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Faraday’s law of electromagnetic induction is one of the four Maxwell’s equations, presented here in vector
notation. Its discovery paved the way for a second industrial revolution based on machines powered by electricity.
Roughly speaking, it states that the negative (a Lenz‘s contribution) of the temporal rate of change of magnetic
fields acts as a source for an electric field of rotational nature. In this paper, we discuss readily replicable
experiments demonstrating Faraday’s law in action, using the motion of a neodymium magnet under three
natural motions: i) free fall under gravity; ii) pendular motion under gravity and iii) the magnet placed at
the free end of a vibrating ruler. Due to their simplicity, these systems allow for a complete theoretical treatment.
We consider more than one way of calculating the induced voltage in a circular coil, by the magnet in motion. This
way, students can benefit from the multidisciplinary aspects, connecting the knowledge of kinematics of motion
and the electrodynamics of particles in motion. The experimental data was obtained using an oscilloscope and
contrasted to the theoretical predictions. In practice, these experiments can be used to estimate the magnetic
dipole moment of a permanent magnet.
Keywords: Faraday, neodymium, free-fall, pendulum, vibrations.

A lei de Faraday de indução eletromagnética é uma das quatro equações de Maxwell, apresentada aqui em
notação vetorial. Sua descoberta abriu caminho para a segunda revolução industrial baseada em máquinas movidas
a eletricidade. De forma geral, a lei afirma que o negativo (uma contribuição de Lenz) da taxa temporal de
variação de um campo magnético atua como uma fonte para um campo elétrico de natureza rotacional. Neste
artigo, discutimos experimentos facilmente replicáveis que demonstram a lei de Faraday em ação, usando o
movimento de um ímã de neodímio sob três ações naturais: i) queda livre sob gravidade; ii) movimento pendular
sob gravidade; e iii) o ímã colocado na extremidade livre de uma régua vibrante. Devido à sua simplicidade, esses
sistemas permitem um tratamento teórico completo. Consideramos mais de uma maneira de calcular a tensão
induzida em uma bobina circular pelo ímã em movimento. Dessa forma, os estudantes podem se beneficiar de
aspectos multidisciplinares, conectando o conhecimento da cinemática do movimento e da eletrodinâmica das
partículas em movimento. Os dados experimentais foram obtidos usando um osciloscópio e comparados com as
previsões teóricas. Na prática, esses experimentos podem ser usados para estimar o momento dipolar magnético
de um ímã permanente.
Palavras-chave: Faraday, neodímio, queda-livre, pêndulo, vibrações.

1. Motivation

The authors have observed that post-covid19 quaran-
tined students have struggled with experimental aspects
of physics concepts. One might reason this might have
been caused by too much of remote and/or virtual
laboratory classes. Thus, many students struggle even
with reading and operating oscilloscopes in the now live
laboratory classes. So, this article is intended to work
as a bridge between equations derivations, computer
simulations and real world lab-bench measurements.
That is the reason schematics, theoretical results, photos
and real results have all been shown.

*Correspondence email address: leciom@ufpr.br

These experiments are readily available as neodymium
magnets are ubiquitous and the motions abridged
require no extra equipment and even add ease of data
interpretation since they will point to the gravitational
acceleration constant g or the ruler’s elastic constant k.
The one key equipment is the oscilloscope which needs
to be able to read mere milivoltages.

The work focuses on Faraday’s Law, one of the
greatest experiments in electromagnetics performed by
Michael Faraday, he himself understood to be a skillful
experimenter. A very good teaching class introduction
to the experiments here proposed would deal with Fara-
day’s hands-on approach to electromagnetics problems
and show that experiments are the source of nature’s
truths.
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2. Introduction

Electromagnetic phenomena are successfully described
by Maxwell’s equations, originally proposed by James
Clerk Maxwell [1] in the 1861s. Building on previ-
ous works by Charles Augustin de Coulomb [2], Hans
Christian Oersted [3], Andre Marie Ampére [4], Michael
Faraday [5] and Joseph Henry [6], to name a few,
Maxwell was able to unite electricity, magnetism and
optics in a logical and coherent set of equations. The
current form of Maxwell’s equations in vector notation
is due to Oliver Heaviside [7], which is written in SI units
as follows [8–12]:

∇ · D = ρ, (1)
∇ · B = 0, (2)

∇ × E = −∂B
∂t

, (3)

∇ × H = J + ∂D
∂t

, (4)

together with the constitutive relations for material
media:

D = ε0E + P, (5)
B = µ0(H + M). (6)

In the equations, the displacement vector D, the electric
field intensity E and dielectric polarization P are the
electric variables. The magnetic flux density vector B,
the magnetic field intensity H and magnetization M are
the magnetic variables. ε0 is the vacuum dielectric per-
mittivity and µ0 is the vacuum magnetic permeability,
ρ is the electric charge volumetric density and J is the
electric current density vector.

There is a popular anecdote that Michael Faraday,
during a conversation with British Prime Minister
William Gladstone, predicted the potential impact of
electricity on society and the probable taxation on
electric power. When asked by Mr. Gladstone about
the usefulness of electricity stuff, Faraday’s apocryphal
reply was “Why, sir, there is every probability that you
will soon be able to tax it!” [13]. Even though there
are no reliable sources to confirm the dialogue really
happened, Faraday’s contributions to electromagnetism
and his understanding of the relationship between elec-
tricity and society were indeed remarkable. He recog-
nized the transformative potential of his discoveries and
played a significant role in the development of electrical
technology.

