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Abstract Objective To evaluate the stability of osteotomies created in the subtrochanteric and
trochanteric regions in a pediatric femur model fixed by flexible intramedullary rods.
Method Tomographic sections were obtained from a pediatric femur model with two
elastic titanium rods and converted to a three-dimensional model. This model created a
mesh with tetrahedral elements according to the finite element method. Three virtual
models were obtained, and osteotomies were performed in different regions: medi-
odiaphyseal, subtrochanteric, and trochanteric. A vertical load of 85N was applied to
the top of the femoral head, obtaining the displacements, the maximum andminimum
main stress, and the equivalent Von Mises stress on the implant.
Results With the applied load, displacements were observed at the osteotomy site of
0.04mm in the diaphyseal group, 0.5mm in the subtrochanteric group, and 0.06mm in the
trochanteric group. Themaximumstress in thediaphyseal, subtrochanteric, and trochanteric
groups was 10.4 Pa, 7.52Pa, and 26.4Pa, respectively. That is around 40% higher in the
trochanteric group in regards to the diaphyseal (control). The minimum stress of the bone
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Introduction

Intramedullary elastic fixation is a reliable and effective option
for treating fractures in the pediatric femur’s diaphysis.1,2How-
ever, when a fracture occurs in the trochanteric or subtrochan-
teric regions, theuseofflexible rods isquestionedduetopossible
insufficiency of mechanical stability to maintain the reduction
and provide consolidation.3–6 Under these conditions, it is
interesting to simulate the mechanical behavior of an implant
in order to anticipate whether it depends on clinical conditions.

There are usually twomethods of evaluating the mechan-
ical behavior of bone and implants: direct experimental
techniques (or mechanical methods) and mathematical
models. However, direct experimental techniques have dis-
advantages, being prone to errors and inaccuracies.7

The FiniteElementMethod (FEM) is a powerful tool initially
developed in the 1950s andwidely accepted after investments
in technology by the National Aeronautics and Space Admin-
istration (NASA).8 In the field of Engineering, this method is
used to solve conditions such as stress analysis, fluid flow,
electromagnetism, and heat transfer using computermodels.8

In the Medical field, especially in Orthopedics and Biome-
chanics, the first records of the application of the FEM date
back to the 1970s, when estimates of the ability of different
types of tests to predict the mechanical behavior of bones
were carried out.7,9 Through the FEM, it is possible to
accurately represent complex geometries and incorporate
the different properties of materials, allowing the applica-
tion of loads at specific points in the structure. This way,
obtaining information about the maximum and minimum
stress and deformations is possible.7 Therefore, FEM is used
to accurately predict the response of an implant when
subjected to a variety of loads, in addition to incorporating
the effect of the interfaces between the implant and the
bone.7,10,11

The objective of this study was to evaluate the stability
provided by two flexible intramedullary rods in simulations
of fractures located in the subtrochanteric, trochanteric, and
diaphyseal regions created in a pediatric femur model using
the finite element method.

was located in the inner cortical of the femur. TheequivalentVonMises stress on the implants
occurred at osteotomy, with a maximum value of 27.6Pa in the trochanteric group.
Conclusion In both trochanteric and subtrochanteric osteotomies, fixation stability
was often lower than in the diaphyseal model, suggesting that flexible intramedullary
nails are not suitable implants for proximal femoral fixations.

Resumo Objetivo Avaliar a estabilidade de osteotomias criadas nas regiões subtrocantérica e
trocantérica em modelo de fêmur pediátrico, fixadas por hastes intramedulares
flexíveis.
Método A partir de um modelo de fêmur pediátrico com duas hastes elásticas de
titânio, foram obtidos cortes tomográficos que foram convertidos para um modelo
tridimensional. Neste modelo foi criado uma malha com elementos tetraédricos, de
acordo com o método dos elementos finitos. Foram obtidos três modelos virtuais, e
realizadas osteotomias em regiões diferentes: mediodiafisária, subtrocantérica e
trocantérica. Foi aplicado um carregamento vertical de 85N no topo da cabeça do
fêmur, obtidos os deslocamentos, a tensão máxima e mínima principal e tensão
equivalente de Von Mises no implante.
Resultados Com o carregamento aplicado foram observados deslocamentos no local
da osteotomia de 0,04mm no grupo diafisário, 0,5mm no subtrocantérico e 0,06mm
no trocantérico. A tensão máxima principal foi 10,4Pa, 7,52Pa e 26,4Pa nos grupos
diafisário, subtrocantérico e trocantérico, respectivamente. Ou seja, a tensão máxima
foi em torno de 40%maior no grupo trocantérico, em relação ao diafisário (controle). A
face de tensão mínima do osso localizou-se na cortical interna do fêmur. A tensão
equivalente de Von Mises nos implantes ocorreu na osteotomia, com valor máximo de
27,6Pa no grupo trocantérico.
Conclusão Tanto nas osteotomias no nível trocantérico, quanto subtrocantérico, a estabi-
lidade da fixação foi muitas vezes menor que no modelo diafisário, sugerindo que as hastes
intramedulares flexíveis não são implantes adequados para as fixações proximais do fêmur.
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Material and Methods

