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Introduction

The Atlantic Forest (AF) domain is dated to approximately 60 million 
years ago, when there was an area climatically suitable for the formation 
and expansion of a tropical forest (Por, 1992). In the last thousands of 
years, oscillations in global climate and sea levels resulted in drastic 
changes in biodiversity distribution (Vanzolini and Williams, 1981; 
Carnaval and Moritz, 2008).

Climate changes along the Last Glacial Maximum (LGM, around 
21 thousand years ago) have been reflected in the evolutionary 
history of many taxa (Mustrangi and Patton, 1997; Costa et al., 2003; 
Pellegrino et al., 2005; Grazziotin et al., 2006; Cabanne et al., 2007; 
Thomé et al., 2014). The species comprising the AF, therefore, result 
from a dynamic evolutionary history, though many of the details of 
the processes involved remain unsolved (Mustrangi and Patton, 1997; 
Pellegrino et al., 2005). Two are the hypotheses most widely discussed 

about drivers of diversification in South American tropical forests 
(Moritz et al., 2000): (i) Pleistocene refugia (Haffer, 1969; Vanzolini and 
Williams, 1970; Prance, 1982; Graham et al., 2006; Rocha and Kaefer, 
2019), and (ii) rivers as geographic barriers (Wallace, 1852; Campbell 
Junior et al., 2006, Latrubesse et al., 2010; Fernandes et al., 2012; 
Ribas et al., 2012; Maldonado‐Coelho et al., 2013). The diversification 
process would occur through the reduction of gene flow between 
populations caused by geographic isolation (Dantas et al., 2011).

The effects of different paleoclimatic events on AF-endemic invertebrate 
taxa are still poorly explored, especially concerning megadiverse 
groups such as insects of the order Coleoptera (Erwin, 1985; Lü et al., 
2020; Baird et al., 2021). Understanding the space-time dynamics of 
the ecological niche occupied by these groups can provide valuable 
insights into the drivers of diversification along habitat transitions in 
the AF, and about the future of species under global climate change 
scenarios (Hoffmann and Sgrò, 2011; D’Amen et al., 2012). For example, 
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there is evidence that paleoclimate differentiation in the northern and 
southern AF portions resulted in biogeographic histories divergences 
(Ledru et al., 2005; Carnaval and Moritz, 2008).

Ecological niche modeling (ENM) is a technique used to predict 
environmental suitability for the occurrence of a particular species in 
a spatial area. For this purpose, data from the current distribution of 
the species and a set of environmental variables are used. This routine 
is widely employed as a way of predicting the potential distribution 
of species with diverse goals, including biological invasions (Peterson, 
2011), evolutionary patterns (Graham et al., 2004; Paul et al., 2009), 
phylogeography (Carnaval et al., 2014; Peres et al., 2015), historical 
biogeography (Sobral-Souza et al., 2015), among other purposes that 
demonstrate the potential of using the modeling technique for past or 
future temporal scenarios (Hijmans and Graham, 2006).

These models have contributed to diminishing the gaps in the 
knowledge of species distribution, assisting projects for conservation, 
such as identifying hotspots of biological diversity (Lehmann et al., 
2002; Arcos et al., 2012), establishing conservation strategies for 
species in the current or future scenario (Guisan and Theurillat, 2001; 
Moritz, 2002; Mawdsley et al., 2009; Algar et al., 2009; Guisan et al., 
2013; Morato et al., 2014; Porfirio et al., 2014; Hoffmann, 2021), 
and understanding patterns of species distribution and community 
establishment processes (Thuiller et al., 2006; Guisan and Rahbek, 2011).

In a nutshell, species niche reconstruction has as main objectives: 
(i) to reconstruct the potential historical distribution (Yesson and 
Culham, 2006), (ii) to find areas in the past where the environmental 
tolerance of the species acted as corridors of dispersal and are currently 
climatically inadequate (Weaver et al., 2006), (iii) understand how the 
climatic niche (environmental factors) and species divergence can 
relate (Gorel et al., 2019).

