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Studying neurodegenerative diseases in culture models
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Neurodegenerative diseases are pathological conditions that have an insidious onset and chronic
progression. Different models have been established to study these diseases in order to understand
their underlying mechanisms and to investigate new therapeutic strategies. Although various in vivo
models are currently in use, in vitro models might provide important insights about the pathogenesis of
these disorders and represent an interesting approach for the screening of potential pharmacological
agents. In the present review, we discuss various in vitro and ex vivo models of neurodegenerative
disorders in mammalian cells and tissues.
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Background

Neurodegenerative disorders, such as Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), Huntington’s
disease (HD), and amyotrophic lateral sclerosis (ALS),
also known as Lou Gehrig’s disease, affect millions of
people around the world. Unfortunately, the pathogenesis
of these chronic neurodegenerative diseases is not fully
understood, and current treatments do not stop or slow
down progression of these pathological conditions.
Therefore, different in vivo, ex vivo, and in vitro models
have been generated. In vitro models of these patholo-
gical conditions offer advantages over in vivo models in
several aspects. First, it is possible to study the role of
isolated cells of one particular type in an environment that
simulates the disease and to investigate mechanisms of a
possible deleterious or protective role of specific mole-
cules and compounds. Second, screening for potential
actions of drugs is also facilitated. In this sense, in vitro
models of neurodegenerative processes have been used
to provide important clues about mechanisms of the
diseases and potential pharmacological targets. In the
present review, we discuss in vitro and ex vivo models of
chronic neurodegenerative diseases using cells or
tissues.

Parkinson’s disease

PD is a slowly progressive neurodegenerative disease
clinically characterized by motor impairment, namely
bradykinesia, rigidity, resting tremor, and postural
instability.1 Synaptic and axonal degeneration within the
striatum followed by loss of dopaminergic neurons in the
substantia nigra pars compacta (SNpc) leads to reduced

levels of dopamine in the nigrostriatal circuitry.2 Besides
dopaminergic cell loss, intracellular formation of Lewy
bodies and Lewy neurites, consisting predominantly of
aggregated alpha-synuclein (aSyn), has been suggested
to be crucial in the pathogenesis of this disease.3

Moreover, genetic factors contribute to the pathogenesis
of PD.4 To date, more than 16 loci and 11 associated
genes have been identified. Among these, mutations in
the gene for aSyn were the first ones to be mapped.5 On
the cellular level, research in PD focuses on protein
aggregation, neurotoxicity, increased oxidative stress,
excitotoxicity, mitochondrial dysfunction, and defects in
the protein degradation machinery (including the ubiqui-
tin-proteasomal system and autophagy pathways).6

Several cell culture systems have been employed to
study these possible disease processes. But what would
be the perfect cell? A homogeneous cell culture system
that is easy to handle would be preferable. Cells should
be easy to expand in order to generate large numbers of
neuronal precursor cells. Next, these cells should be able
to be transferred from a proliferative into a post-mitotic
state. Finally, these cells should be easily directed
towards a post-mitotic state in a synchronized manner
with a mature neuronal (dopaminergic) phenotype. One
cell culture model that will surely play an important role in
PD research and that already combines many of the
aforementioned aspects consists of dopaminergic neu-
rons derived from human induced pluripotent stem cells
redirected from human fibroblasts.7 However, we will not
include human induced pluripotent stem cells in this
review, because their usage is still hampered by very
labor-intensive and costly procedures. Some problems,
such as the low absolute yield of differentiated dopami-
nergic neurons and low homogeneity, are of high
research interest and we would like to refer the interested
reader to the very comprehensive review by Studer.8

Primary midbrain dopaminergic neurons are suitable
to study dopaminergic cell survival and neurite retraction
as well as regeneration. Usually, embryonic midbrain
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neurons from embryonic day 14 (E14) are dissected.9

A high yield of dopaminergic neurons can be obtained,
which can be exposed to various neurodegenerative
stimuli. Several neurotoxins are employed to study
neurodegeneration. In particular, 6-hydroxydopamine
(6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+) are
widely accepted to induce neurotoxicity. Both neurotoxins
are thought to induce dopaminergic toxicity by intra- and
extracellular oxidation, hydrogen peroxide formation, and
direct inhibition of the mitochondrial respiratory chain.10

