Acessibilidade / Reportar erro

Nematofauna of Bryconops cf. affinis (Characiformes, Iguanodectidae) and Saxatilia brasiliensis (Cichliformes, Cichlidae) from the Munim River basin, Northeastern Brazil

Nematofauna de Bryconops cf. affinis (Characiformes, Iguanodectidae) e Saxatilia brasiliensis (Cichliformes, Cichlidae) provenientes da bacia do rio Munim, nordeste do Brasil

Abstract

Populations of freshwater species have been declining rapidly and species are becoming extinct. Thus, understanding freshwater species distribution, trends and patterns is required. The Munim River basin is situated in a region with a phytogeographic interface between the Amazon and Cerrado biomes. Although the Munim basin ichthyofauna is currently relatively well-known, data on its helminth fauna is scarce. The present study aimed to characterize the nematofauna of Bryconops cf. affinis (Günther) and Saxatilia brasiliensis (Bloch) from two different localities in the middle section of the Munim River, and thus to contribute to the knowledge of biodiversity in this region. Specimens of Bryconops cf. affinis were parasitized with the nematodes Procamallanus (Spirocamallanus) krameri (Petter, 1974) and “Porrocaecum-like” species (larvae) in both localities. Saxatilia brasiliensis presented the nematodes P. (S.) krameri, Pseudoproleptus sp. (larvae), Cucullanus sp. and Procamallanus sp. (larvae). Procamallanus (S.) krameri was found parasitizing S. brasiliensis only from the Feio stream. Morphometric data and parasitological parameters are given. The present study provides the first record of nematodes for B. cf. affinis and for S. brasiliensis contributing to the knowledge of the helminth fauna of freshwater fishes from locations that have not yet been studied, such as the Munim River basin.

Keywords:
Nematoda; ichthyoparasitology; biodiversity; Saxatilia; Bryconops; helminths

Resumo

As populações de espécies de água doce têm diminuído rapidamente e espécies estão sendo extintas. Portanto, é necessário compreender a distribuição, as tendências e os padrões das espécies de água doce. A bacia do rio Munim está situada em uma região com uma interface fitogeográfica entre os biomas da Amazônia e do Cerrado. Embora a ictiofauna da bacia do Munim seja relativamente conhecida atualmente, os dados sobre sua fauna de helmintos são escassos. O presente estudo teve como objetivo caracterizar a nematofauna de Bryconops cf. affinis (Günther) e Saxatilia brasiliensis (Bloch) de duas localidades diferentes na seção média do rio Munim e, assim, contribuir para o conhecimento da biodiversidade nessa região. Os espécimes de B. cf. affinis estavam parasitados pelos nematoides Procamallanus (Spirocamallanus) krameri e espécies semelhantes à Porrocaecum (larvas) em ambas as localidades. Saxatilia brasiliensis apresentou os nematoides Procamallanus (S.) krameri, Pseudoproleptus sp. (larvas de terceiro estágio), Cucullanus sp. e Procamallanus sp. (larvas). Procamallanus (S.) krameri foi encontrado parasitando S. brasiliensis apenas no riacho Feio. O presente estudo fornece o primeiro registro de nematoides para B. cf. affinis e para S. brasiliensis, contribuindo para o conhecimento da fauna de helmintos de peixes de água doce da bacia do rio Munim.

Palavras-chave:
Nematoda; ictioparasitologia; biodiversidade; Saxatilia; Bryconops; helmintos

Introduction

Global biodiversity is under threat due to human activities. Factors such as natural habitat destruction, overexploitation, invasive species, pollution and climate change are the main threats to biodiversity at a global level (Hogue & Breon, 2022Hogue AS, Breon K. The greatest threats to species. Conserv Sci Pract 2022; 4(5): e12670. http://doi.org/10.1111/csp2.12670.
http://doi.org/10.1111/csp2.12670...
). These factors affect not only free-living organisms, but also parasites (Marcogliese, 2023Marcogliese DJ. Major drivers of biodiversity loss and their impacts on helminth parasite populations and communities. J Helminthol 2023; 97: e34. http://doi.org/10.1017/S0022149X2300010X. PMid:37057863.
http://doi.org/10.1017/S0022149X2300010X...
). Populations of freshwater species have been declining more rapidly and species are becoming extinct at alarmingly higher rates than in marine and terrestrial realms, a phenomenon known as the “freshwater biodiversity crisis” (Dudgeon et al., 2006Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 2006; 81(2): 163-182. http://doi.org/10.1017/S1464793105006950. PMid:16336747.
http://doi.org/10.1017/S1464793105006950...
; Darwall et al., 2018Darwall W, Bremerich V, Wever A, Dell AI, Freyhof J, Gessner MO, et al. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquat Conserv 2018; 28(4): 1015-1022. http://doi.org/10.1002/aqc.2958.
http://doi.org/10.1002/aqc.2958...
; Harrison et al., 2018Harrison I, Abell R, Darwall W, Thieme ML, Tickner D, Timboe I. The freshwater biodiversity crisis. Science 2018; 362(6421): 1369. http://doi.org/10.1126/science.aav9242. PMid:30573621.
http://doi.org/10.1126/science.aav9242...
; Reid et al., 2019Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PT, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev Camb Philos Soc 2019; 94(3): 849-873. http://doi.org/10.1111/brv.12480. PMid:30467930.
http://doi.org/10.1111/brv.12480...
; Albert et al., 2021Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021; 50(1): 85-94. http://doi.org/10.1007/s13280-020-01318-8. PMid:32040746.
http://doi.org/10.1007/s13280-020-01318-...
; Tickner et al., 2020Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 2020; 70(4): 330-342. http://doi.org/10.1093/biosci/biaa002. PMid:32284631.
http://doi.org/10.1093/biosci/biaa002...
; Ottoni et al., 2023Ottoni FP, South J, Azevedo-Santos VM, Henschel E, Bragança PHN. Editorial: Freshwater biodiversity crisis: Multidisciplinary approaches as tools for conservation. Front Environ Sci 2023; 11: 1155608. http://doi.org/10.3389/fenvs.2023.1155608.
http://doi.org/10.3389/fenvs.2023.115560...
). Thus, understanding freshwater species distributions, trends and patterns is required in order to be able to draw up plans and implement appropriate measures for modifying the curves of extinction rates and population decline. These aims should be considered one of humanity’s highest priorities (Darwall et al., 2018Darwall W, Bremerich V, Wever A, Dell AI, Freyhof J, Gessner MO, et al. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquat Conserv 2018; 28(4): 1015-1022. http://doi.org/10.1002/aqc.2958.
http://doi.org/10.1002/aqc.2958...
; Albert et al., 2021Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021; 50(1): 85-94. http://doi.org/10.1007/s13280-020-01318-8. PMid:32040746.
http://doi.org/10.1007/s13280-020-01318-...
; Tickner et al., 2020Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 2020; 70(4): 330-342. http://doi.org/10.1093/biosci/biaa002. PMid:32284631.
http://doi.org/10.1093/biosci/biaa002...
; Ottoni et al., 2023Ottoni FP, South J, Azevedo-Santos VM, Henschel E, Bragança PHN. Editorial: Freshwater biodiversity crisis: Multidisciplinary approaches as tools for conservation. Front Environ Sci 2023; 11: 1155608. http://doi.org/10.3389/fenvs.2023.1155608.
http://doi.org/10.3389/fenvs.2023.115560...
).

Currently, despite the importance of recording biodiversity, there is a taxonomic crisis, caused by a reduction in the numbers of new taxonomists that are being trained. This field of science has generated little interest among the new generations of researchers. Consequently, the species inventories of some taxonomic groups have declined (Simões & Robles, 2023Simões RO, Robles MR. Editorial: helminth biodiversity. Front Vet Sci 2023; 9: 1126460. http://doi.org/10.3389/fvets.2022.1126460. PMid:36744221.
http://doi.org/10.3389/fvets.2022.112646...
). Despite the importance of parasites, it is known that there are many species that still need to be discovered and described before the inventory of extant parasite biodiversity can be considered complete (Jorge & Poulin, 2018Jorge F, Poulin R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc Biol Sci 2018; 285(1879): 20180072. http://doi.org/10.1098/rspb.2018.0072. PMid:29848643.
http://doi.org/10.1098/rspb.2018.0072...
; Carlson et al., 2020Carlson CJ, Dallas TA, Alexander LW, Phelan AL, Phillips AJ. What would it take to describe the global diversity of parasites? Proc Biol Sci 2020; 287(1939): 20201841. http://doi.org/10.1098/rspb.2020.1841. PMid:33203333.
http://doi.org/10.1098/rspb.2020.1841...
; Poulin et al., 2023Poulin R, Presswell B, Bennett J, Angeli Dutra D, Salloum PM. Biases in parasite biodiversity research: why some helminth species attract more research than others. Int J Parasitol Parasites Wildl 2023; 21: 89-98. http://doi.org/10.1016/j.ijppaw.2023.04.010. PMid:37182112.
http://doi.org/10.1016/j.ijppaw.2023.04....
).

