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In this work, we present a simple method to obtain time average occupation of quantum systems with time-
independent Hamiltonian. Our method is fast and can be used for system with large Hilbert space. The average
occupation can give insights and help finding the best parameter to be used in experiments or for a more complex
simulation using time-depended Hamiltonian and density matrix. As an example of application, we use this method
to find the best parameters to send a laser to excite a two-level system coupled to cavity mode to a final state.
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1. Introdução

The evolution of time-independent Hamiltonian can be
easily evaluated by diagonalizing the Hamiltonian and
writing the wave function as a sum of exponential terms.
This can be done analytically for system with small
Hilbert space and numerically for larger system, as de-
scribed in many textbooks of quantum mechanics [1, 2].
Once we have the time-dependent wave function we can
easily obtain the expectation values and its time average
by integrating it over long times. The time integration
for system with larger Hilbert space usually takes a lot
of computation resources as it requires a time integra-
tion over long time sequences. The average occupation
of a quantum states can give good insight of the best
parameters that an experimentalist needs to manipulate
the system, or the best parameters needed to simulate
the system when a time-dependent field is applied, and
a density matrix is needed to solve. We have being using
the average occupation in Refs. [ [5–9]], usually doing the
numerical integration which uses a lot of computation
resources.

In this paper we derive an analytical expression for
the time average occupation of a quantum state of time-
independent Hamiltonians. This analytical expression
can be used for system with large Hilbert space, speeding
up its numerical computation. As an example, we will
use it to find the best parameters of an external field
needed to excite an atom in a cavity. Here we will use an
Jaynes-Cummings Hamiltonian [3,4] with the addition
of an extra term to describe an external pumping by a
laser field, as in Ref. [ [9]].
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To derive our analytical expression for the average occu-
pation, let’s begin with the time-dependent Schrödinger
equation (~ = 1)

∂ |ψ〉
∂t

= −ıH |ψ〉 , (1)

where H is the Hamiltonian written in a matrix form
in the bases of our observables, which we will call the
original basis, and |ψ〉 is the vector representation of
the wave function, also known as ket representation.
Written in this form, we have a set of N differential
equations, where N is the size of our Hilbert space. For
time-independent Hamiltonian, the general solution for
this equation, which give us the time evolution of our
system, is

|ψ(t)〉 = exp(−ıHt) |ψ(0)〉 , (2)

where

|ψ(0)〉 =
N∑

i=1
ai |i〉 , (3)

is the initial state written in the original basis. If the
Hamiltonian is diagonal, we have the stationary states
in the original basis. For non-diagonal Hamiltonian ma-
trix, we can compute the exponential of the matrix by
diagonalizing it. In this case, the time evolution of the
wave function can be written as

|ψ(t)〉 = C−1C exp(−ıHt)C−1C |ψ(0)〉
= C−1 exp(−ıλt)C |ψ(0)〉 , (4)

where C and C−1 are the matrix change of basis and
its inverse, respectively, that diagonalize H, and λ is
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a diagonal matrix with eigenvalues λj . Notice that in
the expression above we have the multiplication of three
matrix, which multiply the vector |ψ(0)〉. Notice also the
C |ψ(0)〉 is just the representation of the initial state in
the basis that diagonalize H, which we will call

|ψ(0)〉λ = C |ψ(0)〉 =
N∑

j=0
bj |λj〉 (5)

where

bj =
N∑

i=1
Cjiai, (6)

being Cji the matrix elements of the change basis matrix.
The time evolution in the basis that diagonalize H is
then written as

|ψ(t)〉λ =
N∑

j=0
exp(−ıλjt)bj |λj〉 (7)

and in the original basis

|ψ(t)〉 = C−1 |ψ(t)〉λ = D |ψ(t)〉λ , (8)

with D = C−1 being the inverse matrix of the matrix C,
used just to simplify the notation. By doing the matrix
multiplication, we can write

|ψ(t)〉 =
∑
i,j

Dijbj exp(−ıλjt) |i〉 (9)

where Dij is the matrix elements of D. As an example,
for a simple two-level system, the Hilbert space size is
N = 2 and we have

|ψ(t)〉 =[D00b0e
−ıλ0t +D01b1e

−ıλ1t] |0〉
+ [D10b0e

−ıλ0t +D11b1e
−ıλ1t] |1〉 , (10)

which we find in many quantum mechanics text books.
Now that we have the time-dependent wave-function

we can compute the probability to find the system in any
state |i〉 of the original basis by

Pi(t) = |〈i|ψ(t)〉|2, (11)

which can be written as

Pi(t) =
N∑

j=1
|Dijbj |2

+ 2
∑
j,k

DijbjDikbk cos[(λj − λk)t]. (12)

Here we have used that for a Hermitian matrix the eigen-
vectors are real, so the changing basis matrix are also
real. Finally, we want to obtain the average occupation
of the quantum state in the original basis, which we will
define as

Pi = 1
tf

∫ tf

0
Pi(t)dt. (13)

This integral can be easily done, as the only time-dependence
is the cosine function. In the limit of tf → ∞,

lim
tf →∞

sin[(λj − λk)tf ]
tf

= 0, (14)

for any j, k. This allow us to write the average occupation
as

P0 =
N∑

j=1
|Dijbj |2. (15)

This analytical solution only depends on the initial state
component of the original basis (ai), the change basis
matrix C and its inverse D, which can be obtained by
diagonalize the Hamiltonian H and take the eigenstates
coefficients to build the change basis matrix C and eval-
uate its inverse D.

