Acessibilidade / Reportar erro

Dry matter partitioning differences between shoots and roots in two contrasting genotypes of orchids and their relationship with endogenous levels of auxins, cytokinins and abscisic acid

Diferenças na partição de matéria seca entre os caules e raízes em dois genótipos contrastantes de orquídeas e sua relação com os níveis endógenos de auxinas, citocininas e ácido abscísico

Epiphytic orchids have been considered an interesting model for plant development and may have unusual features related to the hormonal control of shoot and root growth. In the present experiment we have studied two genotypes of Catasetum fimbriatum Lindl. (Orchidaceae) with an inverse pattern of shoot and root dry matter accumulation. Whereas the CFC1 genotype directs 60% of dry matter towards the shoot system, this same amount is directed towards the root system in the CFC4 genotype. Differences in the endogenous content of cytokinins, IAA and ABA, as well as differences in IAA conjugation and oxidation in shoots and roots were observed in the two genotypes. These differences were correlated with their dry matter partitioning patterns. Thus, the genotype that directed 60% of dry matter towards the root system showed a 20-fold higher auxin accumulation in those organs, while the one that accumulated 60% of dry matter in the shoots showed a 10-fold higher cytokinin accumulation in this plant part. Based on the well established information about auxin and cytokinin biosynthesis, conjugation, oxidation, transport, and effect on organ growth, we have presented an integrative working hypothesis to interpret the data obtained in this study. This working hypothesis may also account for the understanding of the complex relationships involving the hormonal control of the relative growth of shoots and roots in other plant models.

epiphytes; development; in vitro culture; orchids; plant hormones


Sociedade Brasileira de Fisiologia Vegetal P.O. BOX 6109, 13083-970 Campinas SP - Brazil, Tel.: (55 19) 3788-6213, Fax: (55 19) 3788-6210 - Lavras - MG - Brazil
E-mail: pmazza@unicamp.br