The dung beetles of the subfamily Scarabaeinae comprise 6.891 valid 
species grouped into 282 genera (Schoolmeesters, 2024). In Brazil, 
786 species have been recorded in 69 genera (Vaz-de-Mello, 2024). Scarab 
beetles have been used for environmental conservation assessment, 
reserve planning, and global warming studies (Favila and Halffter, 1997; 
Barbero et al., 1999; Davis, 2002; Spector, 2006; Nichols et al., 2007; 
Nichols and Gardner, 2011). The restricted ecological niches of many 
species enable the use of dung beetles as environmental bioindicators 
or in ecological biogeographic studies. Cupello et al. (2023) stated that 
dung beetles have been one of the major taxa used as bioindicators 
during the past decades by ecologists. Despite being considered one 
of the major taxa for ecological studies in tropical biomes, only a 
couple of recent studies have been performed using ecological niche 
modeling to investigate how environmental and climatic suitability 
influence the distribution of Neotropical species (Moctezuma et al., 
2021; Cupello et al., 2022; Lizardo et al., 2022; Vieira et al., 2022a; 
Moctezuma et al., 2024).

The Dichotomius sericeus species group comprises nine known 
species distributed in Brazil, Paraguay, and Argentina (Vaz-de-Mello et al., 
2001; Valois et al., 2017; Silva et al., 2020). Its species live in AF and 
associated ecosystems such as Caatinga and Restinga (Vieira et al., 2008; 
Vieira et al., 2011; Valois et al., 2017; Silva et al., 2020). Many of these 
ecosystems are threatened by fragmentation, defaunation, logging, 
and agricultural expansion (Halffter and Favila, 1993; Audino et al., 
2014; Dirzo et al., 2014; Vieira et al., 2008, 2011, 2022a). Some species 
of the D. sericeus group are, therefore, at imminent risk of extinction. 
For example, Dichotomius schiffleri Vaz-de-Mello, Gavino & Louzada, 
2001 has its current geographic distribution limited to a narrow strip of 
Restinga on the Brazilian coast between the states of Pernambuco and 
Espírito Santo (Vieira et al., 2011) and, recently, D. valoisae Silva et al., 
2020 was described from a small area of   AF (Silva et al., 2020).

The species of these group are a dominant component in their 
communities, in addition, they are susceptible to being delimited by 
geographic or ecological barriers (Vieira et al., 2022b), rendering them 
a good model to test biogeographic hypotheses.

In this study, we built ecological niche models for species of the 
Dichotomius sericeus group in different climate periods of the present 
and past to verify how the climatic oscillations in the AF domain during 
the Quaternary influenced the species distribution. In addition, these 
ecological niche models can be used to verify sampling gaps along 
regions with high climatic suitability, something useful not only for 
basic sciences like biogeography and systematics but also applied 
ones such as conservation (Chefaoui et al., 2005; Lawler et al., 2011).

Material and methods

Study area

All species studied here are limited to areas of the AF domain. This 
biogeographical unit encompasses different vegetation types, namely 
ombrophilous, deciduous, semi-deciduous, and Araucaria forests, as 
well as the Restinga and the high altitude fields. The AF domain extends 
from the eastern coast of South America to portions further inland, 
following the main courses of rivers and tributaries, and mountainous 
regions. Morrone et al. (2022) named this biogeographic unit “Parana 
dominion”.

Occurrence records

The records for each species analyzed were obtained from Valois et al. 
(2017) (Figs. 1a-e). Each occurrence was obtained through label data from 
individuals examined during the taxonomic revision of the D. sericeus 
species group. The occurrence data were included individually (not 
transformed into presence cells). We built individual models only for 
species with more than ten known occurrence records: D. iannuzziae 
Valois, Vaz-de-Mello & Silva, 2017 (23 records), D. schiffleri (34), 
D. laevicollis (Felsche, 1901) (11), D. sericeus (Harold, 1867) (62), and 
D. irinus (Harold, 1867) (29).

