Young sexually and assexually propagated Barbados cherry plants were submitted to water deficit (20 days without irrigation). During this period the accumulation of proline, water potential of branches, osmotic potential, the relative water content of leaves, the leaf diffusive resistance, the transpiration rate and leaf temperature in the cuvette were determined. In addition, photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) were measured in the porometer cuvette. The concentration of proline for both types of plants began to increase on the fifth day without watering, and reached 38.1 times the concentration in the control plants grown from seeds and 26.4 times the concentration in grafted plants on the tenth day without watering. The lowest levels of leaf water potential in the plants suffering from severe water stress varied from -4.5 to -5.7 MPa, the lowest values being observed in the sexually propagated plants. These plants also showed the highest values for transpiration (0.9 mmol.m-2.s-1) and proline concentration (20.42 mg.g-1 DM), the lowest for relative water content of the leaves (38.4%) and diffusive resistance (940 s.m-1) at the end of the experiment. The Barbados cherry plants developed strategies for surviving drought, with differences between various characteristics, resulting from prolonged stress, which significantly influenced the parameters evaluated, with the exception of leaf temperature.
Malpighia emarginata; drought tolerance; grafting; proline; transpiration; vegetative propagation