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Objective: Transcranial direct current stimulation (tDCS) has mixed effects for major depressive
disorder (MDD) symptoms, partially owing to large inter-experimental variability in tDCS protocols and
their correlated induced electric fields (E-fields). We investigated whether the E-field strength of
distinct tDCS parameters was associated with antidepressant effect.

Methods: A meta-analysis was performed with placebo-controlled clinical trials of tDCS enrolling MDD
patients. PubMed, EMBASE, and Web of Science were searched from inception to March 10, 2023.
Effect sizes of tDCS protocols were correlated with E-field simulations (SimNIBS) of brain regions of
interest (bilateral dorsolateral prefrontal cortex [DLPFC] and bilateral subgenual anterior cingulate
cortex [sgACC]). Moderators of tDCS responses were also investigated.

Results: A total of 20 studies were included (21 datasets, 1,008 patients), using 11 distinct tDCS
protocols. Results revealed a moderate effect for MDD (g = 0.41, 95%CI 0.18-0.64), while cathode
position and treatment strategy were found to be moderators of response. A negative association
between effect size and tDCS-induced E-field magnitude was seen, with stronger E-fields in the right
frontal and medial parts of the DLPFC (targeted by the cathode) leading to smaller effects. No
association was found for the left DLPFC and the bilateral sgACC. An optimized tDCS protocol is
proposed.

Conclusions: Our results highlight the need for a standardized tDCS protocol in MDD clinical trials.
Registration number: PROSPERO CRD42022296246.

Keywords: Transcranial direct current stimulation; depression; computational modeling analysis;
electric field; meta-analysis; major depressive disorder; dorsolateral prefrontal cortex; subgenual
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Introduction

Major depressive disorder (MDD) is one of the most
prevalent mental conditions, affecting about 3% of the
population worldwide." Current first-line treatments such
as antidepressant drugs and psychotherapy are only
moderately effective, besides presenting several adverse
effects and being time-consuming, respectively.?* In such
a scenario, transcranial direct current stimulation (tDCS),
a noninvasive brain stimulation (NIBS) intervention,
has arisen as an alternative for MDD treatment. tDCS
is promising as it presents potential advantages as
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compared to other NIBS techniques, including an
excellent safety and tolerability profile, low cost, ease of
use, and the potential to be applied at home.*®

In tDCS, a weak direct current is applied through
electrodes placed on the scalp to modulate brain activity
towards an increase or decrease in endogenous neuronal
firing; it is able to shift membrane potential towards
hyperpolarization or depolarization.*® In patients with
MDD, tDCS is mainly applied over the dorsolateral
prefrontal cortex (DLPFC), a brain region that exhibits
unbalanced activity between the left and right hemi-
spheres in MDD.”® The rationale behind antidepressant
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effects of tDCS is that the current can restore the balance
between left and right DLPFC activity.® Moreover, by
stimulating the DLPFC, deeper brain areas implicated in
depression, such as the subgenual anterior cingulate
cortex (sgACC), can be indirectly modulated via structural
and functional connections with the DLPFC."%'2 In tDCS
protocols for MDD, the anode is usually placed over the
left DLPFC, which presents decreased activation,
whereas the cathode position varies considerably among
clinical trials, including the right DLPFC, frontoparietal
area, right supraorbital region, or deltoid muscle.”® The
application of prefrontal tDCS has been primarily inves-
tigated in randomized clinical trials, which have shown
promising antidepressant effects.'® Nonetheless, discre-
pant findings have been reported,'* ' leading to an
overall modest tDCS antidepressant effect.'®

One possible explanation for the mixed effects of tDCS
for MDD is inter-experimental variability, which includes
tDCS parameters such as electrode size and arrange-
ment, current intensity, targeted area, and the conductive
agent.’ Indeed, wide variability in tDCS parameters is
seen in clinical trials of MDD. Crucially, with a high
variability in tDCS parameters across trials, the electric
field (E-field) induced in the brain can vary significantly.
Studies investigating simulated tDCS-induced E-fields in
the prefrontal cortex have shown that heterogeneity in
tDCS parameters can substantially change the mean
strength of E-fields in brain regions of interest.’® E-field
magnitude in specific parts of the brain can also influence
the overall tDCS response in depressive patients.'®
Surprisingly, to the best of our knowledge, no study has
systematically investigated the impact of distinct tDCS
parameters on the clinical efficacy of tDCS for depressive
symptoms.