Setting the current and paleoclimatic variables

For the prediction of the historical distribution of the species, 
19 current and paleobioclimatic variables available at the WorldClim 
website (Fick and Hijmans, 2017) were selected. The selected historical 
clipping corresponds to four climate scenarios: present, mid-Holocene 
(6 ka), last glacial maximum ‒ LGM (21 ka), and last interglacial maximum 
‒ LIG (120 ka). Paleoclimatic data were based on Atmosphere-Ocean-
Global-Circulation-Models (AOGCM) Community Climate System Model 
v.3 (CCSM3) simulations. Paleoclimatic data from the LIG were based on 
Otto-Bliesner et al. (2006). All variables were in the WGS84 datum and 
were cut to the extent of Chacoan and Parana dominions (Morrone et al., 
2022), with 2.5’ Arc-resolution (~5 x 5 Km, in the Equator region). This 
extension was chosen as the background as it encompasses all known 
occurrences of the species and this is considered a potential area for 
the historical dispersal of the species, two background selection criteria 
discussed by Barve et al. (2011).

The 19 bioclimatic (current climate scenario) and paleoclimatic (past 
climate scenario) variables available in WorldClim are correlated with 
each other. Therefore, a variable selection process becomes necessary as 
a way to reduce the collinearity of environmental data (Peterson et al., 
2011; Varela et al., 2015). For that, we performed factor analysis using 
current bioclimatic variables through VariMax Rotation of the orthogonal 
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axes (details in Sobral-Souza et al., 2015). In sequence, the following 
variables were selected: Mean Temperature of Warmest Quarter (BIO 
10), Temperature Seasonality (BIO 04), Precipitation of Driest Quarter 
(BIO 17), and Mean Diurnal Range (BIO 02), which explain 87% of the 
climate variance in the spatial area of the study.

Modeling techniques

Currently, there are several algorithms available in the literature 
(Qiao et al., 2019), such as presence-only, presence and background, and 
presence and absence algorithms. Each tends to estimate a different 
distribution based on different niche assumptions (Jiménez-Valverde et al., 
2008). Therefore, there is no 100% efficient algorithm (Qiao et al., 2015) 
and it becomes necessary to use several algorithms simultaneously.

Four algorithms were selected to construct the models: two that deal 
only with presence data, Bioclim (Nix, 1986) and Gower (Carpenter et al., 
1993), and two of pseudoabsence, Maximum Entropy ‒ Maxent (Phillips 
and Dudík, 2008) and Support Vector Machines – SVM (Tax and Duin, 
2004). We did not use presence-absence algorithms as true absence points 
are not known for the studied species. Species occurrence data were 
randomly divided into 70% for training and 30% for testing. The bootstrap 
technique was used to reduce the autocorrelation between these data 
(Peterson et al., 2011), opting for 10 sets of data randomization for each 

species within each climate scenario. The models were built for four 
climate scenarios: present, 6 ka, 21 ka, and 120 ka. In total, 160 models 
were generated (10 randomizations; 4 algorithms; 4 climate scenarios) 
for each species. In sequence, we established cut-off thresholds for 
each model to transform them into presence-absence data. The models 
were evaluated using True Skill Statistic (TSS, Allouche et al., 2006). 
The TSS values vary from -1 to 1, where negative values or close to 
0 correspond to models with low accuracy, indicating that they do not 
differ statistically from randomly generated models. Values close to 
1 correspond to excellent models. However, values above 0.5 are still 
considered suitable (Allouche et al., 2006).

The suitability maps of each species were obtained using the 
ensembles forecasting technique (Araújo and New, 2007). This technique 
enabled the concatenation of the 10 maps produced by each of the 
4 algorithms. In sequence, it gathered the 4 maps produced by each 
algorithm. The 40 maps resulting from this procedure have suitability 
values ranging from 0‒40. These values demonstrate the frequency 
with which the species was predicted for each cell.