The Munim River basin is located in the eastern region of the state of Maranhão (northeastern Brazil), occupying an area of approximately 16,000 km2, and it is one of the main river systems of Maranhão (Ribeiro et al., 2014Ribeiro TS, Lizama MA, Takemoto RM. Metazoan endoparasites diversity of Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) as an indicator of environmental alterations on a tropical aquatic system. Acta Parasitol 2014; 59(3): 398-404. http://doi.org/10.2478/s11686-014-0260-0. PMid:25119352.
http://doi.org/10.2478/s11686-014-0260-0...
; Oliveira et al., 2020Oliveira ES, Guimarães EC, Brito PS, Vieira LO, Oliveira RF, Campos DS, et al. Ichthyofauna of the Mata de Itamacaoca, an urban protected area from the upper Munim River basin, Northern Brazilian Cerrado. Biota Neotrop 2020; 20(4): e20201116. http://doi.org/10.1590/1676-0611-bn-2020-1116.
http://doi.org/10.1590/1676-0611-bn-2020...
; Vieira et al., 2023Vieira LO, Campos DS, Oliveira RF, South J, Coelho MSP, Paiva MJS, et al. Checklist of the fish fauna of the Munim River Basin, Maranhão, north-eastern Brazil. Biodivers Data J 2023; 11: e98632. http://doi.org/10.3897/BDJ.11.e98632. PMid:38327355.
http://doi.org/10.3897/BDJ.11.e98632...
). This river basin is situated in a region with a phytogeographic interface between the Amazon and Cerrado biomes (IMESC, 2019Instituto Maranhense de Estudos Socioeconômicos Cartográficos – IMESC. Zoneamento ecológico econômico do estado do Maranhão: etapa bioma Amazônico. São Luís: IMESC; 2019.; Vieira et al., 2023Vieira LO, Campos DS, Oliveira RF, South J, Coelho MSP, Paiva MJS, et al. Checklist of the fish fauna of the Munim River Basin, Maranhão, north-eastern Brazil. Biodivers Data J 2023; 11: e98632. http://doi.org/10.3897/BDJ.11.e98632. PMid:38327355.
http://doi.org/10.3897/BDJ.11.e98632...
). It is important to emphasize that according to Myers et al. (2000)Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403(6772): 853-858. http://doi.org/10.1038/35002501. PMid:10706275.
http://doi.org/10.1038/35002501...
, the Brazilian Cerrado is one of the world’s hotspots for biological diversity.

Despite the importance of the Munim River basin, few studies had been made regarding its ichthyofauna until the year 2023, when a comprehensive fish fauna inventory of this river basin was published by Vieira et al. (2023)Vieira LO, Campos DS, Oliveira RF, South J, Coelho MSP, Paiva MJS, et al. Checklist of the fish fauna of the Munim River Basin, Maranhão, north-eastern Brazil. Biodivers Data J 2023; 11: e98632. http://doi.org/10.3897/BDJ.11.e98632. PMid:38327355.
http://doi.org/10.3897/BDJ.11.e98632...
, recording a total of 123 fish species. Although the Munim River basin ichthyofauna is currently relatively well-known, data on its helminth fauna remains very scarce.

Bryconops cf. affinis (Günther) (Characiformes, Iguanodectidae) is a small-sized freshwater fish species, reaching around 12 cm long at the adult stage, and with benthopelagic habits. It is a common and ubiquitous species often found in streams in regions with a tropical climate, but more frequently encountered at low tide in creeks with swift-flowing waters. In addition, it has an herbivorous or insectivorous diet. Regarding its reproductive behavior, they spawn in schools among plants (Froese & Pauly, 2023Froese R, Pauly D, editors. FishBase version (10/2023) [online]. 2023 [cited 2024 May 24]. Available from: www.fishbase.org
www.fishbase.org...
).

Saxatilia brasiliensis (Bloch) (Cichliformes, Cichlidae) is a small to medium-sized pike fish species that occurs in the benthopelagic deep zone of freshwater bodies, with distribution in the hydrographic basins of northeastern Brazil (Fricke & Eschmeyer, 2024Fricke R, Eschmeyer WN. Eschmeyer’s catalog of fishes: guide to fish collections [online]. San Francisco: California Academy of Sciences; 2024 [cited 2024 May 24]. Available from: https://researcharchive.calacademy.org/research/ichthyology/catalog/collections.asp
https://researcharchive.calacademy.org/r...
; Froese & Pauly, 2023Froese R, Pauly D, editors. FishBase version (10/2023) [online]. 2023 [cited 2024 May 24]. Available from: www.fishbase.org
www.fishbase.org...
). It feeds on fish, crustaceans and insects (Gurgel et al., 2005Gurgel HCB, Silva NB, Lucas FD, Souza LLG. Alimentação da comunidade de peixes de um trecho do rio Ceará Mirim, em Umari, Taipu, Estado do Rio Grande do Norte, Brasil. Acta Sci Anim Sci 2005; 27(2): 229-233. http://doi.org/10.4025/actascianimsci.v27i2.1226.
http://doi.org/10.4025/actascianimsci.v2...
).

The Nematoda, a diverse phylum of animals, comprehends approximately 30,000 nematode species are formally recognized, yet the actual number is estimated to be around 500,000, with half of these species being parasitic, impacts host population dynamics. Nematodes represents the fifth most diverse metazoan phylum (Hodda, 2022aHodda M. Phylum Nematoda: a classification, catalogue and index of valid genera, with a census of valid species. Zootaxa 2022a; 5114(1): 1-289. http://doi.org/10.11646/zootaxa.5114.1.1. PMid:35391386.
http://doi.org/10.11646/zootaxa.5114.1.1...
, bHodda M. Phylum Nematoda: trends in species description, the documentation of diversity, systematics, and the species concept. Zootaxa 2022b; 5114(1): 290-317. http://doi.org/10.11646/zootaxa.5114.1.2. PMid:35391385.
http://doi.org/10.11646/zootaxa.5114.1.2...
). This great diversity leads to significant challenges in understanding these parasites, mainly in taxonomy and systematics, essential for investigating complex topics such as life cycles, pathology, and host-parasite interactions (Moravec, 1998Moravec F. Nematodes of freshwater fishes of the Neotropical Region. Praha: Academia; 1998.; Padial et al., 2010Padial JM, Miralles A, de la Riva I, Vences M. The integrative future of taxonomy. Front Zool 2010; 7(1): 16. http://doi.org/10.1186/1742-9994-7-16. PMid:20500846.
http://doi.org/10.1186/1742-9994-7-16...
; Pereira & González-Solís, 2022Pereira FB, González-Solís D. Review of the parasitic nematodes of marine fishes from off the American continent. Parasitology 2022; 149(14): 1928-1941. http://doi.org/10.1017/S0031182022001287. PMid:36076284.
http://doi.org/10.1017/S0031182022001287...
).

The aim of the present study was to characterize the nematofauna of these two host species, from two different localities in the middle section of the Munim River, and thus to contribute to the knowledge of biodiversity in this region.

Material and Methods

The fishes of the present study were collected from two localities: Feio Stream, located in the village of São José, in the municipality of Chapadinha (03º51'18.1”S 043º17'14.0”W and altitude of 11 m) (due to its low population density it has less anthropogenic activity), and Estrela Stream located in the municipality of Anapurus (03°40'15.6”S 043°7'9.7”W and altitude of 80 m) (a region strongly influenced by human activity). Both are in the eastern region of the State of Maranhão, northeastern Brazil, about 30 km apart in a straight line from each other, and their water bodies drain to the middle Munim River section.

For investigation of endohelminths, 64 specimens of Bryconops cf. affinis (32 from Feio Stream, São José village and 32 from Estrela Stream, Anapurus municipality) and 64 specimens of Saxatilia brasiliensis (32 from each locality), were obtained in the period between September 2021 and April 2022. The hosts were captured by using dip nets, trail nets, and cast nets, and were taken to the “Laboratório de Sistemática e Ecologia de Organismos Aquáticos (LASEOA)” of the“Universidade Federal do Maranhão (UFMA)”, where the specimens (fishes) were identified and euthanized by medullary section.

Posteriorly, the nematodes were collected from intestine and swimm bladder and washed in 0.65% NaCl solution, fixed in alcohol 70% and sent to the “Laboratório de Helmintos Parasitos de Peixes (Fiocruz)”, Rio de Janeiro. After that, the fish specimens were preserved in formalin (10%) and after 10-15 days moved to a 70% ethanol solution. All the fish material are housed at the “Coleção Ictiológica do Centro de Ciências Agrárias e Ambientais (CICCAA)” of the “Universidade Federal do Maranhão”, voucher numbers (CICCAA07121 – CICCAA07152).

For light microscopical examination (LM) the nematodes were cleared in lactophenol and observed using a Zeiss Axioscope 2 microscope with differential interference contrast (DIC), equipped with a camera lucida. All measurements are given in millimeters; range values are followed by means. To describe the parasitological parameters, data related to parasite as prevalence (P), intensity (I), mean intensity (MI) and range (R) were used according to Bush et al. (1997)Bush AO, Lafferty KD, Lotz AW, Shostak AW. Parasitology meets ecology on its own terms: margolis et al. revisited. J Parasitol 1997; 83(4): 575-583. http://doi.org/10.2307/3284227. PMid:9267395.
http://doi.org/10.2307/3284227...
.

Results

Among the 64 specimens of Bryconops cf. affinis examined, 17 were parasitized by nematodes (8 from the locality São José and 9 from Anapurus); while among the 64 specimens of S. brasiliensis examined, 20 were parasitized by this same parasite group (10 from São José and 10 from Anapurus).