Given these initial findings, we hypothesized that tDCS-
induced E-field strength differences caused by distinct
tDCS parameters could be associated with the mixed
effects of tDCS for depression. Therefore, we used a
meta-analytic approach to investigate the association
between simulated E-field strength in brain regions of
interest and effect sizes of continuous depression severity
outcomes of different tDCS protocols. Firstly, we per-
formed a pairwise meta-analysis of placebo-controlled
clinical trials of tDCS for MDD and explored methodolo-
gical tDCS predictors of response via subgroup and meta-
regression analyses. Secondly, we correlated the effect
size of the included studies with E-field magnitude in brain
regions of interest: the bilateral DLPFC and the bilateral
sgACC. These regions were selected because they are
functionally and anatomically related to MDD symp-
toms.'>'920 Finally, in the case of a significant associa-
tion between E-field magnitude and effect size in the brain
regions of interest, we modeled an optimized tDCS
montage based on our findings.

This study is essential for the tDCS field as it can
provide further knowledge on how inter-experimental
differences in tDCS parameters can impact the overall
therapeutic effect in MDD trials, and may yield important
insights for future clinical trials.

Meta-analysis and E-field modeling of tDCS for depression

Methods
Systematic review

A systematic review was performed in three different
databases (EMBASE, MEDLINE/PubMed, and Web of
Science) from the first date available until September 30,
2022. An updated search was carried out on March 10,
2023. The search strings included terms for “tDCS,”
“depression,” and “clinical trials” with no language
restriction (provided in their entirety in the Supplementary
Material S1, available online only). For additional refer-
ences, experts in the field were contacted. The first and
fourth authors independently searched the literature and
screened the titles and abstracts for eligible articles. In
case of disagreement, the last author decided. This study
was registered on the international prospective register of
systematic reviews (PROSPEROQO) with accession number
CRD42022296246, and the present report adheres to the
Preferred Reporting Items for Systematic reviews and
Meta-Analyses (PRISMA) statement.?’

Eligibility criteria

Only randomized, sham-controlled trials enrolling adult
patients with an acute depressive episode associated with
a diagnosis of MDD were included. Regarding interven-
tions and comparisons, trials should have included groups
receiving active vs. sham tDCS, with at least five
treatment sessions. Studies applying tDCS in conjunction
with other therapies (e.g., medication and behavioral
interventions) were also included. Finally, continuous
outcomes should be reported.

Risk of bias

The methodological quality of the included studies was
assessed with the Cochrane risk-of-bias tool (RoB 2),
as recommended by the Cochrane Group.??> One author
(LBR) independently assessed the risk of bias in each
study, which was double-checked by another author
(SDS). The domains assessed in the RoB 2 tool were
selection bias, performance bias, attrition bias, detection
bias, and reporting bias, according to a standardized
criterion, and studies were categorized as low risk, high
risk, and some concerns.

Data extraction

Data extraction was performed by one author (LBR) and
double-checked by the last author (MAV). The variables
extracted were: 1) clinical and demographic data: age and
gender; 2) depression characteristics, including treat-
ment-resistant depression, and depression scales; 3)
tDCS treatment features: number of sessions, session
duration, current intensity, electrodes position, current
density, electrode size, and use of concomitant therapies;
4) information on outcomes: mean and SD scores of
depression rating scales at baseline and endpoint in both
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active and sham groups; 5) metadata: year of publication,
authorship, and methodological variables for quality
assessment.

If studies did not report any essential information, such
as mean score, SD, and sample size, the corresponding
author was contacted by e-mail. When no reply was
obtained, clinical data (mean and SD) were extracted
from the article’s graphs with the aid of WebPlotDigiti-
zer,>® as recommended elsewhere.?*

Outcome

Continuous outcomes (depression score at baseline and
endpoint) of the active and sham groups were analyzed.
Response and remission rates were not used in this
meta-analysis as they do not allow for a more fine-grained
exploration of predictor variables associated with E-field
modeling analysis. Moreover, as some randomized
controlled trials reported depression scores at more than
one time point, only data from the longest period prior to
unblinding (i.e., the endpoint) were used. Meta-regression
analyses were conducted based on methodological
variables, including cathode position, treatment strategy
(subgrouped into three categories: monotherapy, aug-
mentation, and add-on strategy), electric current intensity/
density, and electrode size. The mean age (above and
below mean) was also meta-regressed to account for
possible age-related structural decline. Afterwards, an
association between clinical improvement and E-field
modeling analysis was investigated.