Results

The niche models provided reliable predictions in all used algorithms 
(Table 1), except for the mean TSS value for the models generated in 

Figure 1 Known distribution of five species of the D. sericeus group: (a) Dichotomius iannuzziae Valois, Vaz-de-Mello & Silva, 2017. (b) Dichotomius irinus (Harold, 1867). (c) 
Dichotomius laevicollis (Felsche, 1901). (d) Dichotomius schiffleri Vaz-de-Mello, Gavino & Louzada, 2001. (e) Dichotomius sericeus (Harold, 1867).

Table 1 
Mean and Standart deviation (SD) values of True Skill Statistic (TSS) for all combinations of algorithms for each generated model.

Algorithm Bioclim Gower Maxent SVM

Dichotomius laevicollis 0.33 ± 0.22 0.73 ± 0.21 0.57 ± 0.22 0.67 ± 0.27

Dichotomius schiffleri 0.86 ± 0.11 0.97 ± 0.06 1.00 ± 0.00 1.00 ± 0.00

Dichotomius iannuzziae 0.65 ± 0.17 0.80 ± 0.11 0.90 ± 0.09 0.93 ± 0.09

Dichotomius irinus 0.75 ± 0.18 0.89 ± 0.09 0.94 ± 0.07 0.90 ± 0.10

Dichotomius sericeus 0.68 ± 0.08 0.78 ± 0.08 0.75 ± 0.13 0.83 ± 0.12

SVM sector vector machine
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Bioclim for D. laevicollis (0.33 ± 0.22). All other models generated for 
each species reached mean values above 0.5 for all algorithms.

The models generated for D. iannuzziae in the LIG (120 ka) indicate 
continuous areas of climate suitability along the northeastern coast of 
Brazil (Fig. 2a). This species had the potential distribution areas retracted 
and fragmented during the LGM (21 ka). The climate suitability areas 
were restricted to small and isolated portions along the northeastern 
coastline that would have behaved as refuges (Fig. 2b). In the Holocene 
(6 ka), the climate suitability areas for the species would expand again, 
potentially reconnecting disjunct populations (Fig. 2c). At present, the 
species has a broad potential distribution (Fig. 2d). These supposed 
recently colonized areas and the areas that would have been permanently 
inhabited can be validated in future molecular studies. However, the 
climate suitability areas for D. iannuzziae were always restricted to 
northeastern Brazil within the entire time frame analyzed (Figs. 2a-d).

In general, D. irinus presents a historical pattern of climate suitability 
areas different from D. iannuzziae. At 120 ka, the species had disjunct 
climate suitability areas (i - one in northeastern Brazil, from the coast 
to inland portions; ii - one on the southeastern coast; iii - four disjunct 
areas inland along a northeastern/southwestern axis) (Fig. 3a). During 
the LGM, the potential climate areas were concentrated in northeastern 
Brazil, both on the coast and inland (Fig. 3b). Since then, the potential 
areas have expanded along the southeastern coast and inland areas 
of AF (Figs. 3c-d).

The historical patterns of the potential areas of D. laevicollis are 
similar to those of D. irinus. These two species presented a higher 
climate suitability in isolated refuges in the northeastern, southeastern 
coast, and inland AF in 120 ka (Figs. 3a, 4a). Dichotomius laevicollis also 
showed the same pattern of displacement to the northeastern during 
the LGM, and had its potential climatically favorable areas expanded into 
the AF from 6 ka to the present (Figs. 4c-d). However, concerning the 

previous species, D. laevicollis presents more extensive and continuous 
areas, besides a few changes in its climate suitability areas over time, 
showing greater tolerance to historical climate changes (Figs. 4a-d).

Dichotomius schiffleri has the smallest area of climate suitability 
(Figs. 5a-d). Over time, the species probably remained limited to lowland 
AF areas on the Brazilian coast. It is currently found preferentially in 
Restinga ecosystems along the coast. At 21 ka, the climate suitability 
areas became greatly reduced (Fig. 5b).