Specimens of Bryconops cf. affinis were parasitized with the nematodes Procamallanus (Spirocamallanus) krameri (Petter, 1974Petter AJ. Deux nouvelles espèces de Nématodes Camallanina parasites de Hoplerythrinus unitaeniatus (Characidae, Cypriniformes) en Guyane; création d’une nouvelle famille: les Guyanemidae (Dracunculoidea). Bull Mus Nat 1974; 232(156): 803-812.) in the intestine and “Porrocaecum-like” species (third-stage larvae) in the swim bladder, in both localities. Saxatilia brasiliensis presented the nematodes Procamallanus (S.) krameri, Pseudoproleptus sp. (third-stage larvae), Cucullanus sp. and Procamallanus sp. (larvae), from the intestine. Procamallanus (S.) krameri was found parasitizing S. brasiliensis only from the Feio stream (São José). The mean abundance, prevalence, mean intensity and range of infection of the nematodes collected from both fish hosts are shown in Tables 1 and 2.

Table 1
Site of infection (SI), prevalence (P), mean intensity (MI), mean abundance (MA) and range of infection (R) of nematodes collected from Bryconops cf. affinis in Brazil.
Table 2
Site of infection (SI), prevalence (P), mean intensity (MI), mean abundance (MA) and range of infection (R) of nematodes collected from Saxatilia brasiliensis in Brazil.

Considering that the nematode species found in the present study are already well described, only the main measurements with a brief description are presented here.

Family Camallanidae Railliet & Henry, 1915

Genus Procamallanus Baylis, 1923

Procamallanus (Spirocamallanus) krameri (Figure 1)

Figure 1
Procamallanus (Spirocamallanus) krameri. (A) Detail of anterior region of female, showing the buccal capsule withouth tooth-like protrusions in its bottom. Bar 0.1 mm; (B) Posterior region of female. Bar 0.15 mm; (C) Anterior region of male showing a buccal capsule with spiral thickenings absent in its anterior third. Bottom of buccal capsule presenting three elevated sclerotized protuberances (tooth-like protusions). Bar 0.12 mm; (D) Detail of buccal capsule showing one of tooth-like protusion on its bottom. Bar 0.06 mm; (E) Posterior region of male showing one of spicules (arrow). Bar 0.085 mm.

Host: Bryconops cf. affinis and Saxatilia brasiliensis

Site of infection: Intestine

Medium-sized nematodes bearing an orange-brown buccal capsule with spiral ridges and a basal ring. Muscular esophagus shorter than glandular one; excretory pore situated posteriorly to nerve ring level. In males, spiral thickenings are absent in the anterior third, and there are three tooth-like protrusions at the bottom of the capsule. In females, the spiral thickenings cover the whole capsule, with absence of tooth-like protrusions.

Male (based on 6 specimens of B. cf. affinis): Body 2.00-5.27 (3.06) long by 0.17-0.25 (0.19) at the maximum width. Buccal capsule 0.06-0.07 (0.07) in length, including basal ring, by 0.08-0.10 (0.08) in maximum width, with spiral thickenings 11-19 (14) in number. Spiral thickenings limited to the middle third of surface, and the bottom of the capsule bears 3 tooth-like protrusions. Muscular esophagus 0.27-0.35 (0.29) in length; glandular esophagus 0.35-0.42 (0.42) in length. Nerve ring and excretory pore at 0.12-0.16 (0.15) and 0.18-0.34 (0.24) from anterior extremity, respectively. Posterior end of body provided with 10 pairs of caudal papillae (4 pairs of precloacal papillae and 6 pairs of postcloacal papillae). Two equal spicules of 0.07-0.20 (0.10) in length. Tail conical.

Female (based on 7 specimens of B. cf. affinis): Body 8.50-19.47 (15.5) long by 0.32 - 0.52 (0.47) at the maximum width. Buccal capsule 0.092 - 0.105 (0.098) in length, including basal ring, by 0.122 - 0.147 (0.131) in maximum width, with spiral thickenings 21-28 (24) in number. In females, the spiral thickenings cover the whole capsule and there are no basal teeth. Muscular esophagus 0.38 - 0.40 (0.39) in length; glandular esophagus 0.45-0.78 (0.62) in length. Nerve ring and excretory pore at 0.21-0.23 (0.22) and 0.22 - 0.41 (0.34) from anterior extremity, respectively. Vulva 2.05-9.67 (6.77) from anterior end. Distance from anus to posterior region 0.15 - 0.23 (0.18). Tail conical.

Male (based on 2 specimens of Saxatilia brasiliensis): Body 2.66 and 3.28 long by 0.160 and 0.170 wide. Buccal capsule 0.062 and 0.072 in length, including basal ring, by 0.065 and 0.067 in maximum width, with 12 spiral thickenings, limited to the middle third of the surface. Bottom of the capsule bearing 3 tooth-like protrusions. Muscular esophagus 0.257 and 0.275 in length; glandular esophagus 0.350 and 0.400 in length. Nerve ring and excretory pore at 0.125 and 0.150, and 0.25 from anterior extremity, respectively. Posterior end of body provided with 10 pairs of caudal papillae (4 pairs of precloacal papillae and 6 pairs of postcloacal papillae). Two equal spicules of 0.09 in length. Tail conical.

Remarks:

Procamallanus (Spirocamallanus) krameri was originally described as Spirocamallanus krameri by Petter (1974)Petter AJ. Deux nouvelles espèces de Nématodes Camallanina parasites de Hoplerythrinus unitaeniatus (Characidae, Cypriniformes) en Guyane; création d’une nouvelle famille: les Guyanemidae (Dracunculoidea). Bull Mus Nat 1974; 232(156): 803-812. from the intestine of Hoplerythrinus unitaeniatus (Spix & Agassiz) from French Guiana and was later reported from the same host in Venezuela (state of Barinas) and Brazil (state of Pará) (Moravec et al., 1997Moravec F, Prouza A, Royero R. Some nematodes of freshwater fishes in Venezuela. Folia Parasitol 1997; 44(1): 33-47. PMid:9188173.; Pinheiro et al., 2020Pinheiro RHS, Cardoso PJ, Monks S, Santos JN, Giese EG. First record of Spirocamallanus krameri (Nematoda: Camallanidae) in Brazil: morphological review. An Acad Bras Cienc 2020;92(2 Suppl 2): e20180721. http://doi.org/10.1590/0001-3765202020180721. PMid:33146270.
http://doi.org/10.1590/0001-376520202018...
, 2021Pinheiro RHS, Teixeira VA, Tavares-Dias M, Giese EG. Spirocamallanus krameri and Contracaecum sp. third-stage larvae (Nematoda) in Hoplerythrinus unitaeniatus (Erythrinidae) of eastern Amazon (Brazil). Ann Parasitol 2021; 67(2): 305-312. http://doi.org/10.17420/ap6702.343. PMid:34598402.
http://doi.org/10.17420/ap6702.343...
). Procamallanus (S.) krameri is reported here from the Munim River Basin (state of Maranhão) for the first time, and Bryconops cf affinis and Saxatilia brasiliensis are new host records for this nematode.

This species is very similar to Procamallanus (Spirocamallanus) inopinatus but can differ regarding the structure of the buccal capsule. In P. (S). krameri, there is sexual dimorphism in this structure, such that spiral thickenings are absent from the anterior third to half of the capsule in males but cover the whole capsule in females; and in the males, there are three tooth-like protrusions at the bottom of the capsule. In P. (S.) inopinatus, the buccal capsules of both sexes are similar (the spiral thickenings cover two thirds of the buccal capsule and there are no tooth-like protrusions at the bottom).

Procamallanus sp. (Figure 2)

Figure 2
Procamallanus sp. (A) Third-stage larva bearing a smooth buccal capsule; (B) Third-stage larva with a conical tail bearing two terminal processes in its end; (C) Anterior end of fourth-stage larva with a buccal capsule with spiral ridges; (D) Tail of fourth-stage larva bearing two terminal processes in its end. Bars: 0.05 mm.

Host: Saxatilia brasiliensis

Site of infection: Intestine

Larvae 3rd stage (based on 1 specimen): Body 0.70 long by 0.05 at the maximum width. Buccal capsule 0.027 in length, by 0.017 in maximum width, without spiral thickenings. Muscular esophagus and glandular esophagus 0.135 and 0.125, respectively. Tail conical, bearing two terminal processes.

Larvae 4th stage (based on 3 specimens): Body 1.95-2.30 (2.12) long by 0.10-0.14 (0.11) at the maximum width. Buccal capsule 0.045-0.050 (0.047) in length, by 0.057 (0.057) in maximum width, with 8-11 spiral thickenings. Muscular esophagus and glandular esophagus 0.242-0.250 (0.246) and 0.225-0.275 (0.250), respectively. Distance from nerve ring to anterior region 0.105-0.162 (0.133), and from anus to posterior region 0.115-0.145 (0.128). Tail conical, bearing two terminal processes.

Remarks:

Four specimens of Procamallanus sp. larvae were found parasitizing Saxatilia brasiliensis and one of them presented a smooth buccal capsule. Moravec et al. (1995)Moravec F, Mendoza-Franco E, Vargas-Vázquez J, Vivas-Rodríguez C. Studies on the development of Procamallanus (Spirocamallanus) rebecae (Nematoda: Camallanidae), a parasite of cichlid fishes. Folia Parasitol 1995; 42: 281-292. demonstrated that the third-stage larvae of Procamallanus (S.) rebecae do not present spiral ridges in the buccal capsule, similar to the specimen found here. Although S. brasiliensis is also parasitized by P. (S) krameri, it is not possible to affirm that they are conspecific.

Family Cystidicolidae Skrjabin, 1946

Genus Pseudoproleptus Khera, 1953

Pseudoproleptus sp. (third-stage larvae) (Figure 3)

Figure 3
Third-stage larva of Pseudoproleptus sp. (A) Anterior region. Bar 0.20 mm; (B) Detail of anterior region showing the cephalic helmet-like cuticular structure. Bar 0.10 mm; (C) Detail of posterior region. Bar 0.24 mm.