On the one hand, this cell model is very suitable to study
methods of neurodegeneration and neurite retraction; on
the other hand, possible neurorestorative capacities by
pharmacological compounds and the underlying mechan-
isms can be nicely dissected. For example, inhibition of
rho kinase mediated by fasudil promotes the survival of
rat primary midbrain neurons after addition of MPP+ to the
culture dish via the Akt survival pathway.11 As a read-out
for cell survival, cell number can be counted in this cell
culture system. Other possibilities include, for example,
the MTT assay, determination of adenylate kinase in the
supernatant, or fluorescence-activated cell sorter (FACS)
analysis for annexin V and propidium iodide.

Since axonal loss seems to be an early event in PD
pathogenesis, analysis of the neurite network can also be
performed and may be suitable as a good read-out for
neurite preservation. An interesting approach to study
neurite regeneration has been described by Tönges et al.
Neurite processes were mechanically transected with a
thin silicone scraper, treated with MPP+, and finally the
length of neurites was determined using ImageJ soft-
ware.11,12 However, primary midbrain neurons are not
easy to prepare; they are time-consuming and hard to
transfect. Therefore, different cell lines were generated.

A commonly human cell line used in PD research is the
HEK293 (human embryonic kidney 293) cell line. These
cells can be easily transfected (e.g., via calcium
phosphate, liposome based, electroporation). In one
paper, the kinetics of aSyn aggregation was studied with
respect to aggregation formation. Increased expression
of wild-type aSyn was shown to result in the formation of
cytoplasmic aggregates.13 Time-lapse imaging illustrated
how cells form and accumulate aggregates of aSyn in
HEK293 cells.14 HEK293 cell line is also a suitable model
system to study the effect of aSyn mutations and other
PD associated genes. The expression of a mutant A53T
form of aSyn caused an increased susceptibility to
dopamine.13 Recently, it could be demonstrated that
overexpression of leucine-rich repeat kinase 2 (LRRK2)
does not result in altered gene expression in HEK293
cells.15 Mutations in LRRK2 are strongly associated with
late-onset autosomal dominant PD, and HEK293 may be
suitable to go for candidate pharmacological screening
for LRRK2 inhibitors.16 Moreover, mechanisms of possi-
ble in vitro transfer of aSyn and its modified species may
be studied in this cell line.17

Despite the common usage of HEK293 cells in PD
research, there are some drawbacks, including the fact
that these cells lack a neuronal phenotype. Another cell
line that is widely used in the field of PD research is the

SH-SY5Y cell line, which is derived from human
neuroblastoma cells. These cells are widely used to
study mechanisms of neurodegeneration. For example,
overexpression of wild-type human aSyn was shown to
promote inclusion formation in SH-SY5Y cells.18

Moreover, extracellular addition of aSyn oligomers
caused transmembrane seeding of aSyn aggregation in
a dose- and time-dependent manner.19 However, SH-
SY5Y cells are hard to differentiate into a post-mitotic
mature dopaminergic state.20