From a technological viewpoint, it was the discovery
of the law of electromagnetic induction that allowed
a second industrial revolution [14], based on machines
powered by electricity. The development and optimiza-
tion of electrical motors, generators and AC transformers
are only possible through the use of Faraday’s law. To
be fair, the empirical law of electromagnetic induction
was discovered independently by the English scientist

Michael Faraday in 1831 [15, 16] and the American
scientist Joseph Henry in 1832 [17, 18]. The negative
sign in the right-hand side of (3) was due to Heinrich
Lenz [19], but the mathematical formulation of the law
came later, in 1845, through the work of Franz Ernst
Neumann [20]. Therefore, it is sometimes referred to as
the Faraday-Neumann-Lenz law. The inductance symbol
is L, in honor of H. Lenz and it is measured in henries
in honor of J. Henry.

In the present contribution, we will focus attention
on equation (3), which is known as Faraday’s Law of
Induction. Going further, the main goal of this paper
is to discuss didactic experiments involving Faraday’s
law effects of permanent magnets under mechanical
laws of motion. The magnet to be considered here is
a permanent neodymium magnet, which is endowed
with a magnetic dipole moment. The mechanical motion
laws to which it will be subjected are three: i) free fall
under gravity; ii) pendular motion under gravity and
iii) the magnet placed at the free end of a vibrating
ruler. Due to their simplicity, these systems allow for
a complete analytical theoretical treatment. We have
described more than one way of calculating the induced
voltage in a circular coil by the magnet in motion so
that students can benefit from the multidisciplinary
aspects, connecting the knowledge of kinematics of
motion and electrodynamics of particles in motion. The
experimental data can be obtained using an oscilloscope
and contrasted to the theoretical predictions. The free-
falling magnet experiment was qualitatively discussed in
a previous publication at RBEF, by R. Hessel et al. [21].

In this work, the theoretical predictions will be con-
nected to the experimental results in a quantitative
way. To do that, the paper is organized as follows: in
Section 3, the magnetic potential vector and the corre-
sponding magnetic field created by a magnetic dipole
will be deduced from Maxwell’s equations in the magne-
tostatic regime. In Section 4, considering the expressions
obtained in Section 3, the induced voltage on a coil by
the motion of a permanent magnet will be determined
using Faraday’s law of induction, as well as from the
perspective of Lorentz transformations. Section 5 brings
a discussion on the experimental apparatus and the
obtained results, which are contrasted to the theoretical
expressions deduced in Section 4 for the distinct motions
considered. Finally, in Section 8, concluding remarks are
added.

3. The Magnetic Field of a Magnetic
Dipole

From Maxwell’s equations we know that for static fields,
electric and magnetic fields become decoupled. Con-
sequently, the field equations describing magnetostatic
phenomena are the following [8, 10]:

∇ · B = 0 (2)
∇ × B = µ0J + µ0∇ × M, (7)
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where the H field in the Ampère-Maxwell law, equa-
tion (4) was eliminated in favor of B through the use
of equation (6), H = B/µ0 − M. In this context J
represents the current density vector of free electric
charges, while ∇ × M represents an effective current
caused by the magnetization (which can be intrinsic
to the medium). Notice that in the static regime the
so-called displacement current density vanishes, i.e.,
∂D/∂t = 0.

Equation (2) can be promptly solved using the mag-
netic potential vector A, with B defined as follows:

B = ∇ × A. (8)

It is worth pointing out that only B has a physical
meaning, therefore the magnetic potential vector A is
not uniquely defined, since a new potential A′, obtained
by adding the gradient of a scalar function f to the
original potential, A′ = A + ∇f , yields the same
field B. This property is the so-called gauge freedom.
It is possible to fix the magnetic potential vector by
imposing some gauge fixing conditions. Adopting the
Coulomb gauge, ∇ · A = 0, substituting (8) into (7)
and using ∇ × ∇ × A = ∇(∇ · A) − ∇2A, we get the
Poisson equation:

∇2A(r) = −µ0J − µ0∇ × M, (9)

for which a formal solution is given by:

A(r) = µ0

4π

∫∫∫
V ′

[J(r′) + ∇′ × M(r′)]
|r − r′|

d3r′. (10)

Going further, we are interested in the magnetic field
created by a permanent magnet. In the lowest order
of approximation, a permanent magnet can be modeled
as having a magnetic dipole moment m resulting from
the alignment of the microscopic spins (and also orbital
magnetic moments) of its internal constituents. In this
case, we can safely set J = 0 and, assuming the
magnet is located at the position r = r0 in space, the
magnetization is M(r) = m δ3(r−r0), where δ3(r−r0) =
δ(x − x0)δ(y − y0)δ(z − z0) is the Dirac delta in 3 spatial
dimensions, represented in rectangular coordinates. The
reader must be aware of the fact that the product of
distributions, like the Dirac delta, is not a distribution
in general. In this particular, the product of deltas is not
a well-defined delta in the sense of distributions. Such
analysis is beyond the scope of the present contribution.
We refer the interested reader to Nivaldo A. Lemos,
“Convite à Física Matemática” (in Portuguese) (São
Paulo, Livraria da Física, 2013) [22] – chapter 9, for more
details. We need to calculate the curl of M, which acts
as a source for the magnetic field. Supposing m does not
vary w.r.t. (with respect to) r, we obtain:

∇ × M = ∇δ3(r − r0) × m, (11)

where the property ∇ × (fa) = ∇f × a + f∇ × a
was used. Inserting (11) into (10) and performing an