Dichotomius sericeus has the most extensive areas of climatic 
suitability (Figs. 6a-d). The species is currently recorded in the southeastern 
portion of the continent, from the interior highland forests to the coastal 
areas (Valois et al., 2017) (Fig. 1e). Climate changes during the LGM 
would have reduced its areas of climatic suitability and at the same 
time promoted an expansion along a narrow strip across the Atlantic 
coast towards the northeastern region of Brazil (Fig. 6b). Over the 
last 6 ka, suitable areas became mainly concentrated in southern and 
southeastern Brazilian AF, reaching Argentina, Paraguay, and portions 
of the Bolivian Chaco through AF incursions (Figs. 6c-d).

Discussion

Herein, we studied how climatic oscillations throughout the 
Quaternary have influenced the potential distribution based on climate 
for dung beetles endemic to the AF. The Dichotomius sericeus species 
group currently has a wide occurrence in areas of the AF Domain 
(Valois et al., 2017) (Figs. 1a-e). However, the historical distribution 
models built for the analyzed species indicate that climatic oscillations 
during the Quaternary influenced the distribution patterns differently 
over time, with some retractions and/or expansions in areas of climatic 
suitability (Figs. 2-6).

Figure 2 Ensembles Forecasting Models for Dichotomius iannuzziae in four historical climate scenarios: (a) 120ka. (b) 21ka. (c) 6ka. (d) Present. Colors represent different degrees 
of climatic suitability (red: high suitability, blue: low suitability).
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Figure 3 Ensembles Forecasting Models for Dichotomius irinus in four historical climate scenarios: (a) 120ka. (b) 21ka. (c) 6ka. (d) Present. Colors represent different degrees of 
climatic suitability (red: high suitability, blue: low suitability).

Figure 4 Ensembles Forecasting Models for Dichotomius laevicollis in four historical climate scenarios: (a) 120ka. (b) 21ka. (c) 6ka. (d) Present. Colors represent different degrees 
of climatic suitability (red: high suitability, blue: low suitability).
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Figure 5 Ensembles Forecasting Models for Dichotomius schiffleri in four historical climate scenarios: (a) 120ka. (b) 21ka. (c) 6ka. (d) Present. Colors represent different degrees 
of climatic suitability (red: high suitability, blue: low suitability).

Figure 6 Ensembles Forecasting Models for Dichotomius sericeus in four historical climate scenarios: (a) 120ka. (b) 21ka. (c) 6ka. (d) Present. Colors represent different degrees 
of climatic suitability (red: high suitability, blue: low suitability).
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The disjunct climatically suitable areas observed in some models, 
mainly in the 120 ka (Figs. 3a, 4a) and 21 ka models (Figs. 2b, 5b), 
suggests that climate oscillations may have contributed to diversification 
processes within the group through geographic isolation of lineages. 
According to the refugia hypothesis (Haffer, 1969; Haffer and Prance, 
2002, cyclical climate changes in the Pleistocene drove speciation 
processes by promoting contraction, fragmentation, expansion, and 
reconnection of tropical forests.

The combination of distribution data and phylogenetic information 
can provide robust hypotheses to understand diversification processes 
and biogeographic patterns in tropical forests (Batalha-Filho et al., 
2013; Mascarenhas et al., 2019; Silveira et al., 2019; Sheu et al., 2020). 
Unfortunately, there are still no molecular dating or phylogenetic analysis 
published for the D. sericeus species group. These information may be 
helpful to understand whether the Quaternary climate changes had 
influenced the species ranges and their respective populational sizes, 
or if were also responsible for speciation processes within the group.

During the Quaternary period, some species exhibited distinct 
responses to climate changes. Dichotomius irinus and D. laevicollis 
had a similar historical pattern (Figs. 3a-d, 4a-d). At the same time, 
they were distinct from D. iannuzziae, D. schiffleri, and D. sericeus 
(Figs. 2a-d, 5a-d, 6a-d). In 120 ka, the climatically suitable areas of those 
two species were quite fragmented, with a high suitability in isolated 
refuges in northeastern Brazil, the southeastern coast, and inland AF 
(Figs. 3a, 4a). Meanwhile, the other three species had a more continuous 
suitable areas in this period (Figs. 2a, 5a, 6a). During the LGM, the areas 
of climate suitability of D. irinus and D. laevicolis also exhibited the 
same pattern of displacement into northeastern Brazil, and expansion 
to inland AF from 6 ka to the present (Figs. 3b, 4b). On the other hand, 
other species showed retraction and fragmentation into their range 
(Figs. 2b, 5b, 6b) instead of changing their areas of climatic suitability 
as mentioned for D. irinus and D. laevicollis.

