect to variable vx, we
derive:

ux(φ) = ± |ξ sin φ|√
(ξ sin φ)2 + 1

= ξ sin φ√
(ξ sin φ)2 + 1

, (5)
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Figure 1: Dependence ux max(ξ).

where ux = vx/c is the dimensionless instant velocity;
ξ = F0/(mωc) > 0 is the dimensionless force ampli-
tude. Therefore, the velocity of the particle oscillates
in phase with the force, however, such an oscillation is
anharmonic. According to equation (5) the oscillation
amplitude is

ux max = ξ√
ξ2 + 1

. (6)

The maximum value of this quantity is attained asymp-
totically at ξ → ∞ (we want to remind the reader that
dimensionless quantity ξ represents the amplitude of the
force and not relative velocity amplitude so, the situation
when ξ ≫ 1 is quite realizable in practice) and equal to 1
(Figure 1).

In order to explore the features of oscillation (5), we
expand the periodic function (5) into a Fourier series in
the sine-cosine form:

ux(φ) = a0

2 +
∞∑

n=1
an cos(nφ) +

∞∑
n=1

bn sin(nφ), (7)

where

a0 = 1
π

∫ π

−π

ux(φ) dφ (8)

an = 1
π

∫ π

−π

ux(φ) cos(nφ) dφ (9)

bn = 1
π

∫ π

−π

ux(φ) sin(nφ) dφ (10)

The coefficient a0 vanishes because the integrand in
equation (8) is odd. For the same reason, all coefficients
an are equal to zero. The integrand in equation (10)
is even. It allows us to reduce the integration to the
segment [0, π]. For even numbers n, the integrand f(φ)

Figure 2: Dependence b1(ξ).

in equation (10) also satisfies the equality:

f(φ + π) = −f(φ) (11)

(in this case, function f(φ) is said to be anti-periodic
function with anti-period π [11]). Using this property
and considering equation (10), we conclude that all
coefficients bn with even numbers n are equal to zero
too. Thus,

ux(φ) =
∞∑

k=1
bk sin {(2k − 1)φ} , (12)

where

bk = 2
π

∫ π

0
ux(φ) sin {(2k − 1)φ} dφ. (13)

For relatively small values of ξ b1 ≈ ξ (Figure 2);
all the other coefficients bk (k > 1) are negligibly
small. Therefore, in this case, the particle performs
harmonic oscillations, that is, it obeys the laws of
classical Newtonian mechanics. As the force amplitude ξ
increases, these coefficients increase as well. At any fixed
value of ξ, each subsequent coefficient bk is less than the
previous one (Figure 3).

The most interesting situation occurs in the limiting
case of large values of ξ. In this instance, all coefficients
bk asymptotically approach their maximum values

bk max = lim
ξ→∞

bk(ξ) = 4
(2k − 1)π . (14)

The resulting oscillation is a square wave, that is, a
periodic wave that varies abruptly in amplitude between
two opposite fixed values, spending equal times at each
(Figure 4). It means that for this condition the speed
of the oscillating particle remains almost constant and
approximately equal to the speed of light during the
whole half-period. In other words, the particle reaches
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Figure 3: The ratio bk/b1 as a function of ξ at k = 2, 3, 4.

Figure 4: Dependence ux(φ) at ξ = 20.

relativistic velocities, having moved from the turning
points (ux = 0) even by a small (compared to the oscil-
lation amplitude) distance to the equilibrium position
(Fx = 0). Wherein, when the speed becomes close to
the speed of light c, derivative dv/dE (where E is the
sum of rest energy and kinetic energy) becomes small.
Therefore, the total energy E can increase significantly
with a small change in speed. It appears that this
behavior is reminiscent a particle in a square well
potential and it is a general property of various types
of relativistic oscillators [6, 7].