Figure 1: R vector in-text mentioned coordinates.

integration by parts yields the desired result:

A(r) = µ0

4πR3 m × R, (12)

where R = r − r0 and R = |R|.
Now consider that the magnetic dipole is oriented

along the z-axis, m = mâz, and is located at r0 =
(0, 0, z0). Thus, R = (x, y, z − z0), which can be
represented in cyllindrical coordinates by (ρ, φ, Z). The
modulus of R is R =

√
ρ2 + Z2, where with Z =

z − z0 = R cos θ and ρ =
√

x2 + y2 = R sin θ. For the
sake of clarity Figure 1 illustrates the coordinates being
used. Due to symmetry considerations, the magnetic
potential and magnetic field are not dependent on the
azimuthal angle φ = arctan(x/y). In this case, the
magnetic potential vector is easily reduced to:

A(r) = µ0m

4πR2 sin θâφ. (13)

The magnetic field is promptly obtained by taking the
curl of (13) in spherical coordinates (R, θ, φ). The result
is [23]:

B(r) = µ0m

4πR3 [2 cos θâr + sin θâθ]. (14)

The field lines of a vector field are tangent to the vector
itself at each point and can be obtained in the present
case by solving the equation B × dl = 0, with dl =
dRâR + Rdθâθ + R sin θdφâφ in spherical coordinates.
Therefore, for the magnetic dipole field, the resulting
equations are dφ = 0 and 2R cos θdθ − sin θdR = 0.
The solution for a constant φ is R(θ) = R0 sin2 θ, 0 ≤
r0 < ∞. These field lines are illustrated in Figure 2. It is
worth mentioning that the north and south magnetic
poles shown in Figure 2 are a fictitious construction,
nevertheless helpful in visualizing the field lines.

4. Faraday-Henry’s Law Applied to a
Free-Falling Magnet

Consider a permanent magnet, modeled as a magnetic
dipole moment m = +mâz, initially at rest at some
height z(0) = h0 measured from the center of a coil,
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Figure 2: The field lines produced by a magnetic dipole moment
m. It is instructive to consider the existence of fictitious north
and south poles, with the lines diverging from the north and
converging to the south pole, in close analogy to the electric
field lines of an electric dipole.

Figure 3: Experimental schematics: A permanent magnet
initially at rest is released to move from its initial position
r = (0, 0, h0), and it can pass through the center of a coil having
N turns of radius a. The terminals of the coil are connected to
an oscilloscope.

being released to move. The conducting coil has N
turns of copper wire, each turn having an averaged
radius a. The terminals of the coil are connected to an
oscilloscope. Figure 3 illustrates the schematics of the
experimental setup.

The free-falling motion of the permanent magnet,
assumed to be point-like, is described by x0(t) = y0(t) =
0 and z0(t) = h0 − gt2/2, where g = 9.81m/s2 is
the gravitational acceleration near the Earth’s surface.
By contrast, in the pendular motion z0(t) = h0 +
∆h cos(ω0t − ϕ0), where ∆h = L sin(θ0), being L the
length of the ruler and θ0 the initial angular position
of the ruler, ϕ0 is just an initial phase of the pendular
motion. The approximated natural frequency of pen-
dular motion under the influence of gravitational field
is given by ω0 =

√
g/Lef , where Lef = ηL is the

effective length of the pendulum, which is smaller than
true length L by a factor η. It comes from the moment
of inertia associated with the mass distribution of the

pendulum. For the vibrating ruler scenario we assume
a damping factor α and z0(t) = h0 + ∆h cos(ω0t −
ϕ0)e−αt, where ω0 is a natural frequency associated with
vibrational modes of the ruler, which has one of its ends
fixed, and the other is free to oscillate with amplitude
∆h around the average position h0. Notice that in any
of the scenarios, the distance between any point in the
coil surface and the permanent magnet is continuously
changing. Therefore, the magnetic flux which passes
through the coil, defined for any surface S bounded by
a closed path C, as follows:

ϕm =
∫∫

S(C)
B · da =

∮
C

A · dl, (15)

is a time-varying quantity. Faraday’s law states that
the electromotive force (or induced voltage Vind along
a closed path) is equal to the negative of the time
derivative of the magnetic flux enclosed by the path,
i.e.:

Vind =
∮

C

E · dl = −dϕm

dt
. (16)

The orientation of the surface vector corresponding to
the oriented surface S =

∫
S(C) da is defined by the

orientation of the closed path C, using the right-hand
rule. Notice that equation (16) is the integral version
of (3). To arrive at the integral version we need to
integrate the differential form of Faraday’s law w.r.t. an
area S, and then apply Stokes’s theorem:∫∫

S(C)
∇ × E · da =

∮
C

E · dl = −
∫∫

S(C)

∂B
∂t

· da. (17)

As a last step, assume the modulus S(C) and the
orientation of the coil do not change in time, for the
sake of simplicity. So much so that the partial derivative
w.r.t. time can be pulled outside the integral, becoming
a total derivative. As a matter of fact, a careful analysis
shows that for the more general case where the surface
changes in time, we have:∮

C

E · dl = −dϕm

dt
= −

∫∫
S(C)

∂B
∂t

· da +
∮

C

v × B · dl,

(18)
which gives the same answer as (17), provided that we
redefine the electric field to E′ = E − v × B. A more
detailed discussion is presented by A. Feoli et al. [24].