Host: Saxatilia brasiliensis

Larvae (based on 10 specimens): Body 9.26-22.00 (14.08) long by 0.11-0.19 (0.15) in maximum width. Anterior end of body with cephalic helmet-like cuticular structure 0.020-0.045 (0.036) long, 0.035-0.075 (0.062) in maximum width. Cephalic end rounded, with two pseudolabial protrusions. Vestibule with prostom 0.087-0.175 (0.143) long. Length of muscular esophagus 0.51-0.88 (0.70); length of glandular esophagus 1.65-3.90 (2.68); ratio between muscular and glandular parts of esophagus 1:2.99-5.09 (4.06); Nerve ring and excretory pore 0.157-0.235 (0.189) and 0.312-0.550 (0.431), respectively, from anterior extremity. Distance from anus to posterior region 0.09-0.16 (0.12). Tail conical, bearing a small knob-like terminal projection.

Remarks:

Pseudoproleptus sp. larvae were reported for the first time in Brazil in an Amazon River prawn, Macrobrachium amazonicum (Heller) (Decapoda, Crustacea) (Moravec & Santos, 2009Moravec F, Santos CP. Larval Pseudoproleptus sp. (Nematoda: Cystidicolidae) found in the Amazon river prawn Macrobrachium amazonicum (Decapoda: Palaemonidae) in Brazil. J Parasitol 2009; 95(3): 634-638. http://doi.org/10.1645/GE-1887.1. PMid:19014207.
http://doi.org/10.1645/GE-1887.1...
). Melo et al. (2011)Melo MFC, Giese EG, Santos JN, Santos CP. First record of larval Pseudoproleptus sp. (Nematoda: Cystidicolidae) in fish host. Acta Trop 2011; 117(3): 212-215. http://doi.org/10.1016/j.actatropica.2010.12.011. PMid:21187054.
http://doi.org/10.1016/j.actatropica.201...
reported this nematode larva in Satanoperca jurupari (Cichliformes, Cichlidae) from the Guamá River, Pará. Subsequently, this nematode larva has been reported from different fishes in the Amazon region, mainly of the orders Cichliformes (Tavares-Dias et al., 2014Tavares-Dias M, Oliveira MSB, Gonçalves RA, Silva LMA. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitol 2014; 59(1): 158-164. http://doi.org/10.2478/s11686-014-0225-3. PMid:24570063.
http://doi.org/10.2478/s11686-014-0225-3...
, 2018Tavares-Dias M, Goncalves RA, Oliveira MSB, Neves LR. Parasites community in Chaetobranchus flavescens Heckel, 1840, (Cichliformes: Cichlidae) from the Eastern Amazon, Brazil. Bol Inst Pesca 2018; 44(1): 10-16. http://doi.org/10.20950/1678-2305.2018.262.
http://doi.org/10.20950/1678-2305.2018.2...
, 2019Tavares-Dias M, Santos GG, Brito-Júnior IA. Protozoários e metazoários parasitos de sete espécies de Cichlidae da bacia Igarapé Fortaleza, estado do Amapá (Brasil). Biota Amazôn 2019; 9(4): 29-32. http://doi.org/10.18561/2179-5746/biotaamazonia.v9n4p29-32.; Pantoja et al., 2015Pantoja WMF, Vargas Flores L, Tavares‐Dias M. Parasites component community in wild population of Pterophyllum scalare Schultze, 1823 and Mesonauta acora Castelnau, 1855, cichlids from the Brazilian Amazon. J Appl Ichthyology 2015; 31(6): 1043-1048. http://doi.org/10.1111/jai.12903.
http://doi.org/10.1111/jai.12903...
; Pinheiro et al., 2019Pinheiro RHS, Tavares-Dias M, Giese EG. Helminth parasites in two populations of Astronotus ocellatus (Cichliformes: Cichlidae) from the eastern Amazon, Northern Brazil. Rev Bras Parasitol Vet 2019; 28(3): 425-431. http://doi.org/10.1590/s1984-29612019052. PMid:31365720.
http://doi.org/10.1590/s1984-29612019052...
) and Characiformes (Morey & Malta 2018Morey GAM, Malta JCO. Metazoan parasites of Acestrorhynchus falcatus (Characiformes: Acestrorhynchidae) from floodplain lakes of the Brazilian Amazon. Neotrop Helminthol 2018; 12(2): 147-152. http://doi.org/10.24039/rnh2018122672.
http://doi.org/10.24039/rnh2018122672...
; Oliveira et al., 2018Oliveira MSB, Corrêa LL, Prestes L, Neves LR, Brasiliense ARP, Ferreira DO, et al. Comparison of the endoparasite fauna of Hoplias malabaricus and Hoplerythrinus unitaeniatus (Erythrinidae), sympatric hosts in the eastern Amazon region (Brazil). Helminthol 2018; 55(2): 157-165. http://doi.org/10.2478/helm-2018-0003. PMid:31662642.
http://doi.org/10.2478/helm-2018-0003...
; Hoshino & Tavares-Dias, 2019Hoshino EM, Tavares-Dias M. Interannual and seasonal variation in protozoan and metazoan parasite communities of Hemibrycon surinamensis, a characid fish inhabiting the Brazilian Amazon. Acta Parasitol 2019; 64(3): 479-488. http://doi.org/10.2478/s11686-019-00057-5. PMid:31020493.
http://doi.org/10.2478/s11686-019-00057-...
; Morais et al., 2019Morais AM, Cárdenas MQ, Malta JCO. Nematofauna of red piranha Pygocentrus nattereri (Kner, 1958) (Characiformes: Serrasalmidae) from Amazonia, Brazil. Rev Bras Parasitol Vet 2019; 28(3): 458-464. http://doi.org/10.1590/s1984-29612019055. PMid:31390437.
http://doi.org/10.1590/s1984-29612019055...
). Saxatilia brasiliensis is a new host for this species, which is reported here for the first time in the Munim River basin. Although the life cycle of Cystidicolidae has not yet been well studied, it is known that freshwater crustaceans or aquatic insects are intermediate hosts for these nematodes (Moravec, 2007Moravec F. Some aspects of the taxonomy and biology of adult spirurine nematodes parasitic in fishes: a review. Folia Parasitol 2007; 54(4): 239-257. http://doi.org/10.14411/fp.2007.033. PMid:18303766.
http://doi.org/10.14411/fp.2007.033...
). Even though Pseudoproleptus sp. larvae have been reported in different fish species, some authors have stated that they are paratenic hosts (Melo et al., 2011Melo MFC, Giese EG, Santos JN, Santos CP. First record of larval Pseudoproleptus sp. (Nematoda: Cystidicolidae) in fish host. Acta Trop 2011; 117(3): 212-215. http://doi.org/10.1016/j.actatropica.2010.12.011. PMid:21187054.
http://doi.org/10.1016/j.actatropica.201...
; Morais et al., 2019Morais AM, Cárdenas MQ, Malta JCO. Nematofauna of red piranha Pygocentrus nattereri (Kner, 1958) (Characiformes: Serrasalmidae) from Amazonia, Brazil. Rev Bras Parasitol Vet 2019; 28(3): 458-464. http://doi.org/10.1590/s1984-29612019055. PMid:31390437.
http://doi.org/10.1590/s1984-29612019055...
). Further studies may contribute towards better understanding the life cycle of this nematode.

Family Cucullanidae Cobbold, 1864

Cucullanus sp. (Figure 4)

Figure 4
Cucullanus sp. (A) Anterior region of female showing the esophagus (e) and a pair of deirids (thin arrows); (B) Posterior region of female showing the anus (arrow); (C) Anterior region of female showing the esophagus (e) and one of the deirids (thin arrow); (D) Posterior region of male showing the spicules (arrow head) and the precloacal sucker (asterisk). Bars 0.2 mm.

Host: Saxatilia brasiliensis

Site of infection: Intestine.

Male (based on 2 specimens): Body 3.20 and 3.80 in length by 0.20 and 0.30 in maximum width. Esophagus 0.52 and 0.53 in maximum length, accounting for 13-15% of whole-body length. Esophastome 0.14 and 0.15 long. Nerve ring and excretory pore situated at 0.185 and 0.210, and 0.30 from anterior extremity, respectively. Precloacal sucker 0.455 and 0.510 from posterior region. Spicules subequal with pointed distal end. Right spicule 0.437 and 0.410 and left spicule 0.437 and 0.487 long. Gubernaculum sclerotized, 0.067 long. Caudal papillae: 6 pairs of preanal, 2 pairs of adanal and 7 pairs of postanal papillae. Tail conical. Distance from cloaca to end of body 0.135.

Female (based on 5 specimens): Body 3.46-5.72 (4.36) long and 0.19-0.32 (0.26) in maximum wide. Esophagus 0.52-0.68 (0.59) long; esophastome 0.135-0.175 (0.153) long. Esophagus represents 15% (12-16%) of the body length. Distance of the nerve ring and excretory pore from the anterior extremity 0.165-0.237 (0.205) and 0.300-0.312 (0.306), respectively. Vulva postequatorial. Distance from vulva to the posterior extremity of the body 1.50-2.26 (1.70). Eggs 0.040-0.045 (0.042) long and 0.030-0.032 (0.031) wide. Tail conical, provided with a pair of lateral phasmids. Distance from anus to the end of body 0.115-0.187 (0.157).

