Acessibilidade / Reportar erro

Critical analysis of the neural systems organizing innate fear responses

Unconditioned emotional responses elicited by exposure to a predator have served as the prototypical exemplar for analyses of the behavioral biology of fear-related emotionality. However, the primary research model for the study of fear has involved shock-based cue and context conditioning. While these shock-based models have provided a good understanding of neural systems regulating specific conditioned fear-related behaviors (typically freezing), it is not known if the neural systems underlying an array of defensive responses to innate, unconditioned, painless threat stimuli, and conditioning to these stimuli, are the same as those involved in foot shock and its conditioning sequellae. Recent work involving lesions and c-Fos activation in conjunction with predator or predator odor exposure suggest specific neural systems for response to these, potentially different from the systems outlined in Pavlovian fear conditioning studies. As outlined in the present review, these systems include the medial hypothalamic defensive circuit; specific amygdalar and septo-hippocampal territories, involved in processing, respectively, cues related to the predator presence and environmental contextual analysis; and the periaqueductal gray, known to be critically involved in the expression of predator-induced responses. This information may be potentially important in analysis of defense-related psychopathologies and in the design of therapeutic interventions for them.

Fear; Anxiety; Defensive Behavior; Fear Conditioning; Amygdala; Hypothalamus; Periaqueductal Gray Matter


Associação Brasileira de Psiquiatria Rua Pedro de Toledo, 967 - casa 1, 04039-032 São Paulo SP Brazil, Tel.: +55 11 5081-6799, Fax: +55 11 3384-6799, Fax: +55 11 5579-6210 - São Paulo - SP - Brazil
E-mail: editorial@abp.org.br