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Equilibrium of a wood stack formed by close-packed
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The static equilibrium of cylindrical wood pieces in a close-packed order is analyzed. By considering the
coefficient of static friction µL between two adjacent logs and the coefficient of static friction µG between the logs
and the ground, it is demonstrated that the more stringent condition for static equilibrium arises from µL. This
holds true for both systems comprising three logs and those with six logs. The value of the lower threshold µ̃L

for equilibrium is greater for a system with six logs compared to three logs. This problem could serve as a study
project in Newtonian mechanics for first-year college students or for advanced high-school physics students.
Keywords: Newtonian mechanics, static equilibrium, Euclidean geometry.

1. Introduction

Real-world problems in physics often stem from every-
day life experiences. However, there are instances where
solving simple problems using classical physics may seem
not very useful or instructive. For example, consider
the scenario where we materially stack cylindrical wood
pieces in a close-packed order as in Fig. 1. Eventually,
the pile collapses. At this juncture, we either accept this
fact as experimental evidence or delve into pencil-and-
paper calculations to gain a deeper understanding of the
system.

However, calculations can be time-consuming, and we
may hesitate to invest significant effort in this endeavor.
Moreover, we might question whether the outcome
of lengthy calculations justifies the effort expended. I
encountered this dilemma last October but then decided
to dedicate an entire weekend in putting down some
notes for the present work. At this stage, I hope that
the solution of the problem at hand could be at least
instructive.

In the present work we begin by examining a simplified
version of the more complex system depicted in Fig. 1: a
configuration comprising three identical logs of mass M
and radius R arranged in a close-packing order as shown
in Fig. 2. In this system, the coefficient of static friction
between the bottom logs and the ground is denoted as
µG, while the coefficient of static friction between two
logs in contact is denoted as µL. Our objective is to find
the intervals µG ≥ µ̃G and µL ≥ µ̃L, where µ̃G and
µ̃L represent threshold values of the coefficients of static
friction, for which the system is seen in equilibrium.

In addition, a simple extension to six logs is also
examined to provide insight into the potential outcomes
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Figure 1: Identical cylindrical logs (the third dimension is not
shown) piled in a close-packed order.

Figure 2: Three identical cylindrical logs of mass M and radius
R are arranged in closed-packed order. All external forces are
shown. The weights of the three logs are applied at the center
of masses C1, C2, C3. The friction forces F⃗1 and F⃗2 are applied
in A and B, respectively. The normal forces N⃗1 and N⃗2 are also
applied in A and B, respectively.
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when the number of logs in the pile is increased. Similar
problems have been investigated, particularly in the
context of sand piles [1]. However, it is worth noting
that in these cases, the elementary component of the
system typically consists of a spherical body rather than
a cylindrical one.

The work is organized as follows. In the following
section the three-logs problem will be defined and solved
by Newtonian mechanics [2, 3]. In the third section
the generalization of the problem to the six-logs system
will be sketched. Conclusions will be drawn in the last
section.

2. Equilibrium Properties of the
Three-Logs System

By considering the system in Fig. 2, we analyze the static
properties of the three-logs system as follows. By taking
n = 3 and by setting the sum of the horizontal and
vertical components of the forces equal to zero, we have:

F1 = F2 = F, (1a)
N1 + N2 − nMg = 0, (1b)

where the friction forces F⃗1 and F⃗2 are applied in A and
B, respectively, and the normal forces N⃗1 and N⃗2 are
applied, in the order, in the same two points.

Calculating torques about point B, we find:

N1 = n

2 Mg. (2)

Calculating torques about point A, we have:

N2 = n

2 Mg. (3)

In this way, because of the solutions found in Eq. (2)
and Eq. (3), by setting N1 = N2 = N , Eq. (1b) becomes
an identity.

We now turn to analyze the internal forces on the top
log, as shown in Fig. 3. By calculating torques about
point C3, we have:

F13 = F23 = F3. (4)

Considering now the sum of the horizontal compo-
nents of all forces, because of Eq. (4), we find:

N13 = N23 = N3. (5)

Finally, by setting to zero the sum of the vertical
components of all forces and by considering Eq. (4) and
Eq. (5), we have:

F3 +
√

3N3 = Mg. (6)

Notice that the angles between the internal forces in
Fig. 3 and the horizontal or vertical axis are either 30◦

or 60◦.

Figure 3: Force diagram for the top log. The only external force
here is the weight, while the friction forces F⃗13 and F⃗23 and the
normal reactions N⃗13 and N⃗23 are internal to the system.