Remarks:

Nematodes of the genus Cucullanus Müller, 1777 are parasites of marine, brackish-water and freshwater fish species around the world (Timi & Lanfranchi, 2006Timi JT, Lanfranchi AL. A new species of Cucullanus (Nematoda: Cucullanidae) parasitizing Conger orbignianus (Pisces: Congridae) from Argentinean waters. J Parasitol 2006; 92(1): 151-154. http://doi.org/10.1645/GE-3513.1. PMid:16629329.
http://doi.org/10.1645/GE-3513.1...
). In Brazil, 28 species of Cucullanus have been reported parasitizing freshwater, estuarine and marine fish species. Among these, only Cucullanus tucunarensis Lacerda, Takemoto, Marchiori, Martins & Pavanelli, 2015, and Cucullanus opisthoporus Pereira & Luque, 2017, were reported parasitizing cichlids (Lacerda et al., 2015Lacerda ACF, Takemoto RM, Marchiori NC, Martins ML, Pavanelli GC. New species of Cucullanus (Nematoda: Cucullanidae), an intestinal parasite of the peacock bass Cichla piquiti (Perciformes: Cichlidae) from the Tocantins River, Brazil. J Helminthol 2015; 89(1): 9-12. http://doi.org/10.1017/S0022149X13000485. PMid:23830176.
http://doi.org/10.1017/S0022149X13000485...
; Pereira & Luque, 2017Pereira FB, Luque JL. Morphological and molecular characterization of cucullanid nematodes including Cucullanus opisthoporus n. sp. in freshwater fish from the Brazilian Amazon. J Helminthol 2017; 91(6): 739-751. http://doi.org/10.1017/S0022149X16000729. PMid:27776573.
http://doi.org/10.1017/S0022149X16000729...
) and an unidentified species of Cucullanus was reported in Cichla piquiti (Lacerda et al., 2013Lacerda ACF, Takemoto RM, Poulin R, Pavanelli GC. Parasites of the fish Cichla piquiti (Cichlidae) in native and invaded Brazilian basins: release not from the enemy, but from its effects. Parasitol Res 2013; 112(1): 279-288. http://doi.org/10.1007/s00436-012-3135-z. PMid:23052767.
http://doi.org/10.1007/s00436-012-3135-z...
; Yamada & Takemoto, 2013Yamada F, Takemoto RM. Metazoan parasite fauna of two peacock-bass cichlid fish in Brazil. Check List 2013; 9(6): 1371-1377. http://doi.org/10.15560/9.6.1371.
http://doi.org/10.15560/9.6.1371...
). This was the first record of these nematode species in Saxatilia brasiliensis in the Munim River basin. Further studies will be necessary in order to determine the species of this genus.

Subfamily Porrocaecinae Osche, 1958

Porrocaecum-like” species (third-stage larvae) (Figure 5)

Figure 5
Porrocaecum-like” species (third-stage larvae). (A) Anterior region showing the intestinal caeca (CI) and ventriculous (V). Bar 0.10 mm; (B) Posterior region showing the anus (arrow). Bar 0.08 mm.

Host: Bryconops cf affinis

Larvae (based on 16 specimens): Body 1.42-2.15 (1.81) mm long by 0.05-0.07 (0.05) at the maximum width. Esophagus 0.20-0.40 (0.27) long, with a spherical ventriculus 0.022-0.037 (0.028) long and 0.015-0.020 (0.015) in width. Excretory pore and nerve ring situated at 0.085-0.175 (0.139) and 0.090-0.142 (0.116) from anterior end, respectively. Intestinal cecum 0.075-0.162 (0.106) long. Ventricular appendix absent. Distance from anus to posterior region 0.050-0.102 (0.083).

Remarks:

Martins & Onaka (2004)Martins M, Onaka E. Larvae of Porrocaecum sp. (Nematoda: Ascarididae) in the swim bladder of cultured Piaractus mesopotamicus (Osteichthyes: Characidae) in Brazil. Bol Inst Pesca 2004; 30(1): 57-61. described larvae of Porrocaecum sp. in the swim bladder of the pacu (Piaractus mesopotamicus (Holmberg), a serrasalmid fish cultivated in Uberaba, state of Minas Gerais, Brazil, with the same morphological features as observed in the present material, and found at the same infection site. Recently, Pelegrini et al. (2021)Pelegrini LS, Vieira DHMD, Leite LAR, Gião T, Azevedo RK, Abdallah VD. Parasite diversity of Hoplosternum littorale from the Tietê-Batalha river basin, southeastern Brazil. Bol Inst Pesca 2021; 47: e650. http://doi.org/10.20950/1678-2305/bip.2021.47.e650.
http://doi.org/10.20950/1678-2305/bip.20...
reported Porrocaecum sp. larvae from the intestine of Hoplosternum littorale (Hancock) (Siluriformes, Callichthyidae), from the Batalha River, São Paulo, without description or figures. According to Luque et al. (2011)Luque JL, Aguiar JC, Vieira FM, Gibson DI, Santos CP. Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 2011; 3082(1): 1-88. http://doi.org/10.11646/zootaxa.3082.1.1.
http://doi.org/10.11646/zootaxa.3082.1.1...
, toxocarines are typically parasites of terrestrial higher vertebrates. Moreover, the Brazilian records of Porrocaecum spp. larvae are doubtful (Moravec, 1994Moravec F. Parasitic nematodes of freshwater fishes of Europe. Dordrecht: Kluwer Academic Publishers; 1994., 1998Moravec F. Nematodes of freshwater fishes of the Neotropical Region. Praha: Academia; 1998.) and all records of Porrocaecum spp. from fish are likely to be misidentifications of other ascarids, and are in reality probably taxa of anisakids. Thus, they can be considered to be “Porrocaecum-like” species (Luque et al., 2011Luque JL, Aguiar JC, Vieira FM, Gibson DI, Santos CP. Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 2011; 3082(1): 1-88. http://doi.org/10.11646/zootaxa.3082.1.1.
http://doi.org/10.11646/zootaxa.3082.1.1...
).

Recently, Gu et al. (2023)Gu XH, Guo N, Chen HX, Sitko J, Li LW, Guo BQ, et al. Mitogenomic phylogenies suggest the resurrection of the subfamily Porrocaecinae and provide insights into the systematics of the superfamily Ascaridoidea (Nematoda: Ascaridomorpha), with the description of a new species of Porrocaecum. Parasit Vectors 2023; 16(1): 275. http://doi.org/10.1186/s13071-023-05889-9. PMid:37563590.
http://doi.org/10.1186/s13071-023-05889-...
described a new species of Porrocaecum, P. moraveci, and characterized the complete mitochondrial genomes of this species and of P. reticulatum, which are both parasites of Circus aeruginosus (Falconiformes: Accipitridae) in the Czech Republic. Their phylogenetic results demonstrated that Porrocaecum and Toxocara do not have an affinity. Consequently, the subfamily Porrocaecinae was resurrected, and the family Toxocaridae is also considered to be a subfamily, both belonging to Ascarididae. Further molecular studies may help elucidate the taxonomy of these larvae.

Discussion

There are few studies about the nematode fauna of Bryconops spp.: Moravec & Thatcher (1997)Moravec F, Thatcher VE. Procamallanus (Denticamallanus subgen. n.) dentatus sp. n. (Nematoda, Camallanidae) from the characid fish, Bryconops alburnoides, in the Brazilian Amazon. Parasite 1997; 4(3): 239-243. http://doi.org/10.1051/parasite/1997043239.
http://doi.org/10.1051/parasite/19970432...
reported the nematode Procamallanus (Denticamallanus) dentatus in Bryconops alburnoides Kner in the Urubu River, state of Amazonas, Brazil; Fujimoto et al. (2018)Fujimoto RY, Couto MVS, Sousa NDC, Madi RR, Eiras JC, Martins ML. Seasonality of Procamallanus (Spirocamallanus) inopinatus (Nematoda: Camallanidae) infection in Bryconops melanurus (Characiformes: Iguanodectidae). Bol Inst Pesca 2018; 44(4): e334. http://doi.org/10.20950/1678-2305.2018.44.4.334.
http://doi.org/10.20950/1678-2305.2018.4...
registered the nematode Procamallanus (Spirocamallanus) inopinatus in B. melanurus (Bloch) (Iguanodectidae) in the Caeté River, state of Pará; and Virgilio et al. (2022)Virgilio LR, Martins WMO, Lima FS, Takemoto RM, Camargo LMA, Meneguetti DUO. Endoparasite fauna of freshwater fish from the upper Juruá River in the Western Amazon, Brazil. J Helminthol 2022; 96: e55. http://doi.org/10.1017/S0022149X2200027X. PMid:35904029.
http://doi.org/10.1017/S0022149X2200027X...
, in a study on the Juruá River, state of Acre, reported the nematodes Contracaecum sp., Rondonia rondoni Travassos, 1920 and Travnema travnema Pereira, 1938 in Bryconops caudomaculatus (Günther). The present study provides the first record of nematodes in Bryconops cf. affinis and Saxatilia brasiliensis. In addition, for the latter, there were no previous records of helminth species. The morphometric assessment on the nematodes studied here was in agreement with previously recorded data.

The trophic level of Bryconops cf. affinis and Saxatilia brasiliensis shows that these are species that can act as intermediate, paratenic or definitive hosts for several species of nematodes, thereby facilitating completion of their life cycles. This assertion is corroborated by the presence of parasite species, both in the adult form (such as Procamallanus (Spirocamallanus) krameri and Cucullanus sp.) and in larval forms (such as Pseudoproleptus sp., Porrocaecum-like species sp. and Procamallanus sp.), in the present study.