This is a laboratory study using artificial bone models, and
therefore, the Institutional ResearchCommittee’s approval of
the project is waived.

An infant femur model with dimensions corresponding to
a 9-year-old child (Sawbone Inc., Pacific Research Laborato-
ries Inc., WA, United States). This synthetic bone has me-
chanical properties similar to human bone.12,13

The preparation of the specimenwas described earlier.6 In
summary, two flexible titanium rods (Titanium Elastic Nail -
TEN®, TiGa 114v, DePuy Synthes®, Oberdorf, Switzerland)
with a diameter of 3.5mmwere inserted retrograde into the
spinal canal. Radiographywere performed to confirm proper
positioning, followed by computed tomography of the entire
bonemodel, archived in the DICOM communication protocol
(Digital Imaging and Communications in Medicine). Comput-
ed tomography was completed using a Siemens ® 16-chan-
nel Tomograph, Emotion model (Erlangen, Germany), with a
resolution of 512�512 and a cutting distance of 1.0mm.
DICOM was imported into the InVesalius® program (free
software of the Renato Archer Information Technology Cen-
ter, Campinas, São Paulo, Brazil), which enabled the genera-
tion of segmented models of the imported anatomical
system for the three-dimensional (3D) construction of the
anatomical structure. Once the volumetric object recon-
structed in three dimensions was obtained, the software
allowed the export of the file in the Standard Triangle
Language (STL) format.

The Rhinoceros® 6 program (Robert McNeel & Associates,
Seattle, WA, United States), version 6, generated virtual 3D
models of each bone-stem set. To obtain a more accurate and
faithful contour, we carried out reshuffles on the resulting
intersection lines. These lines were drawn considering the
region under studyandmaycontain variations in the number
of points according to the need for details of the area in
question. Then, these lines were intersected and cut off,
forming a set of three or four lines. This set allowed the
generation of a three-dimensional surface.

The analysis by the FEM was conducted by the SimLab®
program (HyperWorks, Troy, MI, USA), using the Optistruct
solver.

To simulate the fractures, osteotomies were performed in
the virtual models at three levels: cut at the level of the lesser
trochanter (trochanteric group), cut located 3.5 cmdistally to
the lesser trochanter (subtrochanteric group), and cut in the
central region of the diaphysis (mediodiaphyseal group, or
control). Tetrahedral elements were used for knitting, and
the number of knots was defined. In the virtual environment,
a load of 85.0N was applied to the top of the femoral head in
the vertical direction, and the corresponding deformations
and stresses were obtained.

For the simulations, it was necessary to know and define
the material properties of each of the digital models’ parts,
namely cortical bone, spongy bone, and titanium alloy
(TiGa114v). The properties of the materials used for the
simulations are presented in ►Chart 1.

Results

With a loading of 85.0 N, the following displacements were
obtained at the osteotomy simulation site: 0.04mm in the
control group, 0.5mm in the subtrochanteric group, and
0.06mm in the trochanteric group.

The greatest areas of stress were identified in the lateral
cortical of the femur and the upper region of the neck. The
main maximum stress reached 10.4 Pa, 7.52 Pa, and 26.4 Pa
in the control, subtrochanteric, and trochanteric groups,
respectively (►Fig. 1).

Fig. 1 Distribution of the areas of maximum stress in the proximal
regions of the femur in the simulations of the three types of
osteotomies. A - Diaphyseal Osteotomy, B - Subtrochanteric Osteot-
omy, C- Trochanteric Osteotomy. The red colors represent the areas of
greatest stress.