Going further, we need to calculate the magnetic
flux passing through the coil, due to the magnetic
field created by the permanent magnet instantaneously.
Suppose the permanent magnet is located at the origin
of the coordinate system (x, y, Z), i.e., x = y = 0 and
Z = z − z0 = 0 → z = z0, and the surface vector of
the coil, which will define the closed path of interest
here, is colinear to the magnetic dipole moment, itself
assumed to be aligned with the z-axis. Additionally,
considering (14) when obtaining the magnetic flux first
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we need to calculate the projection of the magnetic field
onto the z-axis, i.e., B · âz:

B · âz = µ0m

4πR3 [2 cos θâR · âz + sin θâθ · âz]. (19)

The unit vector âz of the cartesian (or cylindrical)
coordinate system can be expressed in terms of spherical
basis vectors, as follows:

âz = cos θâR − sin θâθ. (20)

Substituting (20) into (19) and performing the scalar
products we obtain:

B · âz = µ0m

4πR3 [2 cos2 θ − sin2 θ] = µ0m

4πR3 [3 cos2 θ − 1].
(21)

From the geometry of the problem, for any point (ρ, φ, z)
located at the surface of the coil, delimited by the coil
perimeter we have cos θ = Z/R, sin θ = ρ/R, with
R =

√
ρ2 + Z2 and Z = z − z0. Remembering that the

permanent magnet is located instantaneously at (0, 0, z0)
and assuming the coil to be located at the plane z = 0,
we have for the magnet velocity vz = ż0 = −dZ/dt.

The magnetic flux through the coil, assuming the area
of the coil is oriented parallel to the magnetic dipole
moment of the permanent magnet, is given by:

ϕm =
∫∫

S(C)
B · da =

∫ a

ρ=0

∫ 2π

φ=0
B · âzρdρdφ

= µ0m

4π

∫ a

ρ=0

∫ 2π

φ=0

1
R3 [3 cos2 θ − 1]ρdρdφ

= µ0m

2

∫ a

ρ=0

[
3Z2

(ρ2 + Z2)5/2 − 1
(ρ2 + Z2)3/2 1

]
ρdρ.

(22)

As a final step to integrate (22) and obtain the desired
result we perform a change of variables, u = ρ2 +Z2 and
du = 2ρdρ. After a straightforward calculation we get:

ϕm = µ0ma2

2(a2 + Z2)3/2 . (23)

Now the induced voltage in the N-turn coil is given by
Faraday’s law:

Vind = −N
dϕm

dt
= −N

dϕm

dZ
Ż. (24)

Notice that the total induced voltage in the coil corre-
sponds to the sum of the induced voltage in each of the
N turns. Assuming that the turns are located at nearly
the same height z = 0 and have the same radius a, it
leads to multiplying the induced voltage induced on a
single turn by N . The desired result is:

Vind = −3µ0mNa2

2
ZŻ

(a2 + Z2)5/2 , (25)

with Z = z − z0(t) and Ż = −ż0.

Now it is important to discuss the sign of the induced
voltage. For the sake of simplicity we will discuss the
case of a free-falling magnet. Assume the magnetic
dipole moment points upwards respective to the z-axis,
i.e., m = +mâz and it is located at the origin of
the coordinate system. Therefore, the component of
the magnetic field along the z axis is also pointing
upwards. If we assume the oriented surface of the coil
also points towards +âz, it means that the closed path
C in Faraday’s law must be traveled counterclockwise,
as seen by an observer above the coil, looking downwards
at the coil. Thus, the calculated magnetic flux enclosed
by the coil is always positive, but its magnitude changes
during the free fall of the magnet. Initially the magnetic
flux increases due to the decrease in the distance between
the coil and the permanent magnet. Remember that the
magnetic field produced by a magnetic dipole depends
on 1/r3. The maximum magnetic flux occurs when
the magnet is passing through the center of the coil.
After that point, for which h0 = gt2/2, the magnetic
flux decreases again. The induced voltage is given by
Vind = −dϕm/dt, meaning that at the terminals of the
coil, the induced voltage becomes negative while the
magnetic flux is increasing, it reaches a minimum and
then starts to increase, until a maximum is reached.
After a while, the permanent magnet will be far from
the coil and magnetic flux as well as its derivative will
be negligible, leading to Vint = 0 again. If the magnetic
dipole is oriented in the negative sense of the z-axis
or the reference terminal for the oscilloscope probe is
reversed, it reverses the sign of Vind being measured.

4.1. Analysis using the magnetic potential
vector

A distinct approach to calculating the induced voltage
Vind is through the use of electromagnetic potentials.
The electric and magnetic fields, E and B, respectively,
are obtained from the electromagnetic potentials ϕ and
A, as follows:

E = −∇ϕ − ∂A
∂t

, (26)

B = ∇ × A.(8)

In our previous calculation, the magnetic field B was
already obtained from (8). Using gauge freedom we can
set the scalar potential ϕ to zero. Thus, the electric field
E produced by the free-falling magnet is given by:

E = −∂A
∂t

= −µ0m

4π

d

dt

sin θ

R2 âφ

= − µ0m

4πR3 [Rθ̇ cos θ − 2Ṙ sin θ] âφ, (27)

where the expression for the vector A was previously
written in equation (13). Notice that the electric field E
exists independently of the presence of a conducting coil.
Going further, we are interested in the voltage induced
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in the coil terminals, as a result of the electric force
exerted by the electric field E on the free charge carriers
of the conducting wires. Since the coil has a fixed radius
ρ = a we have cos θ = Z/r and sin θ = a/r, with
r =