Several other human cell lines mainly derived from
embryonic teratocarcinomas (NT2, hNT) are currently
used, and they can be directed towards a post-mitotic
neuronal phenotype.21,22 The human H4 neuroglioma cell
line has been used to study the oligomerization of
intracellular aSyn by fluorescence lifetime imaging
(FLIM) for the first time.23 Moreover, the role of aSyn in
the autophagy pathway has been addressed in this cell
line.24 It could be shown that dysfunction of the
autophagy pathway may lead to exosome-mediated
release of aSyn oligomers in order to clear these toxin
aSyn species.25 However, all these cell lines are derived
from tumorous cells and only moderately show a distinct
neuronal phenotype. Thus, we would finally like to
address here the Lund human mesencephalic
(LUHMES) cells. LUHMES cells were derived from 8-
week-old human fetal ventral mesencephalic cells. To
induce immortalization and thereby continuous prolifera-
tion, these cells were transformed based on the LINXv-
myc vector with tetracycline-regulated v-myc expres-
sion.26 This vector also contains a tetracycline transacti-
vator that enhances the expression of v-myc from a
minimal promoter from human cytomegalovirus (CMV)
fused to the tetracycline operator sequence. Addition of
tetracycline inactivates the transactivator and thereby
abolishes v-myc expression. Supplementation with
GDNF and cAMP induces a dopaminergic phenotype
after 5 days of differentiation.27 Differentiated LUHMES
cells showed a high degree of dopaminergic phenotype,
including release of dopamine and neuronal electric
properties.28,29 The LUHMES cell line has been widely
used to study dopamine-related cell death mechan-
isms.27,29,30 A drawback of this cell line is that classical
transfection methods showed very low transfection
efficiency. Thus, a lentiviral approach to efficiently
transfect these cells is necessary.

Recent reports support the hypothesis that extracellular
aSyn plays an important role in PD-associated neurode-
generative processes.31,32 These findings suggest that
extracellular aSyn released by neurons may also modulate
microglial and astrocytic activity. Both glial types may
respond to extracellular aSyn by increased expression of
inflammatory mediators. In particular, inflammation in PD
has been recognized recently not only as a mere
bystander in the disease process but also as an important
disease modifying or even accelerating factor. There is
accumulating evidence for inflammatory processes in the
progression of PD derived from 1) serum and cerebrosp-
inal fluid (CSF) analyses, 2) genetic analyses, and 3)
epidemiological studies.33 In post-mortem studies of PD
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patients, expression of pro-inflammatory cytokines was
elevated in the striatum of PD patients, and activated
microglia was observed within the SNpc, respectively.33,34

Astrocytes and microglia cultures will be addressed in a
separate topic below.

Alzheimer’s disease

AD is a slowly progressive neurodegenerative disorder
and the most common cause of dementia in the elderly.
The neuropsychological profile of AD includes deficits in
episodic memory, language, semantic knowledge,
visuospatial abilities, executive functions (i.e., panning,
organization, etc.), and apraxia.35 The brain regions
involved early in the course of the disease are the
entorhinal cortex and the CA1 region of the hippocampus,
followed by limbic structures and, at later stages, all
isocortical areas.36 The neurodegenerative process is
characterized by early damage to synapses with retro-
grade degeneration of axons and eventual atrophy of the
dendritic tree. In fact, loss of synapses is the best
correlate of the cognitive impairment in patients with
AD.37,38 Neuropathological changes include abundant
extracellular amyloid plaques and neurofibrillary tangles,
comprised of hyperphosphorylated tau.39 Deciphering
mechanisms leading to neuronal dysfunction and cell loss
are the main advantages of in vitro model systems.
Different neuronal cell lines are commonly used for
neuronal in vitro culture system, such as PC12,
HEK293, and SH-SY5Y cell lines. These cells can be
transfected with wild-type amyloid-precursor proteins,
tau, or mutant forms of these molecules. In addition to
cell lines, primary cortical and hippocampal cultures play
a valuable tool in AD research. The addition of amyloid-
beta to the medium of primary neuronal cells induces
apoptosis.40,41

It is widely accepted that glial cells also contribute to
the pathogenesis of AD. It has been shown that, besides
neuronal loss, reactive astrocytes and activated micro-
glial cells can be associated with amyloid plaques and
neurofibrillary tangles.42-44 Although amyloid-beta itself
can be toxic to neurons, it also activates microglia,
leading to neuronal damage.45 Below, we discuss the role
of glial cells in AD and PD and make a brief discussion of
how these cells might be used for the investigation of
these two pathological conditions.

