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ABSTRACT

In this paper, the equation for the gravity wave spectra in mean atmosphere is analytically solved 
without linearization by the Adomian decomposition method. As a consequence, the nonlinear nature 
of problem is preserved and the errors found in the results are only due to the parameterization. The 
results, with the parameterization applied in the simulations, indicate that the linear solution of the 
equation is a good approximation only for heights shorter than ten kilometers, because the linearization 
the equation leads to a solution that does not correctly describe the kinetic energy spectra. 
Keywords: gravity wave spectra, mean atmosphere, decomposition method.

RESUMO: UMA SOLUÇÃO DA EQUAÇÃO NÃO LINEAR PARA AS ONDAS DE 
GRAVIDADE A PARTIR DO MÉTODO DA DECOMPOSIÇÃO DE ADOMIAN: UMA PRIMEIRA 
APROXIMAÇÃO.
Neste artigo, a equação para o espectro de ondas de gravidade na média atmosfera é resolvida 
analiticamente sem linearização pelo método da decomposição de Adomian. Como consequência, 
a natureza não-linear do problema é preservada e os erros encontrados nos resultados são devidos 
somente a parametrização utilizada. Os resultados, com a parametrização usada nas simulações, 
indicam que a solução linear da equação é uma boa aproximação somente para alturas menores que dez 
quilômetros, porque a linearização da equação conduz a uma solução que não descreve corretamente 
o espectro da energia cinética.
Palavras-Chave: espectro de ondas de gravidade, média atmosfera, método da decomposição.

1. INTRODUCTION

Atmospheric gravity waves are important in the study 
of atmospheric circulation, structure and variability. Although 
there are effects in the lower atmosphere, the major wave 
influences occur in the middle atmosphere, between 10 and 110 
km altitudes because of the decreasing in air density and the 
increasing wave amplitudes with altitude (Fritts and Alexander., 
2003). Atmospheric gravity waves contribute to the energy and 
momentum transport and turbulence production (Hodges, 1967; 
Finnigan and Einaudi, 1981; Finnigan et al., 1984; Fritts and 
Dunkerton, 1985; Hines, 1988; Finnigan, 1988, 1999; Einaudi 

and Finnigan, 1993; Nappo, 2002; Zilitinkevich et al., 2009). A 
more recent work (Tjernstrom et al., 2009, Meillier et al., 2008) 
suggested that gravity waves are one source of turbulence in 
Stable Boundary Layer (SBL) and Residual Boundary Layer 
(RBL). In literature, the general structure for the study of gravity 
waves is the linear wave theory and, the Taylor-Goldstein 
equation, is the main governing expression (Gossard and 
Hooke, 1975; Lindzen and Tung, 1976). The Taylor-Goldstein 
equation is obtained from the linearization of the primitive set 
of equations for an inviscid, non-rotating fluid. Chimonas (2002) 
and Meillier et al. (2008) analyze some properties of gravity 
waves in the SBL from the Taylor-Goldstein equation. Another 



358	 Goulart et al.	 Volume 28(4)

method of studying the properties of gravity waves is through 
power spectra. Models of gravity wave spectrum have evolved 
with time. Various theories constrain gravity wave spectrum 
to behave in a particular manner over some range of wave 
numbers or frequencies. These observational and theoretical 
constraints have led to a canonical gravity wave spectrum that 
offers insights into mean properties of the gravity wave field 
and its variations with altitude (Van-Zandt, 1982; Balsley and 
Carter, 1982; Nakamura et al., 1993; Collins et al., 1994; Smith 
et al., 1987; Tsuda et al., 1989, 1990; Wilson et al., 1991a, 
1991b). It is also important to mention that most pollutants are 
emitted or chemically produced within the SBL and RBL and 
its evolution plays an important role in determining pollutant 
dispersion pathways and the chemical properties of atmospheric 
pollutants (Salmond and McKendry, 2005).