3. Time Dependence of the
Displacement

Using equation (5), relation vx = dx/dt and initial
condition x(0) = 0, we get after integrating:

ρx(φ) = − arctan
{

ξ cos φ√
(ξ sin φ)2 + 1

}
+arctan(ξ), (15)

where ρx = xω/c is the dimensionless coordinate. In
the classical limit (ξ → 0): ρx ≈ −ξ cos φ. In the ultra-
relativistic limit (ξ → ∞) the particle oscillation is a
triangle wave (Figure 5).

According to equation (15), the oscillation ampli-
tude is

ρx max = arctan ξ. (16)

It is interesting that the maximum value of this quantity
is attained asymptotically at ξ → ∞ and equal to π/2
(Figure 6).

Figure 5: Dependence ρx(φ) at ξ = 20.

Figure 6: Dependence ρx max(ξ).
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Figure 7: The phase trajectories at ξ = 0.1, 1, 10.

4. Phase Portrait of the Oscillations

Considering together equations (5) and (15), we find:

ρx = ± arctan
{√

ξ2 − (1 + ξ2)u2
x

}
. (17)

In Figure 7 we present the set of phase portraits
constructed using equation (17) for different values of
the force amplitude ξ. At small values of this parameter,
the phase trajectory is approximately a circle, whereas
for ξ → ∞ it degenerates into a rectangle with sides
equal to 2 and π.

5. The General Case of Non-zero Initial
Phase

The considered above analysis was based on the assump-
tion that the initial phase φ0 is equal to zero. Now, we
consider the general case so that φ = ωt+φ0. In order to
satisfy the initial condition ux(0) = 0 we should replace
in equation (4) ξ sin φ with ξ(sin φ − sin φ0). Then

ux(φ) = ξ
sin φ − sin φ0√

ξ2(sin φ − sin φ0)2 + 1
. (18)

For relatively small values of ξ, only two non-zero
coefficients are presented in series (7) of function (18).
These are a0 ≈ −2ξ sin φ0 and b1 ≈ ξ. This classical
case of particle motion is discussed in detail by Mohaz-
zabi [12]. The main feature of such a motion is the
existence of a steady drift, which is superimposed on the
oscillation. The drift speed is evidently equal to a0/2.
Therefore, if the force is turned on randomly (φ0 ̸= 0),
then the particle drifts away even if ux(0) = 0. The
semi-quantitative explanation of this phenomenon is also
presented Ref. [12].

At relatively small values of ξ, the drift speed linearly
depends on ξ (Figure 8). The function a0(ξ) has a
horizontal asymptote at ξ → ∞. It is interesting that
there is an extremum of this function, which is achieved
at some finite value of ξ. As φ0 increases, this extremum
rapidly shifts to the right (Figure 8).

In the general case, all coefficients an with odd
numbers and coefficients bn with even numbers are equal
to zero. It means that

ux(φ) = a0

2 +
∞∑

k=1
[ak cos {2kφ} + bk sin {(2k − 1)φ}] .

(19)
Due to the presence of cosines with even numbers,

the oscillations become asymmetric and lose their anti-
periodicity (Figure 9). The behavior of the coefficients
ak, bk is similar to that shown in Figure 3.

Figure 8: Dependence of the drift speed on ξ at different values
of φ0.

Figure 9: The oscillating part of ux as a function of φ at ξ = 2
and φ0 = π/4.
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Figure 10: Dependence ρx(φ) at ξ = 50.

Figure 11: The oscillating part of ux as a function of φ at
ξ = 50 and φ0 = π/2.

The most interesting peculiarity is that there is
oscillation suppression for large values of ξ near φ0 =
(2k − 1)π/2 (Figure 10). In this case, the particle moves
all the time with an almost constant ultra-relativistic
velocity equal to the drift velocity (Figure 11).

6. Conclusions

The driven relativistic oscillator is a topic that is
possibly not explored deeply enough in undergraduate
physics degree curricula. In this paper, we try to fill
this gap. The topic may help students to better grasp
such important mathematical concepts as the Fourier
series, anti-periodic function, square and triangle waves,
phase trajectory, etc. Finally, our consideration should

help readers to probe the limits of the applicability of
classical mechanics, and can be used in undergraduate
courses or projects.
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