The regional response to climate change among the studied species 
may be associated with differences in their altitudinal ranges. According 
to Batalha-Filho et al. (2014), the lowlands and upland regions of the AF 
seem to have been differently affected by the Quaternary climate change. 
In general, species from lowland forests were strongly influenced by the 
effect of the Last Glacial Maximum (Carnaval et al., 2009), while some 
highland species were not (Amaro et al., 2012; Batalha-Filho et al., 2012). 
Individuals of D. irinus and D. laevicollis are generally found in moderate 
elevations and inland plateau regions, while D. schiffleri, for instance, is 
currently found at low elevations close to sea level (Valois et al., 2017) 
(Figs. 1b-d). This latter species might have suffered a drastic reduction 
in areas of climatic suitability during the LGM (Fig. 5b).

Except for D. sericeus, which exhibits climatically suitable areas in 
the southern and southeastern AF (Figs. 6a-d), all other species have 
climatically suitable areas along lower latitudes. D. sericeus is a habitat 
generalist species, and its geographic distribution comprises intermediate 
latitudes of AF from Argentina and Paraguay to southern and southeastern 
Brazil (Fig. 1e) (Valois et al., 2017). The species may have expanded its 
distribution northwards in the LGM through a narrow strip along the 
coast of Brazil to the northeastern region (Fig. 6b). The climate during 
this period would have provided milder temperatures and favorable 
conditions for its establishment in that region.

The potential distribution models at the present exhibits similar 
potential distributions for D. iannuzziae, D. schiffleri, and D. sericeus 
(Figs. 2d, 5d, 6d) compared to their current known ranges (Figs. 1a, d, e). 
D. iannuzziae occurrence goes from northern Pernambuco to eastern 
Minas Gerais (Valois et al., 2017; Araújo et al., 2020) (Fig. 1a); in D. 
schiffleri it goes from the southern coast of Pernambuco to the north 
coast of Espírito Santo (Valois et al., 2017) (Fig. 1d); and in D. sericeus 
it stretches along wide portions in southern and southeastern Brazil, 

reaching Argentina and Paraguay by the AF incursions through main 
rivers and tributaries (Valois et al., 2017) (Fig. 1e).

The models for D. irinus and D. laevicollis indicate that the inland 
AF in northeastern Brazil has favorable climatic conditions for these 
species maintenance, as well as some isolated parts of the Brazilian 
central plateau (Figs. 3d, 4d). However, these species have known 
distributions more restricted. Dichotomius irinus was only recorded 
from northern Bahia to Rio de Janeiro (Valois et al., 2017) (Fig. 1b), and 
D. laevicollis from southern Bahia to Rio de Janeiro, through Espírito 
Santo and the central and eastern portions of Minas Gerais (Valois et al., 
2017) (Fig. 1c). Although the models have indicated climatically suitable 
areas in inland northeastern Brazil, we believe the absence of records for 
these two species in northern Bahia is not due to sampling gaps. Several 
collections of dung beetles have already been carried out in different 
ecosystems of the northeastern region (Costa et al., 2009; Silva et al., 
2010; Barretto et al., 2021). Therefore, we believe that historical and/
or ecological aspects of biogeography, such as geographic or ecological 
barriers, can better explain these distribution patterns. For example, the 
greatest species richness of the group is found in northeastern Brazil; 
such diversity may mean that all available niches for medium-sized 
borrowers have already been filled there. Competitive exclusion from 
these native, locally adapted species might, in turn, have prevented both 
D. irinus and D. laevicollis from dispersing and occupying the region.