√
a2 + Z2. The electromotive force becomes then,

Vind =
∮

C

E · dl = −µ0mNa

2R3 [Rθ̇ cos θ − 2Ṙ sin θ], (28)

where we have used dl = adφâφ, and the integral pro-
duces a factor of 2πa times the electric field component
Eφ. Now we want to express Ṙ and θ̇ in terms of Ż, i.e.:

Ṙ = dR

dZ
Ż = ZŻ

R
, (29)

θ̇ = dθ

dZ
Ż = −aŻ

R2 . (30)

To calculate dθ/dZ with θ = arctan(a/Z) the following
derivative is helpful:

d

dx
arctan(x) = 1

1 + x2 . (31)

The intermediate steps are left as an exercise, being the
desired result

Rθ̇ cos θ − 2Ṙ sin θ = −3aZŻ

R2 (32)

Finally, replacing (32) into (28) we arrive at the same
result as (25).

4.2. The Lorentz transformations viewpoint

An alternative viewpoint is to consider a Lorentz trans-
formation from the permanent magnet rest frame to the
coil reference frame. In the magnet frame there is only a
magnetostatic field B produced by the magnetic dipole,
while in the coil reference frame, the magnet is moving.
The Lorentz transformations for the electromagnetic
fields, in SI units, are given by [8]:

E′ = γ(E + v × B) − γ2

γ + 1
v
c

(v
c

· E
)

, (33)

B′ = γ
(

B − v
c2 × E

)
− γ2

γ + 1
v
c

(v
c

· B
)

, (34)

where E and B are the electromagnetic fields in one
inertial reference frame and E′ and B′ are the field in
another inertial frame moving with velocity v = ż0âz =
−Żâz w.r.t. the unprimed frame, γ = 1/

√
1 − (v/c)2 is

the Lorentz factor and c is the speed of light in vacuum.
As a matter of fact, the reference frame of the magnet

in motion in the cases under consideration, is not
truly inertial. Nevertheless, the motion takes place at
a relative speed v << c, therefore we can attribute an
instantaneous Lorentz frame to the moving magnet in
the coil reference frame. Also notice that v/c << 1 and
γ ≈ 1. And so we get:

E′ ≈ v × B = − µ0m

4πR3 Żâz × [2 cos θâr + sin θâθ], (35)

B′ ≈ B. (36)

Making use of âz = cos θâr − sin θâθ yields:

E′ ≈ v×B = −3 µ0m

4πR3 Ż sin θ cos θâφ = −3µ0maZŻ

4πR5 âφ,

(37)
which coincides with (27). It is important to mention
that it is perfectly possible to consider more general
transformations when one reference frame is accelerated
w.r.t. the other. These are known as Rindler trans-
formations [25]. Rindler transformations were used in
Goto [26] to obtain the electromagnetic fields of free-
falling charge in a uniform gravitational field. The fields
obtained in the accelerated regime are quite different
from those obtained at constant velocity even in the
regime v << c. It is an important issue when dis-
cussing the radiation emitted by free-falling charges
under the perspective of general relativity. Notice that
from Maxwell’s equations considered in Lorentz frames,
accelerated charges must radiate, but the discussion
under the perspective of general relativity is beyond the
scope of the present paper. Here, it is the free fall of a
magnetic dipole that is under analysis. Lorentz trans-
formations and Rindler transformations yield similar
results provided that the condition gt << c is satisfied.

5. The Free-Falling Magnet
Experimental Results

The experiment was performed in the Magnetic Mea-
surements ans Instrumentation Laboratory (LAMMI)
of the Federal University of Paraná (UFPR), using
very simple instrumentation found at any undergrad
laboratory of Physics or Electrical Engineering courses.
Basically, it consisted of an oscilloscope, enameled cop-
per wire for making the coil, which is wound onto a 20 cm
long and 3.2 cm in diameter PVC water pipe. The pipe
serves only as a guide for the permanent magnet and a
supporter for the coil. A neodymium magnet (NdFeB)
was selected for the experiment, since it has a high
magnetic dipole moment, enhancing the induced voltage

Figure 4: Schematics of the magnet in free-fall motion
experiment.
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Figure 5: Experimental setup: A permanent magnet initially at
rest is released to free fall from height h0 = 30 cm, and it
passes through the center of a coil having N = 30 turns of
radius a = 1.5 cm. The terminals of the coil are connected to
an oscilloscope Agilent DSOX 2002A.

Figure 6: Magnification of the oscilloscope screen for a perma-
nent magnet free-falling experiment.

signal, but any other permanent magnet could be chosen.
An schematic is available on Figure 4.

Specifically, we fabricated the coil with an AWG 24
copper wire, having N = 30 turns, The radius of
the coil was a = 1.5 cm, being fixed by the PVC
pipe. The oscilloscope we used was an Agilent model
DSO-X 2002A. The experimental setup is illustrated in
Figure 5. The permanent magnet was released from a
height h0 ≈ 40 cm from the coil center.

A magnification of the oscilloscope screen is shown in
Figure 6. It is important to mention that the oscilloscope
must be operated in the single-run mode, i.e., it displays
a single measurement after the trigger is fired. Therefore,
the trigger level must be reasonably adjusted to obtain a
clean measurement. In our experiment, the trigger level
was set around 15 mV in the rising mode. The peak
voltage was around 60 mV, so we set 20 mV per division,
while the time scale was set to 5 ms per division. Notice
that the total time of flight for a particle in free fall from
a height of ∆h ∼ 40 cm is in the range of t =

√
2∆h/g ∼

285 ms. So, it is expected that the induced voltage in the
coil will have a duration ∆t < 285 ms, typically. Indeed,
it can be observed on the screen of the oscilloscope.