Gravity waves parameterizations are critical components 
of virtually all large-scale atmospheric models. Aside from 
the theoretical deficiencies, even the most powerful available 
computing architectures still cannot run typical NWP (Numerical 
Weather Prediction) or climate models fast enough to resolve 
all relevant scales of atmospheric motion. At present, global 
models must, in practice, be run with horizontal resolutions 
that cannot typically resolve atmospheric phenomena shorter 
than ~10-100 km or greater for weather prediction and ~100-
1000 km or greater for climate prediction. Many atmospheric 
processes have shorter horizontal scales than these and some 
of these “subgrid-scale” processes interact with and affect the 
larger-scale atmosphere in important ways. Since they cannot be 
resolved, large-scale models must resort to “parameterizations” 
that capture the salient effects on the resolved atmosphere. 
Atmospheric gravity waves are one such unresolved. 

From the definition of wave momentum flux deposition 
produced by a harmonic, Medvedev and Klaassen (1995, 
2000) obtained an equation for the gravity wave and present a 
spectral parameterization scheme for calculating gravity wave 
momentum deposition in the middle atmosphere. The equation 
obtained is a differential nonlinear equation and it is not solved 
directly. The height of layer is discretized in sub-intervals in such 
a manner that inside each interval a linear equation is resolved 
considering average values of the quantities. This procedure 
reproduces the solution of the problem. However, it is a very 
laborious method and is necessary to solve many equations in 
according with the number of sub-intervals.

Analytical solutions of equations are of fundamental 
importance in describing and understanding a phenomenon, 
since all the parameters are expressed in a mathematically 
closed form and the influence of individual parameters can be 
easily examined (Moreira et al., 2006, 2009, 2010; Goulart et 
al., 2008). By analytical we mean that no approximation is done 
along the solution derivation, except for the series truncation. 

They are useful for a variety of applications,  such as:  providing 
initial or approximate analyses of alternative pollution scenarios, 
conducting sensitivity analyses to investigate the effects of 
various parameters or processes involved in contaminant 
transport, extrapolation over large times and distances where 
numerical solutions may be impractical, serving as screening 
models or benchmark solutions for more complex transport 
processes that cannot be solved exactly, and for validating more 
comprehensive numerical solutions of the governing transport 
equations (Pérez Guerrero et al., 2012).

In this work, we propose an analytical solution for the 
gravity wave equation. This equation is solved directly without 
linearization by the Adomian decomposition method (Adomian, 
1990, 1994a, 1994b). So, the nonlinear nature of the problem 
is preserved. Therefore, the errors found are only due to the 
parameterization used. We consider a first approach in solving 
the equation taking into account only the variation of the wave 
spectrum of gravity with time, because the variation of the wave 
amplitude due to air density with height was discarded. The 
results are compared with the continuous linear solution. In 
fact, by solving this equation by the decomposition method, we 
came out with an analytical formulation for the wave equation. 
Taking into account the analytical feature and fast numerical 
convergence of the solution, besides the fact that this sort of 
solution is not found in the literature for this problem, we are 
confident to affirm that the proposed solution is a promising 
technique to handle realistic physical problems. To reach 
the objective, the paper is organized as follows: we start in 
section 2 by explaining the decomposition method. Section 3 
we introduce the nonlinear solution of the problem. Section 4 
we shows the results and discussions. Then, in Section 5, we 
draw conclusions.

2. THE ADOMIAN’S DECOMPOSITION METHOD

The Adomian’s decomposition method (Adomian, 
1990, 1994a, 1994b) is a new and powerful method for solving 
nonlinear equations of various kinds. In recent years, the 
Adomian’s decomposition method has been successfully applied 
to solve many nonlinear equations in applied sciences. (For 
example, see Babolian and Biazar, 2002; Goulart, et al, 2008; 
Basak et al., 2009; Azreg-Ainou, 2010). The decomposition 
method calculates the solutions of nonlinear equations as infinite 
series in which each term can be easily determined. Each term 
of these series is a generalized polynomial called Adomian’s 
polynomial. 

Considering the following nonlinear differential 
equation,

                                                                                                   (1)u u u g+ + =L R N
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where L  is the highest-ordered derivative, R  is the remainder 
of the linear operator, Nu is the nonlinear term and g the term 
is known.

