RESUMO
Ao mesmo tempo em que se discutem problemas na relação médico-paciente e a deficiência do exame clínico na atenção médica, que torna o diagnóstico clínico mais dependente de exames complementares, enfatiza-se cada vez mais a importância do computador em medicina e na saúde pública. Isto se dá seja pela adoção de sistemas de apoio à decisão clínica, seja pelo uso integrado de novas tecnologias, incluindo as tecnologias vestíveis/corporais (wearable devices), seja pelo armazenamento de grandes volumes de dados de saúde de pacientes e da população. A capacidade de armazenamento e processamento de dados aumentou exponencialmente ao longo dos recentes anos, criando o conceito de big data. A Inteligência Artificial processa esses dados por meio de algoritmos, que tendem a se aperfeiçoar pelo seu próprio funcionamento (self learning) e a propor hipóteses diagnósticas cada vez mais precisas. Sistemas computadorizados de apoio à decisão clínica, processando dados de pacientes, têm indicado diagnósticos com elevado nível de acurácia. O supercomputador da IBM, denominado Watson, armazenou um volume extraordinário de informações em saúde, criando redes neurais de processamento de dados em vários campos, como a oncologia e a genética. Watson assimilou dezenas de livros-textos em medicina, toda a informação do PubMed e Medline, e milhares de prontuários de pacientes do Sloan Kettering Memorial Cancer Hospital. Sua rede de oncologia é hoje consultada por especialistas de um grande número de hospitais em todo o mundo. O supercomputador inglês Deep Mind, da Google, registrou informações de 1,6 milhão de pacientes atendidos no National Health Service (NHS), permitindo desenvolver novos sistemas de apoio à decisão clínica, analisando dados desses pacientes, permitindo gerar alertas sobre a sua evolução, evitando medicações contraindicadas ou conflitantes e informando tempestivamente os profissionais de saúde sobre seus pacientes. O Deep Mind, ao avaliar um conjunto de imagens dermatológicas na pesquisa de melanoma, mostrou um desempenho melhor do que o de especialistas (76% versus 70,5%), com uma especificidade de 62% versus 59% e uma sensibilidade de 82%. Mas se o computador fornece o know-what, caberá ao médico discutir o problema de saúde e suas possíveis soluções com o paciente, indicando o know-why do seu caso. Isto requer uma contínua preocupação com a qualidade da educação médica, enfatizando o conhecimento da fisiopatologia dos processos orgânicos e o desenvolvimento das habilidades de ouvir, examinar e orientar um paciente e, consequentemente, propor um diagnóstico e um tratamento de seu problema de saúde, acompanhando sua evolução.
Relação Médico-Paciente; Exame Clínico; Sistemas de Apoio à Decisão; Inteligência Artificial; Dispositivos Corporais; Educação Médica