Figure 4: Force diagram for the left bottom log. The external
forces are the following: the weight of the log Mg⃗, the friction
force F⃗ , and the normal reaction N⃗ . The friction force F⃗3 and
the normal reaction N⃗3 are internal to the system.

Consider now the forces acting on the left bottom log,
as shown in Fig. 4. A similar diagram can be drawn for
the bottom right log. However, because of the symmetry
of the problem, we may avoid considering both bottom
logs.

In Fig. 4 we recognize the external forces Mg⃗, F⃗ , and
N⃗ , and the internal forces F⃗3 and N⃗3. We here specify
that the latter force act along the dashed line passing
through C1. Notice also that the horizontal contact force
between the two bottom logs has been neglected. In this
way, by calculating torques about C1, we have:

F3 = F. (7)

By now setting to zero the horizontal and vertical
components of all forces acting on the bottom left log,
we may write:

2F +
√

3F3 − N3 = 0, (8a)
2N −

√
3N3 − F3 − 2Mg = 0. (8b)

By combining Eq. (7), and (8a), we have:

N3 = (2 +
√

3)F3. (9)

On the other hand, by Eq. (2), or Eq. (3), and by
Eq. (8b) we have:

F3 = (n − 2)
2 +

√
3

Mg

2 . (10)
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Therefore, by Eq. (9) we have:

N3 = n − 2
2 Mg. (11)

Assuming Newtonian friction between the logs, we
may set

F3 ≤ µLN3, (12)

so that, because of Eq. (9), the threshold value µ̃L of the
coefficient of static friction µL is given by the following
expression:

µ̃L = 1
2 +

√
3

. (13)

By the same token, because of Eq. (2) or Eq. (3), and
Eq. (7) and (10), the threshold value µ̃G of the coefficient
of static friction µG is given by the following expression:

µ̃G = 1
3(2 +

√
3)

= 1
3 µ̃L. (14)

Therefore, to have equilibrium of the wood stack, we
need to satisfy the following two conditions:

µL ≥ 1
2 +

√
3

≈ 0.268; (15a)

µG ≥ 1
3

(
2 +

√
3
) ≈ 0.089. (15b)

The condition on µL in Eq. (15a) is therefore more
stringent than the condition on µG in Eq. (15b). Inter-
estingly, the solution does not depend explicitly on n.

3. The Six-Logs System

By considering the six-logs system depicted in Fig. 5, we
may try to generalize the results obtained in the previous
section. First, the number n = 6 is now obtained by
considering k = 3 logs in contact with the ground. By
means of little Gauss’s formula, we have n = k(k+1)

2 . In
Fig. 4 we recognize the external forces Mg⃗, F⃗1, F⃗2, N⃗1,
N⃗2, and N⃗3.

By setting to zero the sum of the horizontal and
vertical components of the external forces, we have:

F1 = F3 = F, (16a)
N1 + N2 + N3 − nMg = 0. (16b)

By setting to zero the torques of all forces about point
A, we write:

N2 + 2N3 − nMg = 0. (17)

By now setting to zero the torques of all forces about
point C, we obtain the same expression as Eq. (17) with
N3 substituted by N1. In this way, we may write:

N1 = N3 = N. (18)

Figure 5: Six identical cylindrical logs of mass M and radius
R are arranged in closed-packed order. The external forces are
shown. The weights of the six logs are applied at the center of
masses C1, C2, . . . C6. The friction forces F⃗1 and F⃗3 are applied
in A and C, respectively, while the friction in B is neglected.
The normal forces N⃗1, N⃗2, and N⃗3 are applied in A, B, and C,
respectively.

By the above, Eq. (16b) and Eq. (17) reduce both to
the following expression:

N2 + 2N = nMg. (19)

In this case the system is statically indetermined since
there are infinite solutions to Eq. (19). We thus can solve
the system in terms of one variable as follows.

Let us start by considering the uppermost log. Here
the force diagram is the same as in Fig. 3, except for the
indices, which we show in Fig. 6. By calculating torques
about point C6, we have:

F46 = F56 = F6. (20)

Considering now the sum of the horizontal compo-
nents of all forces, because of Eq. (20), we find:

N46 = N56 = N6. (21)

Finally, by setting to zero the vertical components of
all forces and by considering Eq. (20) and Eq. (21), we

Figure 6: Force diagram for the upper top log. The only external
force is the weight, while the friction forces F⃗46 and F⃗56 and
the normal reactions N⃗46 and N⃗56 are internal to the system.
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Figure 7: Force diagram for the log number 4. The only external
force is the weight Mg⃗. The friction forces F⃗6, F⃗14, and F⃗24,
and the normal reactions N⃗6, N⃗14, and N⃗24 are internal to the
system.