Microglia and astrocytes in AD and PD

Microglia, the phagocytic innate immune cells of the
central nervous system (CNS), continuously survey the
local microenvironment. Activated microglia can be
morphologically distinguished from ‘‘resting’’ microglia,
because activated microglia have larger cell bodies as
well as thicker and shorter processes.46 Detection of
pathogens or adverse patterns is accomplished by a vast
array of highly conserved pattern-recognition receptors,
including Toll-like receptors (TLRs). Stimulation of TLRs
results in the activation of well-characterized signaling
pathways, e.g., nuclear factor kB, and eventually leads to

subsequent transcriptional activation of pro-inflammatory
genes and to the production of reactive oxygen species.45

Primary microglial cells from rat or mice are commonly
used to study inflammatory processes. For instance,
primary microglial cells can be isolated from cerebral
cortices of 1-day-old Wistar rats.47-51 It is important to
take extreme care to avoid lipopolysaccharide contam-
ination, thus to keep microglia in a resting or ‘‘surveying’’
state instead of an activated state. Floating microglia can
be harvested from 10- to 14-day-old mixed astroglial and
microglial primary cultures. Finally, the purity of the
microglial culture should be determined. Several micro-
glial markers can be obtained to perform immunocyto-
chemistry or FACS analysis, e.g., Iba1, CD68 (ED1),
CD11b (OX-42), tomato lectin, or isolectin-B4. Primary
microglial cultures have been used to study whether and
by what means extracellular aSyn can activate microglial
cells. Indeed, consistent and permanent microglial activa-
tion and subsequent production of pro-inflammatory
cytokines have been shown in primary microglial
cells.52-58 In particular, TLR4 may be crucial in activating
microglial cells and may be involved in phagocytosis.54

Another recently published study showed that oligomeric
aSyn may interact and activate TLR2 in microglial cells.59

The production of inflammatory mediators might con-
tribute to the formation of amyloid-beta plaques.60 Also,
microglia of PS1-APP transgenic mice, a mouse model
for AD, express increased amounts of cytokines, such as
interleukin (IL)-1b and tumor necrosis factor (TNF) a in
comparison to their WT littermates, probably contributing
to increased neurodegeneration.61 Moreover, primary
microglial cells may be used to study inflammatory
processes and anti-inflammatory approaches. For exam-
ple, the role of prostaglandins and underlying cell
signaling after activation of lipopolysaccharide led to
novel insights.62-66

Since AD and PD are age-related disorders and
microglia may change their functional properties in the
aging brain,67 protocols are in demand for the isolation of
microglia from adult rodents. A few protocols exist;
however, presently, literature is scarce on this topic.68-70

Besides the primary microglia cell system, one micro-
glial cell line is widely used, i.e., the BV-2 cell line.
Microglial cells from C57Bl/6 were immortalized with v-
myc.71 The BV-2 cell was recently characterized, and
transcriptome and proteome analysis revealed a high
similarity to primary microglial cells.72 Since BV-2 are
easy to culture, they are a valuable tool to study not only
inflammatory processes,72 but also phagocytosis.73 In
addition, astrocytes may contribute to the activation of
microglial cells and vice versa.74

Reactive astrogliosis, characterized by hypertrophy of
astrocytic processes and soma as well as increased
proliferation accompanied by progressive changes in
gene expression, is generally moderate in human post-
mortem tissue of PD patients. Astrocytes are the most
abundant cells in the CNS, and show a wide variety of
functions including regulation of blood flow and synaptic
function, but may also play an important role in mediating
neuroinflammation in neurodegenerative diseases.
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Indeed, astrocytes play an important role in initiating and
regulating CNS immune response through the release of
pro-inflammatory cytokines and chemokines.75 Recently,
it could be shown that aSyn is directly transferred from
neurons to primary astrocytes in vitro. Interestingly, aSyn
was uptaken by astrocytes via endocytosis and showed
an increase in TNFa gene expression.76