Among specimens of Bryconops cf. affinis, the highest prevalences were observed in Procamallanus (S.) krameri (15.6% in both localities) and Porrocaecum-like species (15.6% in the Feio stream), while Pseudoproleptus sp. (larva) presented the highest prevalence in S. brasiliensis (18.75% in the Estrela stream; 15.62% in the Feio stream). The prevalence of Procamallanus (S.) krameri observed in Hoplerythrinus unitaeniatus (Spix & Agassiz) (Erythrinidae) in the state of Pará was 75% (Pinheiro et al., 2021Pinheiro RHS, Teixeira VA, Tavares-Dias M, Giese EG. Spirocamallanus krameri and Contracaecum sp. third-stage larvae (Nematoda) in Hoplerythrinus unitaeniatus (Erythrinidae) of eastern Amazon (Brazil). Ann Parasitol 2021; 67(2): 305-312. http://doi.org/10.17420/ap6702.343. PMid:34598402.
http://doi.org/10.17420/ap6702.343...
), i.e. higher than what was observed in the present study. Porrocaecum-like species presented prevalences of 17% in P. mesopotamicus in ponds in Minas Gerais (Martins & Onaka, 2004Martins M, Onaka E. Larvae of Porrocaecum sp. (Nematoda: Ascarididae) in the swim bladder of cultured Piaractus mesopotamicus (Osteichthyes: Characidae) in Brazil. Bol Inst Pesca 2004; 30(1): 57-61.) and 18.87% in Hoplosternum littorale (Hancock) (Callichthyinae) in the Batalha River, state of São Paulo (Pelegrini et al., 2021Pelegrini LS, Vieira DHMD, Leite LAR, Gião T, Azevedo RK, Abdallah VD. Parasite diversity of Hoplosternum littorale from the Tietê-Batalha river basin, southeastern Brazil. Bol Inst Pesca 2021; 47: e650. http://doi.org/10.20950/1678-2305/bip.2021.47.e650.
http://doi.org/10.20950/1678-2305/bip.20...
), similar to what was observed for this species in the present study.

Pseudoproleptus sp. larvae have been reported from different fish species. The prevalence of this nematode in S. brasiliensis in the present study at both localities was similar to that found in other studies on different cichlid species, such as Aequidens tetramerus (Heckel) (Cichlidae) and Chaetobranchus flavescens Heckel (Cichlidae), both in the Igarapé Fortaleza basin, state of Amapá, with prevalences of 18.5% and 15.4%, respectively (Tavares-Dias et al., 2014Tavares-Dias M, Oliveira MSB, Gonçalves RA, Silva LMA. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitol 2014; 59(1): 158-164. http://doi.org/10.2478/s11686-014-0225-3. PMid:24570063.
http://doi.org/10.2478/s11686-014-0225-3...
, 2018Tavares-Dias M, Goncalves RA, Oliveira MSB, Neves LR. Parasites community in Chaetobranchus flavescens Heckel, 1840, (Cichliformes: Cichlidae) from the Eastern Amazon, Brazil. Bol Inst Pesca 2018; 44(1): 10-16. http://doi.org/10.20950/1678-2305.2018.262.
http://doi.org/10.20950/1678-2305.2018.2...
). On the other hand, the prevalences found in the cichlids Satanoperca jurupari (Heckel) (Cichlidae) in the Guamá River, state of Pará, and Mesonauta acora (Castelnau) (Cichlidae) in the Igarapé Fortaleza basin, state of Amapá, were lower, 0.9% and 7.9%, respectively (Melo et al., 2011Melo MFC, Giese EG, Santos JN, Santos CP. First record of larval Pseudoproleptus sp. (Nematoda: Cystidicolidae) in fish host. Acta Trop 2011; 117(3): 212-215. http://doi.org/10.1016/j.actatropica.2010.12.011. PMid:21187054.
http://doi.org/10.1016/j.actatropica.201...
; Pantoja et al., 2015Pantoja WMF, Vargas Flores L, Tavares‐Dias M. Parasites component community in wild population of Pterophyllum scalare Schultze, 1823 and Mesonauta acora Castelnau, 1855, cichlids from the Brazilian Amazon. J Appl Ichthyology 2015; 31(6): 1043-1048. http://doi.org/10.1111/jai.12903.
http://doi.org/10.1111/jai.12903...
), than what was observed in the present study.

The highest mean intensity and mean abundance were found in relation to Porrocaecum-like species parasitizing B. cf. affinis in the Estrela stream (55 and 8.59, respectively). These figures are higher than what had been observed in previous studies on this species, with a mean intensity of 10 in P. mesopotamicus cultivated in Minas Gerais (Martins & Onaka, 2004Martins M, Onaka E. Larvae of Porrocaecum sp. (Nematoda: Ascarididae) in the swim bladder of cultured Piaractus mesopotamicus (Osteichthyes: Characidae) in Brazil. Bol Inst Pesca 2004; 30(1): 57-61.) and a mean intensity of 2.30 and mean abundance of 0.43 in Hoplosternum littorale in the Tietê River, state of São Paulo (Pelegrini et al., 2021Pelegrini LS, Vieira DHMD, Leite LAR, Gião T, Azevedo RK, Abdallah VD. Parasite diversity of Hoplosternum littorale from the Tietê-Batalha river basin, southeastern Brazil. Bol Inst Pesca 2021; 47: e650. http://doi.org/10.20950/1678-2305/bip.2021.47.e650.
http://doi.org/10.20950/1678-2305/bip.20...
).

Among specimens of S. brasiliensis, the highest mean intensity and mean abundance were found in Pseudoproleptus sp. in fish in the Feio stream (3.2 and 0.5, respectively). These indexes were lower than what was previously observed in other cichlids, such as in Astronotus ocellatus (Agassiz) (Cichlidae) in the Tapajós River, state of Pará, with a mean intensity of 12.4 and mean abundance of 1.6 (Pinheiro et al., 2019Pinheiro RHS, Tavares-Dias M, Giese EG. Helminth parasites in two populations of Astronotus ocellatus (Cichliformes: Cichlidae) from the eastern Amazon, Northern Brazil. Rev Bras Parasitol Vet 2019; 28(3): 425-431. http://doi.org/10.1590/s1984-29612019052. PMid:31365720.
http://doi.org/10.1590/s1984-29612019052...
). In Aequidens tetramerus and C. flavescens in the Igarapé Fortaleza basin, state of Amapá, the mean intensity of Pseudoproleptus sp. was 8.8 (in both) and the mean abundance was 1.6 and 1.4, respectively (Tavares-Dias et al., 2014Tavares-Dias M, Oliveira MSB, Gonçalves RA, Silva LMA. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitol 2014; 59(1): 158-164. http://doi.org/10.2478/s11686-014-0225-3. PMid:24570063.
http://doi.org/10.2478/s11686-014-0225-3...
, 2018Tavares-Dias M, Goncalves RA, Oliveira MSB, Neves LR. Parasites community in Chaetobranchus flavescens Heckel, 1840, (Cichliformes: Cichlidae) from the Eastern Amazon, Brazil. Bol Inst Pesca 2018; 44(1): 10-16. http://doi.org/10.20950/1678-2305.2018.262.
http://doi.org/10.20950/1678-2305.2018.2...
). In Laetacara curviceps (Ahl), a cichlid species examined in the same locality, the mean intensity was 27.8 and the mean abundance was 16.7 (Pantoja et al., 2015Pantoja WMF, Vargas Flores L, Tavares‐Dias M. Parasites component community in wild population of Pterophyllum scalare Schultze, 1823 and Mesonauta acora Castelnau, 1855, cichlids from the Brazilian Amazon. J Appl Ichthyology 2015; 31(6): 1043-1048. http://doi.org/10.1111/jai.12903.
http://doi.org/10.1111/jai.12903...
). However, the indexes observed here were higher than that observed in M. acora in the Igarapé Fortaleza basin, which presented a mean intensity and mean abundance of 1.0 and 0.1, respectively (Tavares-Dias et al., 2019Tavares-Dias M, Santos GG, Brito-Júnior IA. Protozoários e metazoários parasitos de sete espécies de Cichlidae da bacia Igarapé Fortaleza, estado do Amapá (Brasil). Biota Amazôn 2019; 9(4): 29-32. http://doi.org/10.18561/2179-5746/biotaamazonia.v9n4p29-32.).

Negreiros et al. (2018)Negreiros LP, Pereira FB, Tavares-Dias M, Tavares LE. Community structure of metazoan parasites from Pimelodus blochii in two rivers of the western Brazilian Amazon: same seasonal traits, but different anthropogenic impacts. Parasitol Res 2018; 117(12): 3791-3798. http://doi.org/10.1007/s00436-018-6082-5. PMid:30221326.
http://doi.org/10.1007/s00436-018-6082-5...
compared the helminth fauna of the Acre River (higher intensity of human activities) and Iaco River (lower intensity of human activity) and observed that the overall abundance and prevalence in the Acre River were higher than those observed in the Iaco River. Cavalcante et al. (2020)Cavalcante PHDO, Silva MT, Pereira ADNS, Gentile R, Santos CP. Helminth diversity in Pimelodus blochii Valenciennes, 1840 (Osteichthyes: Pimelodidae) in two Amazon rivers. Parasitol Res 2020; 119(12): 4005-4015. http://doi.org/10.1007/s00436-020-06906-x. PMid:33043417.
http://doi.org/10.1007/s00436-020-06906-...
compared the helminth fauna of Pimelodus blochii Valenciennes (Pimelodidae) in the Acre River and Xapuri River, state of Acre, of which the latter was better preserved in terms of water quality. They observed higher abundance and prevalence in almost all species found in P. blochii in the Xapuri River, which suggested that anthropic action relating to the dumping of human sewage in the Acre River may be affecting the structure of the helminth community of P. blochii. Although in the present study some nematode species showed higher prevalence, mean abundance or mean intensity than others, the parasite indexes from fish in the Feio stream and Estrela stream were similar.