E-field modeling analysis

E-field modeling was performed using E-field simulations
done in SImNIBS version 3.2,%° a software package that
allows simulation of tDCS-induced E-fields in the individual
brain and an approximation of the actual current distribu-
tion in the brain. First, based on a T1-weighted magnetic
resonance imaging (MRI) anatomical image, high-resolu-
tion head models were created using the headreco pipeline
in SIMNIBS.?® This pipeline is dependent on MATLAB
software (version R2022 was used) and was chosen since
it is the most recent tool with a segmentation that includes
the neck for placement of extracephalic electrodes. The
pipeline segments five tissue types based on the provided
structural MRI scan: white matter, gray matter, cerebro-
spinal fluid (CSF), bone, and scalp. Then, it creates a 3D
tetrahedral mesh structure of each segmented tissue,
which allows for simulation of the E-field. Standard Sim-
NIBS conductivity values for each tissue type (oskin =
0.465 S/m, cbone = 0.01 S/m, ocsf = 1.654 S/m, ogm =
0.275 S/m, owm = 0.126 S/m) were used.?” Then, manual
verification was performed to check the quality of segmen-
tation for possible errors in the established boundaries
between tissues.

Three-dimensional tetrahedral tDCS montages, inten-
sities, and electrode materials, as described in each
study, were used for simulations. First, we performed the
analysis using only one brain of a 39-year-old male
depressive patient. Afterwards, we used head-models of
three depressive patients (two males and one female,
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aged 39, 41, and 36 years, respectively), to account for
individual variability'” and to investigate whether the
results were maintained. This methodology was used as it
can reduce interindividual variability in brain anatomy.'”
All images were acquired in a 3-T MR system (Achieva,
Philips Healthcare, Netherlands). Volumetric images were
based on T1-weighted sequences using a 3D FFE pulse
sequence with the following parameters: FOV 240 x 240 x
180 mm?, spatial resolution 1 x 1 x 1 mm® TR 7 ms,
TE 3.2 ms, FA 8° and 180 sagittal slices.

The 3D segmented head models were then used to
simulate the E-field distribution resulting from the various
tDCS montages used in each study protocol included in
this analysis. This was done by placing simulated
electrodes on each head model and setting the simulated
electric current intensity according to the stimulation
protocol. In studies in which the direction of the
rectangular electrodes was not specified (e.g., towards
Cz or not), the corresponding authors were contacted by
e-mail.

The values analyzed in this study were the E-norm
component, which represents the vector strength, but not
its direction.

E-field values

E-field values were extracted from anatomical brain
regions shown to be structurally and functionally impli-
cated in MDD symptoms. Specifically, the regions of
interest were the bilateral DLPFC and the bilateral
sgACC. For identification of the DLPFC, we used the
Sallet et al.?® atlas, which provides a parcellation of the
DLPFC and was previously used in several studies of our
team. This atlas divides the DLPFC into 7 DLPFC
clusters, but here these regions were collapsed into three
subregions, corresponding to: 1) a more frontal part of the
DLPFC (cluster 3, cluster 4, and cluster 7); 2) a medial
part of the DLPFC (cluster 5, cluster 6, and cluster 10);
and 3) a posterior part of the DLPFC (cluster 8) (see
Supplementary Material S2). For sgACC identification,
the Brainnetome atlas was used bilaterally.?® This atlas is
a whole-brain, multimodal parcellation atlas based on
structural MR, diffusion tensor imaging, and resting-state
fMRI connectivity.

To account for interindividual variability in our analysis
with three head models, the mean E-field of each region
of interest was used.

Statistical analyses

All analyses were performed in R software (Rstudio
version 4.2.2) using the metafor package.*® For the
pairwise meta-analysis, sample size, SD, and mean
scores from the endpoint of both active and sham groups
were used to generate the effect size. A random effects
model, instead of a fixed effects model, was used,
considering that heterogeneity among studies would be
high. Hedges’ g was the effect size measure. Hetero-
geneity was considered high when I° > 50%. To
investigate the small studies’ effects, a funnel plot was
constructed and the Egger test was applied. Based on



previous findings,® we conducted subgroup analyses with
three variables (cathode position, treatment strategy, and
mean age) and univariate meta-regressions with other
methodological variables of tDCS (electric current den-
sity/intensity and electrode size), using the metareg
command.

We also used the metareg function to correlate effect
sizes of each study with the E-field values of tDCS
protocols of each brain region of interest. Overall, four
models were constructed for both hemispheres (DLPFC
subregions A, B, C, and sgACC region). Positive and
negative values reflect a positive or negative association
between effect size and E-field strength per tDCS protocol,
respectively. P-values < 0.05 were considered significant.

tDCS protocol optimization

We used the SimNIBS optimization routine, introduced in
version 3.2.3' The optimization algorithm was performed
using the three head models and 74 potential electrode
positions according to the 10-10 EEG system. Based on
the results, the position of interest was set to be F3 with
a radius of 10 mm surrounding it. Furthermore, the
optimization was set to avoid location F8 (based on the E-
field analysis and metaregression results) and a radius of
10 mm (standard value) surrounding it. No other restraints
were set in the E-field direction. We ran an optimized
multi-electrode montage with up to 8 circular (3.14 cm?)
electrodes (standard optimization procedure provided by
SimNIBS), with the maximum intensity set to 1 mA per
electrode and 2 mA total current.