Chart 1 Properties of materials used in simulations

Material Properties

Modulus of
Elasticity (MPa)

Poisson’s
Ratio (v)

Cortical bone 137 0.3

Cancellous bone 13.7 0.3

Titanium rod 114 0.33
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The main minimum stress face in the bone was identified
in the medial cortical of the femur, presenting values of
�11.6 Pa in the control group, -9.95 Pa in the subtrochanteric
group, and �25.9 Pa in the trochanteric osteotomy. The
equivalent Von Mises stress on the implants was observed
in the osteotomy region, reaching a maximum value of
27.6 Pa in the trochanteric group (►Fig. 2).

Discussion

Fractures in the subtrochanteric region of the femur have a
strong tendency to deflect the proximal fragment in bending,
varus, and external rotation, which is associated with short-
ening.14–16 This results in increased stress between the
fragments, which becomemore dependent on the stabilizing
effect of the implant.

Therefore, the fixation must counteract the mechanical
moments generated by local forces, providing adequate
stability to maintain the reduction and allow consolidation.
Thus, elastic rods may not meet these criteria, as already
shown by clinical reports3 and mechanical tests,6 not being
indicated for fractures in the most proximal regions.

To study the stability of the bone-implant model set, we
used the FEM, used to simulate and verify the distribution of
stress and displacements from the solution of equilibrium

equations under loads.17 To use the methodology, it was
necessary to use a model of a fracture represented by an
oblique osteotomy. The FEM provides the theoretical and
mathematical substrates. However, in the case of fractures,
it is applied to an idealized model. Therefore, it has the
inconvenience of not taking into account many characteristics
of the fracture, such as irregularities and different inclinations
of the stroke, in addition to the possibility of presenting more
than one fragment. In addition, it does not consider the action
of soft parts in stabilizing/destabilizing the fracture. This
limitation is inherent to the method; however, even with all
the simplification, it is very useful in preclinical evaluations of
implant development, for example, which is useful from the
point of view of cost, time, and ethical research with human
beings. Simplifications and restrictions also occur in studies in
Engineering and other Exact Sciences.

There are several studies involving FEMinOrthopedics in the
literature, and the topics involving fracture fixation and treat-
ment of bone tumor lesions are themost addressed.11,18–22 The
FEM,because it isnon-invasive, provides importantbiomechan-
ical information, as well as assists in the development of
orthopedic devices and has been more widely used in models
of anatomical structures of adults, including for simulations of
fixation of unstable subtrochanteric fractures.20,23,24 Wang
et al.20 evaluated the biomechanical performance of three

Fig. 2 The figure represents the reconstruction of the proximal region of the femur, the osteotomy section, and the flexible rods. The rods
without the bone contour are presented in detail on the side, illustrating the concentration of Von Mises equivalent stress higher in the
osteotomy region (areas in red; critical region). If there is implant failure, it will occur at this level, leading to loss of reduction.
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implants to treat unstable subtrochanteric fractures in adults
using theFEMandobserved that theproximal femoral stemwas
more stable than the blocked stem and the LISS system (Less
Invasive Reverse System).

Our results showed that the most proximal osteotomy
(trochanteric) presented the highest maximum stress and
the highest VonMises equivalent stress, which indicates that
the implant’smechanical demand is higher in this site than in
the other two groups. In addition, since the greatest Von
Mises equivalent stress occurs at the sites of osteotomies, it is
noticed that the implants serve as “tutors” and protect the
fracture. This was also observed in the study by Soni et al.25,
who performed a two-dimensional simulation of femoral
fractures in children with the FEM to evaluate the effective-
ness of using flexible rods constructed of steel or titanium.

In this study, when loading was applied, the regions of
greatest stress were in the lateral cortical of the femur and
the upper region of the neck. These results show that, with
the load, the trochanteric cut presented a 153% higher stress
request than the control (mediodiaphyseal cut).

However, the fragments’ displacement at the osteotomy
site was very small in all groups, which can be attributed to
the low loading (85.0N) applied to the systems. This value
was selected after considering the mass of the unloaded
lower limb of a 10-year-old child (�8.5 kg)26; therefore,
intentional loading is not recommended clinically in the
early postoperative phase. Additionally, this loading restrict-
ed the deformation to the elastic phase of the implants; that
is, no irreversible deformation occurred in the clinic. If this
limit is exceeded, therewill be permanent deformation of the
implant and loss of fracture reduction.

Conclusions

For osteotomies in the trochanteric and subtrochanteric
regions, there is greater mechanical demand for the implant,
which may exceed the stabilization limits of the flexible
intramedullary nails. Thus, clinically, this type of implant
should be indicated in the classic situations for which it was
designed, that is, in fractures of the diaphyseal region of the
femur.
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