Brazil has a large number of freshwater ecosystems, many of which exhibit high diversity and endemism (Abell et al., 2008Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 2008; 58(5): 403-414. http://doi.org/10.1641/B580507.
http://doi.org/10.1641/B580507...
; Agostinho et al., 2005Agostinho AA, Thomaz SM, Gomes LC. Conservation of the biodiversity of Brazil’s inland waters. Conserv Biol 2005; 19(3): 646-652. http://doi.org/10.1111/j.1523-1739.2005.00701.x.
http://doi.org/10.1111/j.1523-1739.2005....
; Daga et al., 2016Daga VS, Debona T, Abilhoa V, Gubiani ÉA, Vitule JRS. Non‐native fish invasions of a Neotropical ecoregion with high endemism: A review of the Iguaçu River. Aquat Invasions 2016; 11(2): 209-223. http://doi.org/10.3391/ai.2016.11.2.10.
http://doi.org/10.3391/ai.2016.11.2.10...
). However, many of these ecosystems have been disturbed by anthropic activities, which have threatened the maintenance of native biodiversity and ecosystems (Azevedo‐Santos et al., 2019Azevedo‐Santos VM, Frederico RG, Fagundes CK, Pompeu PS, Pelicice FM, Padial AA, et al. Protected areas: a focus on Brazilian freshwater biodiversity. Divers Distrib 2019; 25(3): 442-448. http://doi.org/10.1111/ddi.12871.
http://doi.org/10.1111/ddi.12871...
; Albert et al., 2021Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021; 50(1): 85-94. http://doi.org/10.1007/s13280-020-01318-8. PMid:32040746.
http://doi.org/10.1007/s13280-020-01318-...
; Ottoni et al., 2023Ottoni FP, South J, Azevedo-Santos VM, Henschel E, Bragança PHN. Editorial: Freshwater biodiversity crisis: Multidisciplinary approaches as tools for conservation. Front Environ Sci 2023; 11: 1155608. http://doi.org/10.3389/fenvs.2023.1155608.
http://doi.org/10.3389/fenvs.2023.115560...
). This scenario shows the importance of increasing the knowledge of the helminth fauna of freshwater fish in locations that have not yet been studied, such as the Munim River basin.

Acknowledgements

This study was financed was supported by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)” (MLS: Finance Code 001 and master’s fellowship 88887.630333/2021-00), “Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq” (FPO: grant 307974/2021-9) and by the “Fundação Maranhense de Apoio à Pesquisa e Desenvolvimento Científico e Tecnológico (FAPEMA)” (Programa de Apoio à Pós-Graduação Stricto Sensu (Processo POS-GRAD-02434/21). The authors are greatful to the student of “Programa Institucional de Bolsas de Iniciação Científica (PIBIC)” Natan Mendonça Souza de Paiva for the assistance with the nematodes morphometry.

  • Ethics declaration

    Collections for this study were authorized by the Biodiversity Authorization and Information System (SISBIO, number 64415), and euthanasia, fish transport and laboratory procedures were approved by the Commission of Ethics in the Use of Animals, protocol number 11/2021 from Universidade Estadual do Maranhão (UEMA).
  • How to cite:

    Cárdenas MQ, Silva ML, Viana DC, Cohen SC, Ottoni FP. Nematofauna of Bryconops cf. affinis (Characiformes, Iguanodectidae) and Saxatilia brasiliensis (Cichliformes, Cichlidae) from the Munim River basin, Northeastern Brazil. Braz J Vet Parasitol 2024; 33(3): e011224. https://doi.org/10.1590/S1984-29612024051