have:

F6 +
√

3N6 = Mg. (22)

As expected, the above equation is seen to be similar
to Eq. (6). We now turn our attention to log number 4
(log #4) and draw the force diagram in Fig. 7 to which
we now refer. In what follows the horizontal contact
forces between two adjacent logs will be neglected. By
summing to zero the torques about C4, we have:

F6 + F14 − F24 = 0. (23)

Setting to zero the sum of the horizontal and vertical
components of all forces acting on log #4, we write, in
the order:

√
3(F6 − F14 + F24) − N6 + N14 − N24 = 0, (24a)

F14 + F24 − F6 +
√

3(N14 + N24 − N6) = 2 Mg. (24b)

We may use the above equations to reduce the number
of variables to four, namely, F6, F14, N6, and N14, all in
one equation:

3F6 + F14 =
√

3(N6 − N14) + Mg. (25)

The same can be done with log #5, for which we show
the force diagram in Fig. 8. By following the same steps
as before, we write the following equations for the forces
in the diagram:

F6 + F35 − F25 = 0. (26a)
√

3(F35 − F6 − F25) + N6 + N25 − N35 = 0, (26b)
F25 + F35 − F6 +

√
3(N25 + N35 − N6) = 2 Mg. (26c)

From Eq. (26a–c) we thus get:

4F6 − F25 =
√

3N25 − Mg. (27)

We now turn to the lowest level and show the force
diagrams for logs #1, #2, and #3 in Fig. 9. Referring to
the latter figure, we notice that, by taking torques about
C1, C2, and C3, we get, in the order:

F14 = F, (28a)
F25 = F24, (28b)
F35 = F. (28c)

Figure 8: Force diagram for the log number 5. The only external
force is the weight Mg⃗. The friction forces F⃗ ′

6, F⃗25, and F⃗35,
and the normal reactions N⃗ ′

6, N⃗25, and N⃗35 are internal to the
system.

Figure 9: Force diagram for the logs number 1, 2, and 3. The
external forces are the weight Mg⃗ on each log, the friction forces
F⃗1 and F⃗3, the normal forces N⃗1, N⃗2, and N⃗3. The friction
forces −F⃗ 14, −F⃗ 24, −F⃗25, and −F⃗35, and the normal reactions
−N⃗14, −N⃗24, −N⃗25, and −N⃗35 are internal to the system.

By now considering log #1, setting to zero the sum of
the x- and y-components of all forces acting on this log,
we have, in the order:

√
3F14 + 2F − N14 = 0, (29a)

2N − 2Mg −
√

3N14 − F14 = 0. (29b)

Considering now log #2 and setting to zero the sum
of the x- and y-components of all forces acting on this
log, we obtain:

(N24 − N25) +
√

3(F25 − F24) = 0, (30a)
2N2 −

√
3(N24 + N25) − (F24 + F25) − 2Mg = 0,

(30b)

In the above equations, because of Eq. (28b), the first
reduces to state the symmetry requirement N24 = N25,
and F24 = F25, while the second can be written as
follows:

N2 −
√

3N24 − F24 = Mg. (31)

Finally, considering log #3 and setting to zero the sum
of the x- and y-components of all forces acting on this
log, we obtain the same equations as in (29a) and (29b),
because of the symmetry requirement N14 = N35.

In this way, we have written down the equations for
static equilibrium. The solution in terms of Mg and
N6 is rather cumbersome and will be sketched in the
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Appendix. We here report the results:

F = 2
√

3N6 − Mg

2 +
√

3
, (32a)

F6 = Mg −
√

3N6, (32b)

F24 = (1 +
√

3)Mg − 3N6

2 +
√

3
, (32c)

N = 2
√

3N6, (32d)
N14 = 2

√
3N6 − Mg, (32e)

N24 = (4 + 3
√

3)Mg − (8 + 3
√

3)N6

2 +
√

3
. (32f)

The requirements to fulfill to have equilibrium are the
following:

F ≤ µGN, (33a)
F6 ≤ µLN6, (33b)
F14 ≤ µLN14 (33c)
F24 ≤ µLN24. (33d)

All the above conditions need to be satisfied to prevent
the system to collapse. By making use of Eq. (32a–f),
and of Eq (28a), the above relations can be written as
follows:

[1 − (2 +
√

3)µG]N6 ≤ Mg

2
√

3
, (34a)

Mg

µL +
√

3
≤ N6 ≤ (4 + 3

√
3)µL − (1 +

√
3)

(8 + 3
√

3)µL − 3
Mg, (34b)

µL ≥ 1
2 +

√
3

, (34c)

where (33b) and (33d) have been combined in (34b). We
notice that Eq. (34c) is equal to Eq. (15a).