Isolating the highest-ordered operator L and applying 
the inverse operator L-1 in Equation 1 we get,

For initial-value problems, we conveniently define L-1 
for L = dn/dtn as the n-fold definite integration operator from 0 
to t. For the operator L = d/dt, for example, we have L-1Lu =  
u -u(0) and therefore Equation 2 becomes,

The Adomian’s method decomposes the linear term into 
an infinite sum of components,

and the nonlinear term may be identified by the decomposition 
series,

where the Adomian polynomials nA  are obtained from an 
expansion in Taylor series of the term nonlinear around the first 
term of series 0u . 

In this paper we use the first three Adomian polynomials 
described bellow, where  f (u0) = N (u0):

We remark that the nA  are formally obtained from the 
relation (Adomian, 1994b), 

3. THE NONLINEAR EQUATION FOR THE 
GRAVITY WAVE SPECTRA

An equation for the evolution of gravity wave spectra 
with height z was deduced by Medvedev and Klaassen (1995, 
2000) from of the momentum flux divergence,
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where S is the power-spectral density of horizontal wind 
associated with gravity waves at height Z, r0  is the mean 
density of air in reference height, r0z is the density of air in 
height Z, mR is the real part of vertical wavenumber (m = mR 
+ imI ), mRZ  is the wavenumber associated with the maximum 
of gravity wave spectra and b is the coefficient of nonlinear 
damping due to interactions of the component mR with other 
waves in the spectrum.

To solve the Equation 11 is necessary parameterize the 
coefficient b , because it is function of power-spectral density 
S. A parameterization for the coefficient b was suggested by 
Medvedev and Klaassen (1995, 2000), 

where N  is the Brunt-Väisälä frequency and

is the horizontal wind variance created by all waves in the 
spectrum with vertical wavenumbers larger than the given mR .

Substituting Equations 12 and 13 in Equation 11 is 
obtained, 

The evolution of gravity wave spectra with height is 
given by Equation 14. It is a nonlinear integro-differential 
equation that has not a simple analytical solution. 

4. ANALYTICAL SOLUTION VIA ADOMIAN’S 
DECOMPOSITION METHOD

To solve the Equation 14 is considered the Adomian’s 
decomposition method (Adomian, 1990, 1994a, 1994b) 
described in section 2. Comparing Equation 11 with Equation 
14 identified, 
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The Equation 4 can be written as follows,

The solution of Equation 14 is given by Equation 3 (in 
this case 1 dt− → ∫L ),

Now, we apply the decomposition method in Equation 
21. Substituting Equations 4 and 5 in Expression 21 we can 
identify,

where nA  are the Adomian’s polynomials calculated from 
Equation 10. Then, the solution of Equation 14 is,

where nu  calculated from Equation 25.  For the summation in 
Equation 26, three terms were necessary for a good convergence 
(considering an error in the second decimal place). 

5. RESULTS AND DISCUSSION

As discussed in the introduction, in this work, we 
propose an analytical solution for the gravity wave equation. 
Now, we compare the solution obtained in this work (Equation 
26), which considers the nonlinearity of the equation, with the 
linear solution obtained when it considers the average values 
of horizontal wind variance ( , )

R
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∫  appearing in 
Equation 14. The terms un are calculated from Equation 25. 

The solution of Equation 14 requires the value of gravity 
wave spectra in a reference height. We assume that the gravity 
wave spectra consists of a general Desaubies spectrum form 
(Desaubies, 1976) in Z = 0 (S(mR, 0) = S0),
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where a0  is a constant, *m  is the wavenumber associated with 
the maximum of gravity wave spectra, N  is Brunt-Väisälä 
frequency.  For comparison of gravity wave spectra calculated 
from expression 26 with the linear solution of Equation 14 we 
consider the values used by Medvedev and Klaassen (2000) for 
a0, m* and N, namely a0  = 1/6 , m* = 0.006m-1  and N = 0.02s-1. 
In Equation 17 is considered  mRZ / mR = mR / Rz R R im m m R= , where Ri  
is Richardson flux number. In this case Ri = 1. Considering the 
initial spectra given by Equation 19 it is possible to calculate 
analytically the integrals of Equation 26,

Substituting Equation 28 in Equation 26, we obtain a simple 
algebraic expression that, although long, requires a time machine 
extremely small. Figure 1 shows the good agreement between 
the solution of Equation 14 by the Adomian method (Equation 
26) and the numerical Implicit Runge-Kutta method (step size 
0.005).   