Figure 7: A comparison between the experimental data collected
from a free-falling neodymium magnet from an initial height
h0 = 40 cm, passing through the center of a coil with a =
1.5cm and N = 30 turns, and the theoretical prediction from
equation (25).

The measurement at the coil’s terminals must be
performed in an open circuit configuration, to ensure
that the induced voltage is really being measured.
This way, the oscilloscope probes must be set to high
impedance (1 MOhm). One of the terminals of the
coil is connected to the probe measurement tip and
the other to the GND (ground). Of course, if high-
impedance ports are not available in the oscilloscope,
a high input impedance buffer with unitary gain, built
using a common operational amplifier can be easily
constructed.

The modern-day oscilloscope allows to save the exper-
imental data in .CSV or .DAT archives, but for old
equipment, if electronic data saving is not available it is
possible to take a photograph of the oscilloscope screen
and then use one of the many graphical data extractors
at disposal for free on the web.

Notice the raw data has high-frequency noise, which
can be eliminated through low-pass filters. A compari-
son between our experimental data and the theoretical
equation (25) is shown in Figure 7. As can be seen, the
experimental data is in agreement with the predictions
from the theory, which is confirmed by the similar
shapes, time duration of the pulses and amplitudes of
the curves. It is worth mentioning that usually some
time translation and vertical shift must be applied to the
data collected from the oscilloscope. The magnetic dipole
moment of the magnet is used as a fitting parameter.
We found it to be m = 0.37 A.m2 in our experiment.
Supposing one Bohr magneton µB = 9.27 × 10−24 A.m2

per atom and n = 5 × 1028 atoms/m3 in the magnet,
for a magnet with volume V = 0.8 cm3 we estimate that
m = µBnV ≈ 0.37 A.m2, which is in agreement with the
value obtained from the fitting.

Numerical integration of experimental data for Vind

yields the magnetic flux Nϕm = −
∫ t

Vinddt′. Notice
that the integration acts as a low-pass filter. The
experimentally obtained magnetic flux is then compared
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Figure 8: Comparison between the experimental results for the
magnetic flux enclosed by the N -turn coil, obtained numerically
integrating the experimental data, and the theoretical prediction
from equation (23).

to the theoretical prediction, which is given by N times
the magnetic flux of a single turn, calculated through
equation (23). The comparison is illustrated in Figure 8,
with good agreement.

6. The Magnet in Pendular Motion
Experiment

The schematics of the proposed experiment is illustrated
in Figure 9. A permanent magnet is placed at the free

Figure 9: Photo of the experimental setup for the magnet in
pendular motion.

Figure 10: Schematics of the magnet in pendular motion
experiment.

end of an L-shaped pendulum, with L1 > L2. The
magnetic moment of the magnet is oriented along the
z-axis, being colinear to the surface vector of the N -turn
coil. A photo of the setup can be seen on Figure 10.

Assuming L1 >> L2, the angle θ is given approxi-
mately by the line L1 of the pendulum and the x-axis.
Suppose the total mass of the pendulum is homoge-
neously distributed, we can apply Newton’s second law
for angular momentum. For a mass ∆m at a distance r
from the fixed point, it reads:

I
d2θ

dt2 = −∆mgr sin θ, (38)

being I = ∆mr2 the moment of inertia for the infinites-
imal mass ∆m in the pendulum. Integrating both sides
with respect to r, from 0 to L1 and neglecting the
contribution of L2, for small values of sin θ ≈ θ we get:

d2θ

dt2 = −ω2
0θ, (39)

where ω0 = s
√

g/Lef and Lef = 2L1/3. Corrections to
the Lef are expected, coming from the segment L2 and
the magnet mass. Considering θ0 as the maximum angle
the pendulum acquires with respect to the x-axis and
ϕ0 an initial phase, the solution of the above equation
will be:

θ(t) = θ0 cos(ω0t − ϕ0). (40)

Now, neglecting small changes of x for the magnet placed
at the tip of L2, we get the component z0(t) of the
magnet position vector:

z0(t) = h0 +L1 sin[θ(t)] ≈ h0 +L1θ0 cos(ω0t−ϕ0). (41)
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Figure 11: Typical result for the pendulum experiment displayed
on the oscilloscope screen.

Notice that in practice there are friction forces leading
to a damping factor for the pendulum motion, which
can be modeled by multiplication of θ(t) by a factor
e−αt. However, for the time scale of a few cycles of
the pendular motion in the experiment we conducted,
it was verified that the damping effect is negligible. In
this context the velocity v(t) = dZ/dt = −ż0(t) will be
given by:

Ż = v(t) = ω0L1θ0 sin(ω0t − ϕ0). (42)

Now, the theoretical results are obtained by substitu-
tion of (41) and (42) into equations (22) and (25), for
the magnetic flux enclosed by the coil at z = 0 and
the induced voltage at the coil. The parameters we used
in the experiment are the following: a coil having radius
a = 1.85 cm and N = 30 turns, a neodymium permanent
magnet with m ≈ 0.1 A.m2, and a pendulum made
using an acrylic ruler, with L1 = 50 cm, and an acrylic
cylinder of diameter ∼ 7 mm and length L2 = 7 cm.
Notice that L =

√
L2

1 + L2
2 = 50.48cm ≈ L1. The initial

distance was h0 = 13 cm and θ0 ≈ 18o. The values
of ω0 and ϕ0 were adjusted for the best fitting of the
experimental data. A typical result displayed on the
oscilloscope screen is shown in Figure 11. Notice that
the result has a high-frequency noise.