In the previous section we found that the most limiting
condition on equilibrium is given by µL, we only analyze
the problem to find the lowest possible value of µL,
namely, µ̃L. We shall only verify that, by considering
µL = µ̃L, Eq. (34a) is verified.

According to Eq. (33c), the lowest possible value of µL

might be 1
2+

√
3 . However, the latter value cannot satisfy

Eq. (34b). In this way, we set:

µL = a

2 +
√

3
, (35)

with a > 1, and look for the lowest value of this quantity
compatible with Eq. (34b). Therefore, we must have:

2 +
√

3
a + 3 + 2

√
3

Mg ≤ N6 ≤ (4 + 3
√

3)a − (5 + 3
√

3)
(8 + 3

√
3)a − (6 + 3

√
3)

Mg.

(36)
To have a solution to the above equation, we must

require:

2 +
√

3
a + 3 + 2

√
3

≤ (4 + 3
√

3)a − (5 + 3
√

3)
(8 + 3

√
3)a − (6 + 3

√
3)

. (37)

In this way, the possible values of the quantity a are
given by the following second-degree inequality:

(4 + 3
√

3)a2 − (12 + 7
√

3) ≥ 0. (38)

Being a > 0, we finally have:

a ≥

√
12 + 7

√
3

4 + 3
√

3
=

√
15 + 8

√
3

11 . (39)

By setting a∗ =
√

15+8
√

3
11 ≈ 1.62, by Eq. (36), we

have:

µ̃L = a∗

2 +
√

3
≈ 0.434. (40)

Comparing the above value with the threshold found
in Eq. (15a), we notice that the coefficient of static fric-
tion between logs must increase, if we wish to maintain
in equilibrium six logs, instead of three.

In this limiting condition, from Eq. (36) we have N6 =
2+

√
3

a∗+3+2
√

3 Mg. Eq. (34a) thus reads:

[1 − (2 +
√

3)µG] 2 +
√

3
a∗ + 3 + 2

√
3

≤ 1
2
√

3
. (41)

In this way, we may write:

µG ≥ 3 + 2
√

3 − a∗

2(12 + 7
√

3)
≈ 0.100. (42)

Comparison of the value of the threshold given by the
above equation with that in Eq. (40) confirms that the
coefficient µL is more critical for equilibrium than µG, as
also found in the three-log system. Moreover, comparing
the results in Eq. (42) and in Eq. (15b), we may observe
that the higher value of the threshold µ̃G means that a
rougher ground is needed to provide equilibrium when
the number of logs increase from three to six.

4. Conclusions

In this work, the equilibrium properties of a stack of
three and six cylindrical wood pieces in a close-packed
order have been studied. This investigation was inspired
by a real-life experience of assembling wood pieces for
a fireplace. Importantly, the analysis is applicable to
similar arrangements of identical cylinders composed
of other substances. As specified, our calculations are
limited to stacks of three and six cylindrical logs for
simplicity reasons. In fact, a more general analysis
would imply solving 3n equations. This number can be
determined as follows: two scalar equations related to
second Newton’s law and one to the torque equation for
each cylinder. Moreover, when a more general analysis
for n > 6 is made, one should consider that four contact
points arise for some of the cylinders in the stack.

In the case of stacks consisting of three and six logs,
the lower threshold values for the coefficients of static
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friction between two adjacent logs and between the logs
and the ground, denoted as µ̃L and µ̃G, respectively,
have been calculated by Newtonian mechanics. For both
stacks, the coefficients µ̃L and µ̃G are seen not to depend
on the dimensions of the individual logs and satisfy the
following inequality:

µ̃L > µ̃G. (43)

The above relation indicates that the coefficient of
static friction between logs is of greater significance for
the equilibrium of the stack. Additionally, it has been
found that by increasing the number of logs from three
to six, the values of µ̃L and µ̃G increase. Consequently, in
some cases, while it may be possible to have equilibrium
for a stack of three logs, it might not be possible to
maintain equilibrium for a stack of six logs made of the
same type of wood.

The analysis presented in the present work can serve
as a study project in Newtonian mechanics to first-
year college students or to advanced high-school physics
students.

Supplementary Material

The following online material is available for this article:
Appendix
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