Primary astrocytes cultures are relatively easy to
prepare. Astrocytes can be obtained from every region
of the CNS and at any age, although the optimal time
point would be in rodents from 2-3 days postnatal when
astrogenesis is at its peak.77 Several astrocytes isolation
protocol exist.78-80 However, a caution needs to be taken
when dealing with astrocytic cultures because these cells
may be ‘‘contaminated’’ with a high amount of microglia,
oligodendrocytes, neurons, and endothelial cells.81 Thus,
it is important to use specific markers for the cell types.
Commonly employed astrocyte markers are GFAP,
GLAST, vimentin, glutamine synthetase, glutamate
transporter 1, aldehyde dehydrogenase 1 L1, and
S100beta.82-84 To determine the percentage of microglial
cells, immunocytochemical or FACS analysis for com-
mon microglial markers should be performed. Several
methods can be used to reduce the number of microglial
cells. First, frequent medium changes, shaking, and
subculturing all reduce the number of microglial cells.
Secondly, laminin enhances astroglial growth and inhibits
microglial growth.85,86 Also, application of cytosine
arabinoside (Ara-C) or L-leucine methyl ester may
effectively deprive the astrocytes cultures from microglial
cells. In addition to primary cell cultures, a few astroglial
cell lines exist, such as the human U373 astrocytoma cell
line.87-89

Huntington’s disease

HD is an autosomal dominant inherited neurodegenera-
tive disease characterized by progressive motor abnorm-
alities, psychiatric symptoms, and cognitive decline. The
cause of the disease is accepted as a CAG repeat
expansion in the huntingtin gene, resulting in a long
stretch of polyglutamine (PolyQ) in the encoded protein,
huntingtin (Htt).90 This mutant huntingtin (mHtt) contains
more than 40 glutamine repeats. Thirty-six to 40
glutamine repeats are associated with an increased risk
for developing HD and a slower progression of the
pathology.91 HD is characterized predominantly by
degeneration of striatal and cortical neurons, although
other regions can also be affected.91

Few in vitro models have been developed to study
important hallmarks of HD, allowing the investigation of
key intracellular mechanism involved in the disease, as
well as the identification of novel pharmacological targets.
Considering the role of mHtt in the pathogenesis of HD,
this protein has been used as a main tool for the study of
HD in vitro. Increased frequency of aggregates is
associated with toxicity in in vitro models of HD.92,93 It
has been shown that expression of the truncated mHtt in
HD models resembles the disease process at a delayed
stage of PolyQ toxicity. Conversely, expression of the

full-length mHtt would be more representative of the
entire process observed in the disease.94

Many aspects of the pathological features observed in
HD, such as the role of mHtt protein, can be studied in
neuronal cells. Examples of these cells are the rat
pheochromocytoma (PC-12), the mouse Neuro2a (N2a),
and the human SH-SY5Y.95 PC-12 cells can be trans-
fected with different PolyQ-expanded huntingtin con-
structs.96,97 For example, transfection of these cells with
HD exon-1 protein with expanded polyglutamine (150Q)
reveals mHtt localization in the nucleus, as well as altered
morphology, multiple gene expression, and decreased
viability.98 Moreover, these cells can also be transfected
with a construct (pCDNA3-1-GFP-HtEx1-104Q) that
expresses HtEx1 with 104 glutamines fused with GFP
under the control of a cytomegalovirus-based promo-
ter.99,100 Various other transfections of PC12 have been
performed, e.g., with the exon 1 region of the Htt gene
with 109 CAG repeats101 and with an ecdysone-inducible
protein comprising the first 17 amino acids of huntingtin
plus 103 glutamines fused with enhanced GFP (htt103Q-
EGFP).102,103 N2a neuroblastoma cells can also be
transfected with different types of mHtt. For example,
N2a stably expressing truncated htt with expanded 150Q
tracts lead mainly to cytoplasmic aggregates forma-
tion.104

The ST14A cells are derived from E14 rat striatum
primordial cells that exhibit characteristics of medium-
size spiny neurons and can also be transfected with
mHtt.105-108 Another important cell model is the mouse-
rat neuroblastoma-glioma hybrid cell line NG108-15 that
exhibits neuronal properties after differentiation, allowing
the expression of mHtt over many days.109-111 Besides
that, the immortalized rat hippocampal neuronal cell line
(HN33) is another type of cell used because the
hippocampus is one of the brain regions affected in
HD.112-114 Expression of PolyQ-expanded huntingtin in
these cells has been shown to induce apoptosis.112