Results
Overview

The literature search yielded 946 articles, of which 926
were excluded for various reasons (Figure S1, available
as online-only supplementary material). Overall, 20
studies (21 datasets) using tDCS for the treatment of
MDD were included in this pairwise meta-analysis with a
total of 1,008 patients, of whom 549 received active tDCS
and 457 received sham tDCS.'®"5:328 Qverall, 58% of
the included participants were women, with a mean age of
43.9 years (Table 1). Among the included studies, 11
different tDCS protocols were applied, varying in terms of
electrode position, current intensity, and electrode sizes.
Cochrane risk-of-bias assessment revealed that 60, 10,
and 30% of the included studies presented low risk, some
concerns, and high risk of biases, respectively (Table S1,
available as online-only supplementary material).

Pairwise meta-analysis and meta-regression

The effect sizes of endpoint depression scores for each
study were calculated. Meta-analysis results showed that
active tDCS was superior to sham (n=21, Hedges’s g =
0.41, 95%Cl 0.18-0.64) (Figure 1), with a moderate effect
size. High heterogeneity was observed among studies
(12 = 65%). The funnel plot showed a relatively symmetri-
cal distribution (Figure S2, available as online-only

Meta-analysis and E-field modeling of tDCS for depression

supplementary material), revealing no substantial evi-
dence of publication bias, and the Egger test corroborated
this finding (t = 0.83, p = 0.41).

Subgroup analyses revealed that cathode placement
over F4 was more effective than cathode over F8 (p =
0.047), but was not different to deltoid, FP2, or F5
positions (ps > 0.78) (a forest plot with effect size per
tDCS montage can be seen in Figure S3). Regarding
treatment strategy, tDCS applied as monotherapy was
superior to add-on (p < 0.01) and augmentative (p <
0.01) strategies. No other methodological variable was
associated with antidepressant effects (Table 2).

Relation between E-field strength and antidepressant
effects

The included studies used 11 different tDCS protocols,
accounting for electrode size, current intensity, and
electrode montage, which induced substantial differences
of E-field strength in different portions of the brain
(Figure 2). Therefore, a correlation between E-field
magnitude of brain regions of interest and effect size
per study was conducted.

We first correlated the effect size with mean E-field
strength in regions of interest of only one brain. For the
right hemisphere of the DLPFC, where only the cathode
was applied, results showed a negative association
between antidepressant effect for the frontal DLPFC
portion (subregion A: B = -3.20, p = 0.049, 95%CI -6.45 to
-0.01) and medial DLPFC portion (subregion B: 3 = -3.46,
p = 0.02, 95%CI -7.40 to -0.71), but not for the most
posterior part of the DLPFC (subregion C: § = -2.87, p =
0.31, 95%CI -8.50 to 2.77). In turn, no association was
found for the left DLPFC, where only the anode was
applied (subregion A: B = -1.43, p = 0.50, 95%CI -5.60
to 2.70; subregion B: § = -0.98, p = 0.70, 95%CI -5.70 to
3.70; subregion C: B = -2.30, p = 0.50, 95%CI -9.00 to
4.40). Finally, neither sgACC presented any significant
association with the outcome (right: p = 2.02, p = 0.31,
95%Cl -1.90 to 5.95; left: B = -4.51, p = 0.14, 95%CI
-10.55 to 1.50). Interestingly, similar results were found
when the effect sizes were correlated with the mean
E-field of three head models (Table 3; Figure S4).