Figures 2 to 4 show the gravity wave spectra calculated 
from Equation 26 (solid line) and calculated from linear solution 
of Equation 14 (dotted line). The Figures. 2 and 3 indicate that 
the linear solution of Equation 14 is a good approximation 
for small height (< 10 km). However, the Figure 4 show that 
the linear solution is not a good approximation of solution of 
Equation 14 for height > 10 km. 

The Equation 14 is nonlinear due to the parameterization 
of coefficient b  expressed in Equation 8. It is the coefficient of 
nonlinear damping due to interactions of the component mR  with 
other waves in the spectrum. This term is essentially nonlinear. 
Its linearization leads to a completely incorrect solution in height 
above of the 10 km. Therefore, the linear solution cannot be 
used to correctly describe the spectrum of kinetic energy when 
considering height above 10 km (Figure 3).

6. CONCLUSIONS

In this study, the nonlinear equation of the evolution of 
gravity wave spectra with height z was analytically solved without 
linearization by the decomposition method, so the nonlinear 
nature of problem was preserved. Therefore, mathematically, 
the errors found are only due to the parameterization used. As a 
test, we used a spectral parameterization scheme for calculating 
gravity wave momentum deposition in the middle atmosphere 
from Equation 14 solved by the method of decomposition 
and compared with a linear solution. The linear solution is 
obtained when considering the constant value for the beta 
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Figure 1 - Gravity wave spectra calculated from Equation 26 (solid 
line) and with numerical RungeKutta (dotted line) for the height z = 
50km. 

Figure 2 - Gravity wave spectra calculated from Equation 26 (solid 
line) and with linear solution of Equation 11 (dashed line) for the height 
z = 4 km. The dotted line represents the saturated limit. 

Figure 3 - Gravity wave spectra calculated from Equation 26 (solid 
line) and with linear solution of Equation 11 (dashed line) for the height 
z = 10 km. The dotted line represents the saturated limit.

Figure 4 - Gravity wave spectra calculated from Equation 26 (solid 
line) and with linear solution of Equation 11 (dashed line) for the height 
z = 50 km. The dotted line represents the saturated limit,  .

coefficient in Equation 14. This proposed parameterization 
involves nonlinear wave interactions. Our results indicate 
that the linear solution of the resultant equation is a good 
approximation of the solution only for small height (< 10 
km). However, the linear solution is not a good approximation 
of the solution of the resultant equation for height > 10 km, 
because the linearization of the beta coefficient leads to a 
solution that does not correctly describe the kinetic energy 
spectra. The discrepancies depend not on the solution of the 
nonlinear equation, but on the equation itself, which it is 
only a reality model. In the model proposed by Medvedev 
and Klaassen (1995, 2000) the layer height was discretized 

in sub-intervals of 500 m, in such a manner that inside each 
interval a linear equation is resolved considering average 
value of the quantities. This procedure accurately reproduces 
the problem solution, because the distance of 500 m is much 
smaller than the maximum distance at which the linear solution 
can be employed. However it is a very laborious method, it is 
necessary to solve many equations as are the number of sub-
intervals. This is an approximation used when you cannot solve 
the resulting equations from the parameterization employed. 
In this work, the equation for the gravity wave spectra in mean 
atmosphere was analytically solved without linearization by 
the decomposition method.
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Taking into account the analytical feature and fast 
numerical convergence of the solution, besides the fact that this 
sort of solution is not found in the literature for this problem, we 
are confident to affirm that the proposed solution is a promising 
technique to handle realistic physical problems. In view of the 
potential usefulness of the decomposition method it would be 
desirable to extend the applicability of the method to test other 
parameterizations. Work in this direction is in progress.
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