As mentioned, the current distribution of species richness is not 
homogeneous along the AF. The northeastern region has several regional 
endemics and different phytophysiognomies, such as dense ombrophylous 
forest, open ombrophylous forest, submontane semideciduous seasonal 
forest, montane semideciduous seasonal forest, and associated ecosystems, 
such as mangroves and restingas, which provide varied ecological niches for 
these species. Eight out of the nine known species of the group currently 
occupy the AF domain in northeastern Brazil (Vieira et al., 2008; Vieira et al., 
2011; Valois et al., 2017; Araújo et al., 2020; Silva et al., 2020). Two of those 
species, D. schiffleri and D. valoisae, are already recognized as threatened 
(Vieira et al., 2008; Vieira et al., 2011; Silva et al., 2020). In addition, 
northeastern Brazil has the most endangered AF remnants in the country. 
This region has only about 2.21% of its original coverage reduced to small 
and isolated fragments, some smaller than 10 ha (Tabarelli et al., 2006).

Dichotomius schiffleri probably experienced populational bottlenecks 
that may have reduced genetic variability since at 21 ka the climate 
suitability areas became greatly reduced (Fig. 5b). It has its current 
geographic distribution limited to a narrow strip of the Brazilian 
coast (Vieira et al., 2011; Vieira et al., 2022a) (Fig. 1d). Individuals are 
found usually inhabiting restinga ecosystems between the states of 
Pernambuco and Espírito Santo. Restinga refers to a mosaic of different 
coastal vegetation types, ranging from open scrubs to forests. These 
ecosystems have undergone an intense transformation since European 
colonization (Lacerda et al., 1984). Most of restinga areas are threatened 
by residential development, fire, and wood exploitation (Vieira et al., 
2008, 2011, 2022a). Even in the face of this ongoing habitat loss, it has 
not been adequately prioritized in most conservation strategies due to 
its low levels of faunal and flora endemism (Vieira et al., 2008). The few 
protected areas that have been created were established in disturbed 
fragments after habitat loss had already occurred. The extirpation of 
restinga patches brings on colonization by cerrado-adapted and generalist 
species of dung beetles from other ecoregions, which may lead to local 
species extinctions (Vieira et al., 2022a). Historical climate changes 
need to be investigated to better understand why forest dung beetle 
species are sensitive to microclimate changes and habitat modification.

The present study highlights the influence of the historical climate 
scenarios on forest dung beetle species in tropical forests. Climate 
suitability of dung beetle species is an issue not frequently addressed in 
research, despite the urgent need for species distribution data under a 
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scenario of ongoing climate change (Lobo and Davis, 1999; Martín-Piera, 
2001; Lobo and Martín-Piera, 2002; Chefaoui et al., 2005; Dortel et al., 
2013; Vieira et al., 2022b). Some recent studies that have addressed 
climate suitability in Neotropical fauna of dung beetles provided new 
insights into the Mexican Transition Zone theory (Moctezuma et al., 
2024), the effects of climate changes on the spatial distribution of 
endangered dung beetles (Vieira et al., 2022a), and the use of species 
distribution models to describe dung beetle species richness or to test 
their diversification patterns (Moctezuma et al., 2021; Cupello et al., 
2022; Lizardo et al., 2022). Hence, we reinforce that past climate patterns 
must be addressed to understand the present and predict the future 
patterns of dung beetle species distributions to provide reliable data 
for conservation purposes.

The historical distribution of the D. sericeus dung beetles species 
group has been influenced by paleoclimatic changes that occurred in the 
AF over the last 120 ka. These species are sensitive to climate change and, 
due to the strong habitat restrictions of some species such as D. schiffleri, 
they may be considered endangered. The paleoclimatic models might be 
integrated with models of ancestral area reconstruction to test diversification 
hypotheses in the AF. This approach connects hypotheses of historical and 
ecological biogeography, providing subsidies to understanding patterns 
of diversification and species richness by considering the biogeographic 
history of species and clades that give rise to these patterns.
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