Optimized tDCS protocol

We based our tDCS optimization on the observation that
E-fields analysis showed lower antidepressant effect with
stronger E-fields in the frontal and medium parts of the
DLPFC and in the bilateral sgACC. The optimization was
also based on our metaregression findings revealing that
cathodal positions over F8 (right DLPFC) were less
effective against depression symptoms compared to F4.
Thus, we targeted F3 (left DLPFC) — the standard target
for the anode position — to have the maximum E-field, and
avoided F8 (for details, see Methods), with an electric
current no greater than 2 mA. Results showed optimal
protocols using distinct electrode montages from head to
head, by applying multielectrode setups (two anodes and
two cathodes, all 3.14-cm? circular electrodes; see
electrode position in Figure 3) with intensities up to 2 mA
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Experimental Control Standardised Mean
Study Total Mean SD Total Mean SD Difference SMD 95%-Cl Weight
Aust et al. 47 1570 5.5000 48 1490 57000 —:-- 0.14 [0.26; 0.54] 63%
Bennabi et al. 24 1380 B8.0000 24 1390 B8.0000 —r 0.01 [-0.58; 0.55] 5.3%
Blumberger et al 12 1810 55000 14 16880 47700 — 8 -013 [0.92; 066] 41%
Boggio et al. 10 21.20 54000 22 1380 92000 —8— 088 [0.11; 1.68] 42%
Brunoni et al 30 2470 8.7000 30 1907 122100 = 052 [0.01; 1.04] 56%
Brunoni et al 30 2167 134000 30 1320 85000 = 075 [022;, 1.27] 56%
Brunoni et al 17 20,00 10.0000 20 1600 8.0000 -T= 044 [0.22, 1.09] 48%
Brunoni et al 60 16.80 82000 94 1280 67000 Wl 054 [0.21, 0.87] 68%
Fregni ef al 10 2250 13.6000 10 980 4.8000 ———— 119 [0.20; 218] 32%
Looetal 20 2245 B.9000 20 2360 7.7200 — 014 [0.76; 0.49] 50%
Looetal 31 1850 101000 33 1540 10.1000 - 030 [0.19, 0.80) 58%
Looetal 42 2769 55600 42 41.00 35.0000 = i 053 [096,-009] 61%
Mayur et al. 8 19.80 9.9000 8 2300 5.0000 — 039 [[1.38 061 32%
Moirand et al. 18 2340 7.0000 22 2010 92000 -+ 039 [0.24; 1.02] 50%
Mord et al 19 1440 65000 20 1260 6.8000 —tE— 026 [0.37, 0.90] 50%
Paviova et al 231080 47000 46 760 29000 —_— 0.88 [0.36; 1.40] 56%
Salehinejad et al 15 1850 7.2900 15 1050 7.6100 — 1.04 [028; 1.81] 42%
Salehinejad et al 12 16.83 26000 12 1275 3.4000 ——— 130 [041; 220] 36%
Segrave et al. 92644 75200 18 2430 9.1000 024 [0.56; 1.04] 40%
Sharafi et al 15 1990 62000 15 1140 24000 —— 176 [0.90, 262] 38%
Welch et al 5 11.80 3.2000 9 1510 7.5000 048 [-160; 063] 28%
Random effects model 458 550 vl 0.41 [0.18; 0.64] 100.0%
T T 1T 1

Heterogeneity: I° = 65%, 1° = 0.1781, p < 0.01

Figure 1 Forest plot (effect size - Hedges’ g). SMD = standard mean difference.

Table 2 Subgroup and univariate metaregression results

Beta 95%Cl p-value

Cathode

F4 (n=11) - - Ref.

Fp2 (n=4) 0.17 -0.45 to0 0.79 0.6

F8 (n=4) -0.56 -1.14 to -0.01 0.047

Deltoid (n=1) -0.23 -1.30 to 0.82 0.82

F6 (n=01) -0.23 -1.30 to 0.82 0.66
Treatment strategy

Monotherapy (n=7) - - Ref.

Add-on" (n=5) -0.94 -1.43 to -0.45 < 0.01

Augmentation* (n=9) -0.61 -1.05 to -0.17 < 0.01
Mean age (years)

< 43.9 (n=18) - - Ref.

> 43.9 (n=3) 0.42 -0.26 t0 1.10 0.23
Current density (n=21) 0.15 -1.10 t0 1.40 0.20
Electrode size (n=21) -0.01 -0.06 to 0.02 0.46
Current intensity (n=21) -0.03 -0.70 to 0.12 0.16

Bold type denotes statistical significance.

‘Transcranlal direct current stimulation (tDCS) added on to existing pharmacotherapy.
*Combined efficacy of tDCS and other treatment initiated simultaneously.

(+1 mA for each anode and -1 mA for both cathodes) and
having the peak current in the left DLPFC. These
montages lead to a maximum E-field value of 0.62 mV/
mm, 0.63 mV/mm, and 0.47 mV/mm at the left DLPFC.

Discussion

In this study, we systematically evaluated the antidepres-
sant effects of tDCS and their association with induced
E-fields of different tDCS protocols using a computational
modeling analysis. Data from 20 placebo-controlled
clinical trials (21 datasets; 1,008 patients) were synthe-
sized and showed a moderate antidepressant effect of
active tDCS in comparison to placebo (Hedges’ g = 0.41).