Although many cell lines have been used, they might
reveal different aspects in comparison with primary cells.
Therefore, primary neurons prepared from HD transgenic
mice are frequently used: neocortical or striatal cultures
from HdhQ111 mice that have 111 CAG repeats in exon 1
of the mHtt gene115-119; neostriatal cultures of the YAC46
(668 line) and YAC72 (2511 line) mice, which express the
full-length mutant huntingtin containing 46 or 72 gluta-
mine repeats (46Q or 72Q)120; YAC128 (line 55) mice
expressing full-length human mHtt containing 128 CAG
repeats121; transgenic BACHD mice that express a full-
length mHtt with 97 glutamine repeats.122

Besides the neuronal cells, mHtt may also be transfected
to non-neuronal cells,95 such as HeLa cells,123-126 human
embryonic kidney cell-line 293T (HEK293T),93,123,126,127

and monkey kidney cell lines (COS-7).107,128,129

An interesting approach has been obtained with acute
transfection of rat corticostriatal brain slices with DNA
constructs derived from the human mHtt.130 This model
has an advantage in comparison with the isolated cells
since it maintains the resident interaction between the
cells, which is important for the pathogenesis of HD.130
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Importantly, this model might be used for the screening of
potential compounds for the treatment of HD.

Non-genetic animal models of HD, which use chemical
substances, have also been used. The 3-nitropropionic
acid and quinolinic acid (QA) are used as excitotoxic
agents in animal models of HD. The first compound is a
mitochondrial toxin that induces neurotoxicity by irrever-
sible inhibition of succinate dehydrogenase, a key
enzyme located at the internal mitochondrial membrane
and responsible for succinate oxidation to fumarate.
Conversely, QA is an agonist of the N-methyl d-aspartate
type glutamate receptors.131 The excitotoxicity induced
by these agents are studied in organotypic striatal,
corticostriatal or sagittal hypothalamic slice cultures,131-

133 as well as hippocampal slices from the transgenic
mice R6/2.134,135

Amyotrophic lateral sclerosis

ALS, also known as Charcot’s or Lou Gehrig’s disease, is
characterized by a degeneration of cortical motor neurons
and anterior horn cells of the spinal cord. This leads to
muscle atrophy, loss of muscle control, and death
resulting from respiratory failure, generally within 3-5
years of diagnosis.

Different studies have shown that oxidative stress plays
a major role in the pathogenesis of this disease, classified
as a rare familial form, which frequently exhibits mutations
of the superoxide dismutase 1 (SOD1) gene.136,137

Considering that the disease affects motor neurons,
different cell lines with the characteristics of these
neurons can be used to study ALS. Moreover, these
cells can be transfected with mutant SOD-1. Examples of
cell lines include mouse neural hybrid cell line (MN-1),
which expresses motor neuron features and high affinity
glutamate transporters,138 and mouse motor neuron
hybridoma line NSC-34, a hybridoma cell line derived
from the fusion of neuroblastoma cells with mice spinal
cord cells.139-143 Moreover, primary cells, like the mouse
primary spinal cord culture,144,145 are also used.

The pathogenesis of ALS involves not only neurons, but
also other cell types, such as microglia and astrocytes.146

Therefore, cell lines can be transfected with mSOD1, or
primary cultures can be produced from transgenic animals.
Interestingly, it has been shown that expression of mSOD1
in microglia enhances the release of inflammatory media-
tors, augmenting its potential to induce neurotoxicity in
comparison with wtSOD1.139,147-152 It has also been
shown that transfection of astrocytes with mSOD1 induced
toxicity to motoneurons in a co-culture model.153,154

Similar to other in vitro models of neurodegenerative
disorders, organotypic rat spinal cord slice cultures,155-158

as well as post-mortem samples of brain and spinal cord
from ALS patients,143,155 are frequently used.

Conclusion

In the present review, we discussed the possibilities
of using cells and tissues in the investigation of
neurodegenerative disorders. Importantly, these models

might offer advantages in various aspects discussed
along the text. Moreover, they complement in vivo studies
that investigate the mechanisms involved in the patho-
genesis of neurodegeneration.
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