To exemplify this result, let assume the Jaynes-Cummings
Hamiltonian describing a two-level system with frequency
ω0 inside a cavity with mode frequency ωc, with the ad-
dition of an external pumping with frequency ωp of the
two-level system. An schematic representation of our sys-
tem can be seen in Fig. 1, and its Hamiltonian, using
the Rotation Wave Approximation (RWA) [10] can be
written as (~ = 1)

H =ω0σ+σ− + ωca
†a+ g(σ+a+ σ−a

†)

+ Ω(t)
2 (σ+e

−ıωp + σ−e
ıωp), (16)

where σ± are the pseudospin operators for the two-level
system, a† and a are the creation and annihilation op-
erators for photons inside the cavity, g is the coupling
between the cavity field and the two-level system, and
Ω(t) is the interaction strength of the external field with
the two-level system.

Assuming Ω(t) constant and using a unitary transfor-
mation, the time dependence of the Hamiltonian can be
removed, and we can write it as

H =(δc − δp)σ+σ− + δpa
†a

+ g(σ+a+ σ−a
†) + Ω

2 (σ+ + σ−), (17)

Figure 1: Schematic representation of a two-level system inside
a cavity under coherent pumping.
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where δc = ω0 − ωc and δp = ωc − ωp are the detuning
between the two-level system and the cavity and the
detuning between the cavity and the laser frequency,
respectively.

Once we have a time-independent Hamiltonian we
can use our average occupation approach to find a set
of parameters that allow us, for example, to excite the
system to very specific state final state. The advantage
of our approach is that it allows us to vary different
parameters in a large range with a low computer cost. In
Fig. 2 we plot the average occupation probability for the
ground state of our system, as a function of the laser-
cavity detuning (δp) and two-level-cavity detuning (δc),
assuming that we pump the system with an constant
coherent laser with Ω = 1g and that we started the
system in the ground state with no photons in the cavity,
ψ(0) = |0, 0〉, where we use a basis |s, n〉 = |s〉 ⊗ |n〉,
with |s〉 being the two-level states and |n〉 the Fock state
basis. Here we cut the Fock basis with nmax = 5. The
false color code represents the average occupation of the
initial state. From this plot we can see that in bright
regions the system stays in the ground state, while in
dark areas the laser is able to populate some states in the
system, which we can easily identify by just plotting the
average occupation of the other states, result not shown.

To find the exact parameters, we can make a cut in the
2D color plot. This can be seen in Fig. 3, where we plot
the average occupation of all states, considering vertical
cut at δc = −5g, as a function of δp. This is equivalent
to keep fixed cavity and two-level system frequency and
vary the laser frequency. As we can see, the ground state
gets depopulated when other states are getting populated.
In the inset we amplify one of the regions where we see
this behavior. In this particular case, the state being
populated is the state |1, 1〉 and the parameter where
this occurs is δp = −2.775g.

With this set of parameters (δc = −0.5g e δp =
−2.775g) we now simulate the time evolution of the
system considering as initial state the ground state of the
two-level system with no photon in the cavity |ψ(0)〉 =

Figure 2: False color plot of the average occupation of the
ground state P0,0 as function of the laser-cavity detuning (δp)
and two-level-cavity detuning (δc).

Figure 3: Average occupation of all states, considering vertical
cut at δc = −5g in Fig. 2, as a function of δp. Inset shows
an amplification around δp = −2.775g where state |1, 1〉 is
populated.

|0, 0〉 and a laser field with intensity Ω = 1g. The results
show that we have Rabi oscillations between the states
|0, 0〉 and |1, 1〉 as seen in Fig. 4, which is a two-photon
process, since the system present two excitation, one for
the two-level and other for the photon in the Fock state.
This was predicted in the average occupation as seen
in Fig. 3. It would be very difficult to find the exactly
parameter need for that evolution without using our
average occupation approach.

In summary, in this paper we have presented a sim-
ple way to compute the average occupation of a time-
independent Hamiltonian. Our approach allows us to
obtain an analytical expression that can be easily imple-
mented using standard matrix diagonalization method.
This speed-up the computation and allows to obtain
the average occupation for systems with large Hilbert
space and find suitable parameter for a more complex
simulation using density matrix or for experimental in-
vestigations.

Figure 4: Time evolution of the system using the parameter
obtained from the analysis of the average occupation, δc =
−0.5g, δp = −2.775g and Ω = 1g.
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