The risk of bias was mostly low or unclear (70%), with no
evidence of publication bias. Nine different tDCS proto-
cols and four tDCS electrode montages were used in the
included studies, varying in terms of electrode position,
current intensity, and electrode sizes, which impacted the
E-field distribution of each included study. A negative
association between the effect size of distinct tDCS
protocols and E-field strength in specific brain regions
was seen, showing that stronger E-fields in the frontal and
medial part of the DLPFC lead to a smaller tDCS effect on
depression, whereas no association was found for the left
DLPFC or either sgACC. The same results were replicated
in one head model, for the mean E-fields of three head
models. The results are discussed in detail below.
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Table 3 Results from the correlation between E-field strength of each brain region of interest and effect size per study

E-field of one head model

Mean E-field of three head models

Beta 95%Cl p-value Beta 95%Cl p-value

Right

DLPFC frontal portion -3.20 -6.45 to -0.01 0.049 -3.50 -6.30 to -0.70 0.02

DLPFC medial portion -3.46 -6.86 to -0.06 0.046 -4.21 -7.48 to -0.94 0.01

DLPFC posterior portion -2.87 -8.583 10 2.77 0.31 -3.84 -8.28 to 0.55 0.09

SgACC 2.02 -1.90 to 5.95 0.31 -4.10 -9.60 to 1.45 0.14
Left

DLPFC frontal portion -1.43 -5.60 to 2.70 0.50 -3.40 -7.30 to 0.43 0.08

DLPFC medial portion -0.98 -5.7 t0 3.70 0.70 -3.70 -7.80 to 0.43 0.08

DLPFC posterior portion -2.30 -9.00 to 4.40 0.50 -3.90 -8.40 to 0.70 0.10

SgACC -4.51 -10.60 to 1.55 0.14 -4.50 -10.50 to 1.53 0.14

Bold type denotes statistical significance.

DLPFC = dorsolateral prefrontal cortex; E-field = electric field; SJACC = subgenual anterior cingulate cortex.

F3 and FP2
Protocol: 35 cm2, 2 mA
Total = 2 studies

F3 and F4
Protocol: 25 cm2, 2 mA
Total = 5 studies

Protocol: 35 cm2, 2 mA
Total = 4 studies

Protocol: 35 cm2, 1 mA
Total = 1 study

Protocol: 26.2 cm2, 0.5 mA
Total = 1 study

Protocol: 20 cm2, 2 mA
Total = 1 study

Fp3/F3 and F8
Protocol: 35 cm?, 2.5 mA
Total = 1 study

F3 and Deltoid
Protocol: 35 cm2, 1 mA
Total = 1 study

Protocol: 35 cm2, 2 mA
Total = 2 studies

F5 and F6
Protocol: 25 cm?2, 2 mA
Total = 1 study

Protocol: 35 cm2, 1 mA
Total = 1 study

Figure 2 Simulated electric field distribution based on different transcranial direct current stimulation protocols used to treat

major depressive disorder.

Pairwise meta-analysis

Based on our previous publication,®4°°° here we per-
formed an updated pairwise meta-analysis including a
large, recently published tDCS trial®?; findings still show a
modest antidepressant effect of tDCS, with mixed effects
across trials. Overall, a mixed effect of prefrontal tDCS
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has been seen in several fields of investigation.**>° For
instance, a recent meta-analysis showed only a small
effect of tDCS probing the PFC to increase working
memory performance in healthy participants,’” an
umbrella review found null and/or small effects of
prefrontal tDCS for a range of cognitive domains,>' and
the most updated meta-analysis in depression showed



PP1 PP2
Enax = 0.47

Epax= 0.63

Frontal Left

Dorsal

Electrode intensity (mA)

F5=1.0 Fz=-0.78
FC5=0.78 F1=-1.0

F5=1.0
F7=1.0

Electrode intensity (mA)

Fz=-1.0
F2=-1.0

Meta-analysis and E-field modeling of tDCS for depression

PP3
Epax = 0.62

Enmax

E-field

Electrode intensity (mA)

FP1=1.0 F3=-1.0
AF3=1.0 FC3=-1.0

Figure 3 Protocols resulting from the SimNIBS optimization routine. PP1, PP2, and PP3 are head-models of patient 1,
patient 2, and patient 3, respectively. Optimized protocols for each head-model used four circular 3.12-cm? electrodes and
a current up to 2 mA, with anodes targeting F5/FC5, F5/F7, and FP1/AF3, respectively, and cathodes targeting Fz/F1, Fz/F2,

and F3/FCS3, respectively.

only a moderate effect size favoring active tDCS."® The
mixed effects of tDCS targeting the PFC have been the
topic of discussion in recent work in the field,®>%% which
suggests that inter-experimental and inter-individual
variability might play an important role in this hetero-
geneity. As such, here we investigated some methodo-
logical predictors of tDCS response.