After saving the experimental data into a .CSV file, we
mathematically applied a low-pass filter to remove the
high-frequency noise. It was done by calculating numeri-
cally the Fourier transform of the raw experimental data
for the induced voltage, Vexp(t), as follows:

Ṽexp(ω) =
∫ ∞

−∞
Vexp(t)e−iωtdt, (43)

where the limits of the integral are the initial and final
time of the acquired data, in practice. Next we applied
a low-pass filter with ideal transfer function G̃(ω):

G̃(ω) =
{ 1, |ω| < 20ω0,

0, |ω| ≥ 20ω0.
(44)

Figure 12: Comparison between the theory and experiment for
the coil’s induced voltage in the pendular motion experiment.

It is worth mentioning that the filter must be adjusted
case by case, to remove the high-frequency noise while
still reproducing the experimental result. The filtered
experimental data will be given by numerically calcu-
lated inverse Fourier transform of G̃(ω)Ṽexp(ω):

Vexp(t) = 1
2π

∫ ∞

−∞
G̃(ω)Ṽexp(ω)eiωtdω. (45)

The comparison between the filtered experimental
data and the theoretical results obtained combining
equations (41), (42) and (25) is illustrated in Figure 12.
The best fitting was obtained by making ω0 = 5.1069
rad/s, which leads to an effective length Lef ≈ 37.6 cm,
corresponding to η = 0.7523, which is ∼ 13% higher
than the approximate value of 2L1/3. The initial phase
was ϕ0 = −8o. The agreement is quite good.

Figure 13 shows a comparison between the magnetic
flux obtained from numerical integration of Vexp(t)

Figure 13: Comparison between the theory and experiment for
the magnetic flux enclosed by the coil in the experiment of a
magnet displaying a pendular motion.
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and the theoretical results obtained combining equa-
tions (41), (42) and (22). Despite the low-frequency noise
in the measured voltage and a small offset, the curves
qualitatively coincide in shape and periodicity.

7. The Magnet Attached to a Vibrating
Ruler

The next experiment could be used as an extractor
for the vibrational modes of a rod (or in our case an
acrylic ruler) with one of its ends fixed and the other
free to oscillate around the equilibrium point. The setup
is illustrated in Figure 14. A photo can be seen on
Figure 15

A permanent magnet is attached to the free end of the
ruler, above a coil which is a distance h0 from the equilib-
rium position of the ruler’s end. An initial displacement
∆h from the equilibrium position is applied and the
ruler’s end will oscillate around the equilibrium, with
natural frequency ω0, which is strongly dependent on
the ruler’s length. In this experiment the damping effect
clearly manifests in the time window we captured in the
oscilloscope screen. Therefore, approximate expressions
for the magnet motion are as follows:

z0(t) = h0 + ∆h cos(ω0t − ϕ0)e−αt, (46)
Ż = −ż0 = ∆h[ω0 sin(ω0t − ϕ0) + α cos(ω0t − ϕ0)]e−αt.

(47)

In a typical experiment we set the following param-
eters: magnetic dipole moment m = 0.37 A.m2, a coil
with 30 turns and radius a = 1.85 cm, h0 = 2.55 cm and
a ruler with L = 20 cm from the free to the fixed end.
The parameters ∆h, ω0 and ϕ0 were varied to obtain the
best fitting. Figure 16 illustrates a typical experimental
result for the voltage induced on the coil, including the
noise.

We notice the periodic behavior, compatible with a
vibrating magnet near the coil, but there is also a back-
ground noise which we aim to remove. The damping is
also clearly present. Regardless, we perform a numerical
Fourier transform of the data displayed in Figure 16, to
obtain the spectrum Ṽexp(ω). It allows one to identify
the frequency ω0 of the vibrating magnet, as well as to

Figure 14: Experimental setup for the vibrating ruler. One of
the ruler’s ends remains fixed while the other is free to vibrate.
The magnet is attached to the free end, above a coil, which
will detect an induced voltage produced by the excited vibrating
modes.

Figure 15: Photo of the experimental setup for the magnet in
vibrating motion.

Figure 16: Typical measured result for the induced voltage in
the vibrating ruler experiment.

determine the cutoff frequency of an ideal low-pass filter,
used to remove the high-frequency noise. The absolute
value of the spectrum is shown in Figure 17.

From Figure 17, we determined that ω0 = 59 rad/s,
which is closer to the correct value than measuring the
period of oscillation T in Figure 16 and then obtain
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Figure 17: The spectral function Ṽexp(ω) for a typical measure-
ment in the vibrating ruler experiment.

Figure 18: A comparison of the induced voltage in the coil
between the induced voltage filtered experimental data and
the theoretical predictions obtained inserting the equations of
motion (46) and (47) into (25). The parameters of the vibrating
magnet are ω0 = 59 rad/s, ∆h = 0.7 cm, α = 0.5 s−1 and
ϕ0 = 243.4o.