It has been extensively discussed that tDCS effects
might be modulated when it is combined with other
interventions.>* As tDCS is a state-dependent interven-
tion, i.e., its effects are dependent on the neural activity in
the targeted area and adjacent network, controlling
ongoing neural activation by combining tDCS with other
interventions might improve the desired outcome and
reduce individual variability effects.>?*®> This explanation
corroborates some findings in the depression field, such
as those reported by Segrave et al.*®> and Vanderhasselt
et al.,®® in which the concurrent application of tDCS and
cognitive control training enhanced antidepressant out-
comes compared to either tDCS or cognitive training as
monotherapy.

However, although research into the effects of com-
bined protocols is increasing, a metaregression analysis
performed in our review revealed that studies using
treatment strategies including add-on and augmentative
therapy presented significantly lower effects on the
reduction of depression scores when compared to tDCS
as monotherapy. These results are similar to the findings
of a recent meta-analysis by our group.® This could be
explained by several factors, including: 1) a lack of

consensus regarding the optimal interventions (i.e., oral
antidepressants or psychological interventions) to com-
bine with tDCS treatment — and, accordingly, a lack of
systematic analyses investigating how the combination of
different interventions might interact (i.e., positive, neu-
tral, or negative); 2) for psychological interventions, such
as cognitive behavioral therapy or cognitive training, there
is not enough knowledge on whether these methods
should be applied before, during or after tDCS, leading
to high inter-experimental variability.3>” Moreover, it is
speculated that psychological interventions such as cog-
nitive-behavioral therapy might activate a diffuse neural
network compared to tDCS.%? Therefore, although the
literature suggests that the combination of tDCS with
other interventions might be beneficial for the treatment of
mood disorders, this should be carefully discussed and
systematically evaluated in future studies.

Our metaregression results also revealed cathode
position as a possible moderator of tDCS response, with
more lateralized electrodes — placed over F8 — being
associated with lower antidepressant response in com-
parison to those placed over Fp2, F4, deltoid, or F5. In a
previous meta-analysis by our group, a trend for lower
antidepressant response was also found for F8 cathode
placement.®

tDCS-induced E-field and antidepressant effect

Crucially, our findings demonstrate that E-field magnitude
in the frontal and medial parts of the right DLPFC
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negatively affects the antidepressant effects of tDCS,
whereas no association was found for the left DLPFC and
the bilateral sgACC. To the best of our knowledge, this is
the first study to systematically quantify tDCS-induced
E-fields in randomized clinical trials of tDCS in MDD.
Interestingly, given that prior research has demonstrated
unbalanced activity in the left and right DLPFC in patients
with MDD, tDCS electrodes in clinical trials have been
systematically applied over the bilateral DLPFC. How-
ever, although it appears there is a consensus about
placing the anode over the left DLPFC of depressive
patients, the cathode location varies across clinical trials.
In this sense, a recent guideline considered tDCS as
definitively effective for depression when using the anode
over the left DLPFC, but no recommendation was made
for the cathode location — nor for current intensity and
electrode size.?®

Importantly, the negative association between E-field
and antidepressant response in the right DLPFC might to
some extent explain the lack of recommendation regard-
ing cathode position for the treatment of depression in
the most recent guideline on this topic.?® Analogously, the
E-field modeling findings of our study reinforce that the
inter-experiment heterogeneity in tDCS protocols, espe-
cially over the right DLPFC, might explain the variability in
tDCS antidepressant response. Figure 2 shows how
heterogeneous tDCS-induced E-fields are in the right
DLPFC across tDCS studies for MDD. In turn, the left
DLPFC displays less inter-experimental variability of E-
fields (all included studies have anode placed over the
left DLPFC). This is presumably related to increasing
evidence that the left DLPFC plays a direct role in dep-
ression symptoms, and may have both limited exploration
of the parameter space for the anode position and
restricted E-field values in this region.®®’

Therefore, consolidating all results of our analyses, we
investigated an optimized tDCS protocol for depression
having the left DLPFC as our main target and avoiding F8
placement (i.e., lateral right PFC, based on our meta-
regression findings). An optimized protocol holds the
possibility of reducing inter-experimental variability while
increasing the tDCS antidepressant response, and
particularly reducing variability when individualized tDCS
doses are not available.®? Interestingly, the optimization
protocol resulted in different electrode positions across
the three head models, but all montages induced a
maximized E-field in the left DLPFC and excluded the
right hemisphere almost completely. It is expected that
electrode position would vary from person to person in
order to account for interindividual variability, which might
be caused by individual brain volume, cortical thickness,
or even scalp-brain distance due to age-related atrophy,
for instance.®*®* In this sense, it is optimal that individual
models be simulated prior to the tDCS session to
ascertain optimal electrode placement for each patient,
with special attention to older adults, who might exhibit
higher heterogeneity in brain structures.®® Nonetheless,
the optimized montages proposed herein suggest that
unilateral stimulation may be more beneficial compared to
bilateral stimulation to target the DLPFC. This is in
agreement with the observation that peak E-fields are

Braz J Psychiatry. 2023;45(6)

typically observed between, rather than directly under, the
tDCS electrodes.®¢¢”

Since almost all reviewed studies used bilateral mon-
tages (anode over the left DLPFC and cathode over the
right PFC), assessing the effect of montages focusing on
the left DLPFC alone would be an interesting avenue in the
future. Interestingly, for transcranial magnetic stimulation
(TMS), typically only the left DLPFC is targeted (computa-
tional modeling analysis confirms a more focused current
for this intervention),®® and it seems that the same may
hold for tDCS. Furthermore, our findings align with a recent
tDCS computational modeling analysis investigating work-
ing memory performance in healthy participants, in which
the researchers showed that targeting only the left PFC
might increase performance.’” In such a scenario, another
possible way to increase E-field strength in the targeted
location (left DLPFC) using tDCS would be use of a high-
definition methodology (HD-tDCS), which is known to
increase current focality,®® in MDD.”°

Finally, another important use case for computational
modeling analysis in the tDCS field is dose individualiza-
tion, which can reduce inter-individual variability and
increase treatment response.”’”? In this sense, our
findings also suggest that inter-experimental variability
in tDCS electrode location plays an important role in the
measured antidepressant effect, which might be consid-
ered in future studies.

This study has several limitations that should be
underscored. First, inter-individual variability was not
investigated in this analysis. Factors including individual
cortical thickness, skull thickness, head shape, brain size,
and gyrification can directly impact E-field strength in
cortical regions, and we highly encourage their investiga-
tion in future studies aiming to evaluate whether individual
anatomy can impact tDCS antidepressant effects.
Although three head models of depressive patients were
used to account for anatomical brain differences, there is
still not enough information on how many head models are
ideal to account for variability in simulated E-field analysis.
Second, a total of 11 tDCS protocols were applied across
the 21 trials included in this meta-analysis. Seven tDCS
protocols were used in a single trial, which might have
caused bias towards a single-study effect. Third, the
current direction was not assessed. However, as the
cathode was always placed over the right DLPFC and
the anode over the left DLPFC, current direction remained
constant for all montages. Fourth, as a limitation of the
statistical methodology adopted, aggregate meta-analysis
has a poorer performance than individual patient data
meta-analysis, especially for identifying moderators of the
outcome of interest. However, an individual patient data
design would have required neuroimaging acquisition in all
participants included in the clinical trials, which is unfea-
sible, since only a few trials collected anatomical neuro-
imaging at baseline.

In this study, we systematically investigated the
association between the effect size of distinct tDCS
protocols used in randomized clinical trials for MDD and
tDCS-induced E-field strength in specific brain regions.
To perform these analyses, we first conducted a pair-
wise meta-analysis and correlated its findings with a



computational modeling analysis of the different tDCS
parameters. Overall, there were 20 studies (21 datasets,
1,008 participants) and 11 different tDCS protocols. The
results showed a moderate antidepressant effect of tDCS
for MDD, and metaregression analysis showed that
cathode position and treatment strategy might be possible
predictors of tDCS response. Analysis of correlation
between effect sizes and the computational modeling
results showed that stronger E-fields in the frontal and
medial parts of the right DLPFC targeted by the cathode
were associated with less improvement of depression,
whereas no associations were found for the left DLPFC.
Importantly, this study showed, for the first time, that
differences in simulated E-fields — based on distinct tDCS
parameters — can be implicated in the heterogeneity of
effects reported across clinical tDCS trials in patients with
MDD. Therefore, we propose an optimized tDCS protocol
to guide future studies. Our results highlight the need for a
standardized tDCS protocol in MDD clinical trials, possibly
targeting the left DLPFC specifically, to increase anti-
depressant effects.
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