ω0 = 2π/T , due to the noise present in the raw data.
We also set the low-pass filter cutoff frequency to be 4ω0.
The theoretical curves for induced voltage and magnetic
flux were obtained by inserting the equations of motion
(46) and (47) into (25) and (23). The obtained results
are shown in Figures 18 and 19. The best fitting was
obtained by setting ∆h = 0.7 cm, α = 0.5 s−1 and
ϕ0 = 243.4o.

8. Conclusion

In this paper, we have discussed in detail the realization
of didactical experiments demonstrating Faraday’s law.
They consisted of the motion of a permanent magnet

Figure 19: Comparison between theory and experiment for
the magnetic flux enclosed by the coil in the vibrating ruler
experiment.

in three scenarios: i) free-fall of a magnet under the
gravitational influence, passing through the center of a
conducting coil, whose terminals were connected to an
oscilloscope; ii) the pendular motion of a magnet placed
at the free end of a pendulum, and iii) the magnet
attached to the end of an acrylic ruler. Theoretical
calculations concerning the voltage induced through
the coil were performed using three distinct routes:
i) directly determining the magnetic flux produced by
the free-falling magnet enclosed by the coil; ii) using
the electromagnetic potentials to obtain the electric
field and then the induced voltage along the closed
path where the coil is placed and iii) by means of
reference frame Lorentz transformations in the limit of
v << c. Due to its simplicity, such a complete theoretical
treatment was taken into account. The data obtained
from the experimental realization quantitatively agree
with the theoretical predictions. The fitting allowed us
to estimate the magnetic dipole moment of the perma-
nent magnet used in the experiment, or the vibrating
frequency of the ruler, for example.

Acknowledgments

C.A. Dartora wishes to acknowledge the support of
CNPq – [Brazilian] National Research Council for the
support in shape of a Productivity Research Grant.

References

[1] B. Mahon, The man who changed everything: the life of
James Clerk Maxwell (John Wiley & Sons, New Jersey,
2004).

[2] C.A. Coulomb, Coulomb and the evolution of physics
and engineering in eighteenth-century France (Princeton
University Press, Princeton, 1971).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0297 Revista Brasileira de Ensino de Física, vol. 46, e20230297, 2024



e20230297-12 Revisiting Faraday’s Law

[3] D.C. Christensen, Hans Christian Ørsted: reading
nature’s mind (Oxford University Press, Oxford, 2013).

[4] A.K.T. Assis and J. Chaib, Eletrodinâmica de Ampère
(Editora da Unicamp, Campinas (2011)).

[5] A. Hirshfeld, The electric life of Michael Faraday
(Bloomsbury Publishing, New York, 2009).

[6] A.E. Moyer, Joseph Henry (Smithsonian Books, Wash-
ington, 2018).

[7] B. Mahon, Oliver Heaviside: maverick mastermind of
electricity (Institution of Engineering and Technology,
London, 2009).

[8] J.D. Jackson, Classical electrodynamics (John Wiley &
Sons, New Jersey, 2021).

[9] M.N.O. Sadiku, Elements of Electromagnetics (Oxford
University Press, Oxford, 2010).

[10] J.R. Reitz, Foundations of electromagnetic theory (Pear-
son Education India, Tamil Nadu, 2009).

[11] D.J. Griffiths and R. College, Introduction to Electrody-
namics (Prentice Hall of India, New Delhi, 1998), v. 3.

[12] C.A. Dartora, Teoria do campo eletromagnético e propa-
gação de ondas (Clube de Autores, Curitiba, 2015).

[13] W.E.H. Lecky, Democracy and liberty (Longmans, Green
and Company, London, 1896), v. 2.

[14] A. Atkeson and P.J. Kehoe, The transition to a new
economy after the second industrial revolution (National
Bureau of Economic Research Cambridge, Cambridge,
2001), v. 2.

[15] J. Al-Khalili, Phil. Trans. R. Soc. A 373, 20140208
(2015).

[16] M. Faraday, Phil. Mag 11, 300 (1832).
[17] J. Henry, On the production of currents and sparks of

electricity from magnetism (American Journal of Science
and Arts, Cambridge, 1832).

[18] G.S. Smith, European Journal of Physics 38, 015207
(2016).

[19] W.M. Stine, Journal of the Franklin Institute 155, 363
(1903).

[20] F.E. Neumann, Annalen der Physik 143, 31 (1846).
[21] R. Hessel, A.A. Freschi and F.J.D. Santos, Revista

Brasileira de Ensino de Física 37, 1506 (2015).
[22] N.A. Lemos, Convite à física matemática (Editora

Livraria da Física, São Paulo, 2013).
[23] P. Lorrain, D.R. Corson and F. Lorrain, Electromagnetic

Fields and Waves (W.H. Freeman and Company, New
York, 1988).

[24] A. Feoli, A.L. Iannella and E. Benedetto, Revista
Brasileira de Ensino de Física 43, e20210017 (2021).

[25] D. Koks, Explorations in mathematical physics: the con-
cepts behind an elegant language (Springer, New York,
2006).

[26] M. Goto, Revista Brasileira de Ensino de Física 32, 1310
(2010).

Revista Brasileira de Ensino de Física, vol. 46, e20230297, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0297


	Motivation
	Introduction
	The Magnetic Field of a Magnetic Dipole
	Faraday-Henry's Law Applied to a Free-Falling Magnet
	Analysis using the magnetic potential vector
	The Lorentz transformations viewpoint

	The Free-Falling Magnet Experimental Results
	The Magnet in Pendular Motion Experiment
	The Magnet Attached to a Vibrating Ruler
	Conclusion