References

  • Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 2008; 58(5): 403-414. http://doi.org/10.1641/B580507
    » http://doi.org/10.1641/B580507
  • Agostinho AA, Thomaz SM, Gomes LC. Conservation of the biodiversity of Brazil’s inland waters. Conserv Biol 2005; 19(3): 646-652. http://doi.org/10.1111/j.1523-1739.2005.00701.x
    » http://doi.org/10.1111/j.1523-1739.2005.00701.x
  • Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021; 50(1): 85-94. http://doi.org/10.1007/s13280-020-01318-8 PMid:32040746.
    » http://doi.org/10.1007/s13280-020-01318-8
  • Azevedo‐Santos VM, Frederico RG, Fagundes CK, Pompeu PS, Pelicice FM, Padial AA, et al. Protected areas: a focus on Brazilian freshwater biodiversity. Divers Distrib 2019; 25(3): 442-448. http://doi.org/10.1111/ddi.12871
    » http://doi.org/10.1111/ddi.12871
  • Bush AO, Lafferty KD, Lotz AW, Shostak AW. Parasitology meets ecology on its own terms: margolis et al. revisited. J Parasitol 1997; 83(4): 575-583. http://doi.org/10.2307/3284227 PMid:9267395.
    » http://doi.org/10.2307/3284227
  • Carlson CJ, Dallas TA, Alexander LW, Phelan AL, Phillips AJ. What would it take to describe the global diversity of parasites? Proc Biol Sci 2020; 287(1939): 20201841. http://doi.org/10.1098/rspb.2020.1841 PMid:33203333.
    » http://doi.org/10.1098/rspb.2020.1841
  • Cavalcante PHDO, Silva MT, Pereira ADNS, Gentile R, Santos CP. Helminth diversity in Pimelodus blochii Valenciennes, 1840 (Osteichthyes: Pimelodidae) in two Amazon rivers. Parasitol Res 2020; 119(12): 4005-4015. http://doi.org/10.1007/s00436-020-06906-x PMid:33043417.
    » http://doi.org/10.1007/s00436-020-06906-x
  • Daga VS, Debona T, Abilhoa V, Gubiani ÉA, Vitule JRS. Non‐native fish invasions of a Neotropical ecoregion with high endemism: A review of the Iguaçu River. Aquat Invasions 2016; 11(2): 209-223. http://doi.org/10.3391/ai.2016.11.2.10
    » http://doi.org/10.3391/ai.2016.11.2.10
  • Darwall W, Bremerich V, Wever A, Dell AI, Freyhof J, Gessner MO, et al. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquat Conserv 2018; 28(4): 1015-1022. http://doi.org/10.1002/aqc.2958
    » http://doi.org/10.1002/aqc.2958
  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 2006; 81(2): 163-182. http://doi.org/10.1017/S1464793105006950 PMid:16336747.
    » http://doi.org/10.1017/S1464793105006950
  • Fricke R, Eschmeyer WN. Eschmeyer’s catalog of fishes: guide to fish collections [online]. San Francisco: California Academy of Sciences; 2024 [cited 2024 May 24]. Available from: https://researcharchive.calacademy.org/research/ichthyology/catalog/collections.asp
    » https://researcharchive.calacademy.org/research/ichthyology/catalog/collections.asp
  • Froese R, Pauly D, editors. FishBase version (10/2023) [online]. 2023 [cited 2024 May 24]. Available from: www.fishbase.org
    » www.fishbase.org
  • Fujimoto RY, Couto MVS, Sousa NDC, Madi RR, Eiras JC, Martins ML. Seasonality of Procamallanus (Spirocamallanus) inopinatus (Nematoda: Camallanidae) infection in Bryconops melanurus (Characiformes: Iguanodectidae). Bol Inst Pesca 2018; 44(4): e334. http://doi.org/10.20950/1678-2305.2018.44.4.334
    » http://doi.org/10.20950/1678-2305.2018.44.4.334
  • Gu XH, Guo N, Chen HX, Sitko J, Li LW, Guo BQ, et al. Mitogenomic phylogenies suggest the resurrection of the subfamily Porrocaecinae and provide insights into the systematics of the superfamily Ascaridoidea (Nematoda: Ascaridomorpha), with the description of a new species of Porrocaecum. Parasit Vectors 2023; 16(1): 275. http://doi.org/10.1186/s13071-023-05889-9 PMid:37563590.
    » http://doi.org/10.1186/s13071-023-05889-9
  • Gurgel HCB, Silva NB, Lucas FD, Souza LLG. Alimentação da comunidade de peixes de um trecho do rio Ceará Mirim, em Umari, Taipu, Estado do Rio Grande do Norte, Brasil. Acta Sci Anim Sci 2005; 27(2): 229-233. http://doi.org/10.4025/actascianimsci.v27i2.1226
    » http://doi.org/10.4025/actascianimsci.v27i2.1226
  • Harrison I, Abell R, Darwall W, Thieme ML, Tickner D, Timboe I. The freshwater biodiversity crisis. Science 2018; 362(6421): 1369. http://doi.org/10.1126/science.aav9242 PMid:30573621.
    » http://doi.org/10.1126/science.aav9242
  • Hodda M. Phylum Nematoda: a classification, catalogue and index of valid genera, with a census of valid species. Zootaxa 2022a; 5114(1): 1-289. http://doi.org/10.11646/zootaxa.5114.1.1 PMid:35391386.
    » http://doi.org/10.11646/zootaxa.5114.1.1
  • Hodda M. Phylum Nematoda: trends in species description, the documentation of diversity, systematics, and the species concept. Zootaxa 2022b; 5114(1): 290-317. http://doi.org/10.11646/zootaxa.5114.1.2 PMid:35391385.
    » http://doi.org/10.11646/zootaxa.5114.1.2
  • Hogue AS, Breon K. The greatest threats to species. Conserv Sci Pract 2022; 4(5): e12670. http://doi.org/10.1111/csp2.12670
    » http://doi.org/10.1111/csp2.12670
  • Hoshino EM, Tavares-Dias M. Interannual and seasonal variation in protozoan and metazoan parasite communities of Hemibrycon surinamensis, a characid fish inhabiting the Brazilian Amazon. Acta Parasitol 2019; 64(3): 479-488. http://doi.org/10.2478/s11686-019-00057-5 PMid:31020493.
    » http://doi.org/10.2478/s11686-019-00057-5
  • Instituto Maranhense de Estudos Socioeconômicos Cartográficos – IMESC. Zoneamento ecológico econômico do estado do Maranhão: etapa bioma Amazônico São Luís: IMESC; 2019.
  • Jorge F, Poulin R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc Biol Sci 2018; 285(1879): 20180072. http://doi.org/10.1098/rspb.2018.0072 PMid:29848643.
    » http://doi.org/10.1098/rspb.2018.0072
  • Lacerda ACF, Takemoto RM, Marchiori NC, Martins ML, Pavanelli GC. New species of Cucullanus (Nematoda: Cucullanidae), an intestinal parasite of the peacock bass Cichla piquiti (Perciformes: Cichlidae) from the Tocantins River, Brazil. J Helminthol 2015; 89(1): 9-12. http://doi.org/10.1017/S0022149X13000485 PMid:23830176.
    » http://doi.org/10.1017/S0022149X13000485
  • Lacerda ACF, Takemoto RM, Poulin R, Pavanelli GC. Parasites of the fish Cichla piquiti (Cichlidae) in native and invaded Brazilian basins: release not from the enemy, but from its effects. Parasitol Res 2013; 112(1): 279-288. http://doi.org/10.1007/s00436-012-3135-z PMid:23052767.
    » http://doi.org/10.1007/s00436-012-3135-z
  • Luque JL, Aguiar JC, Vieira FM, Gibson DI, Santos CP. Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 2011; 3082(1): 1-88. http://doi.org/10.11646/zootaxa.3082.1.1
    » http://doi.org/10.11646/zootaxa.3082.1.1
  • Marcogliese DJ. Major drivers of biodiversity loss and their impacts on helminth parasite populations and communities. J Helminthol 2023; 97: e34. http://doi.org/10.1017/S0022149X2300010X PMid:37057863.
    » http://doi.org/10.1017/S0022149X2300010X
  • Martins M, Onaka E. Larvae of Porrocaecum sp. (Nematoda: Ascarididae) in the swim bladder of cultured Piaractus mesopotamicus (Osteichthyes: Characidae) in Brazil. Bol Inst Pesca 2004; 30(1): 57-61.
  • Melo MFC, Giese EG, Santos JN, Santos CP. First record of larval Pseudoproleptus sp. (Nematoda: Cystidicolidae) in fish host. Acta Trop 2011; 117(3): 212-215. http://doi.org/10.1016/j.actatropica.2010.12.011 PMid:21187054.
    » http://doi.org/10.1016/j.actatropica.2010.12.011
  • Morais AM, Cárdenas MQ, Malta JCO. Nematofauna of red piranha Pygocentrus nattereri (Kner, 1958) (Characiformes: Serrasalmidae) from Amazonia, Brazil. Rev Bras Parasitol Vet 2019; 28(3): 458-464. http://doi.org/10.1590/s1984-29612019055 PMid:31390437.
    » http://doi.org/10.1590/s1984-29612019055
  • Moravec F. Parasitic nematodes of freshwater fishes of Europe Dordrecht: Kluwer Academic Publishers; 1994.
  • Moravec F. Nematodes of freshwater fishes of the Neotropical Region Praha: Academia; 1998.
  • Moravec F. Some aspects of the taxonomy and biology of adult spirurine nematodes parasitic in fishes: a review. Folia Parasitol 2007; 54(4): 239-257. http://doi.org/10.14411/fp.2007.033 PMid:18303766.
    » http://doi.org/10.14411/fp.2007.033
  • Moravec F, Thatcher VE. Procamallanus (Denticamallanus subgen. n.) dentatus sp. n. (Nematoda, Camallanidae) from the characid fish, Bryconops alburnoides, in the Brazilian Amazon. Parasite 1997; 4(3): 239-243. http://doi.org/10.1051/parasite/1997043239
    » http://doi.org/10.1051/parasite/1997043239
  • Moravec F, Mendoza-Franco E, Vargas-Vázquez J, Vivas-Rodríguez C. Studies on the development of Procamallanus (Spirocamallanus) rebecae (Nematoda: Camallanidae), a parasite of cichlid fishes. Folia Parasitol 1995; 42: 281-292.
  • Moravec F, Prouza A, Royero R. Some nematodes of freshwater fishes in Venezuela. Folia Parasitol 1997; 44(1): 33-47. PMid:9188173.
  • Moravec F, Santos CP. Larval Pseudoproleptus sp. (Nematoda: Cystidicolidae) found in the Amazon river prawn Macrobrachium amazonicum (Decapoda: Palaemonidae) in Brazil. J Parasitol 2009; 95(3): 634-638. http://doi.org/10.1645/GE-1887.1 PMid:19014207.
    » http://doi.org/10.1645/GE-1887.1
  • Morey GAM, Malta JCO. Metazoan parasites of Acestrorhynchus falcatus (Characiformes: Acestrorhynchidae) from floodplain lakes of the Brazilian Amazon. Neotrop Helminthol 2018; 12(2): 147-152. http://doi.org/10.24039/rnh2018122672
    » http://doi.org/10.24039/rnh2018122672
  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403(6772): 853-858. http://doi.org/10.1038/35002501 PMid:10706275.
    » http://doi.org/10.1038/35002501
  • Negreiros LP, Pereira FB, Tavares-Dias M, Tavares LE. Community structure of metazoan parasites from Pimelodus blochii in two rivers of the western Brazilian Amazon: same seasonal traits, but different anthropogenic impacts. Parasitol Res 2018; 117(12): 3791-3798. http://doi.org/10.1007/s00436-018-6082-5 PMid:30221326.
    » http://doi.org/10.1007/s00436-018-6082-5
  • Oliveira ES, Guimarães EC, Brito PS, Vieira LO, Oliveira RF, Campos DS, et al. Ichthyofauna of the Mata de Itamacaoca, an urban protected area from the upper Munim River basin, Northern Brazilian Cerrado. Biota Neotrop 2020; 20(4): e20201116. http://doi.org/10.1590/1676-0611-bn-2020-1116
    » http://doi.org/10.1590/1676-0611-bn-2020-1116
  • Oliveira MSB, Corrêa LL, Prestes L, Neves LR, Brasiliense ARP, Ferreira DO, et al. Comparison of the endoparasite fauna of Hoplias malabaricus and Hoplerythrinus unitaeniatus (Erythrinidae), sympatric hosts in the eastern Amazon region (Brazil). Helminthol 2018; 55(2): 157-165. http://doi.org/10.2478/helm-2018-0003 PMid:31662642.
    » http://doi.org/10.2478/helm-2018-0003
  • Ottoni FP, South J, Azevedo-Santos VM, Henschel E, Bragança PHN. Editorial: Freshwater biodiversity crisis: Multidisciplinary approaches as tools for conservation. Front Environ Sci 2023; 11: 1155608. http://doi.org/10.3389/fenvs.2023.1155608
    » http://doi.org/10.3389/fenvs.2023.1155608
  • Padial JM, Miralles A, de la Riva I, Vences M. The integrative future of taxonomy. Front Zool 2010; 7(1): 16. http://doi.org/10.1186/1742-9994-7-16 PMid:20500846.
    » http://doi.org/10.1186/1742-9994-7-16
  • Pantoja WMF, Vargas Flores L, Tavares‐Dias M. Parasites component community in wild population of Pterophyllum scalare Schultze, 1823 and Mesonauta acora Castelnau, 1855, cichlids from the Brazilian Amazon. J Appl Ichthyology 2015; 31(6): 1043-1048. http://doi.org/10.1111/jai.12903
    » http://doi.org/10.1111/jai.12903
  • Pelegrini LS, Vieira DHMD, Leite LAR, Gião T, Azevedo RK, Abdallah VD. Parasite diversity of Hoplosternum littorale from the Tietê-Batalha river basin, southeastern Brazil. Bol Inst Pesca 2021; 47: e650. http://doi.org/10.20950/1678-2305/bip.2021.47.e650
    » http://doi.org/10.20950/1678-2305/bip.2021.47.e650
  • Pereira FB, González-Solís D. Review of the parasitic nematodes of marine fishes from off the American continent. Parasitology 2022; 149(14): 1928-1941. http://doi.org/10.1017/S0031182022001287 PMid:36076284.
    » http://doi.org/10.1017/S0031182022001287
  • Pereira FB, Luque JL. Morphological and molecular characterization of cucullanid nematodes including Cucullanus opisthoporus n. sp. in freshwater fish from the Brazilian Amazon. J Helminthol 2017; 91(6): 739-751. http://doi.org/10.1017/S0022149X16000729 PMid:27776573.
    » http://doi.org/10.1017/S0022149X16000729
  • Petter AJ. Deux nouvelles espèces de Nématodes Camallanina parasites de Hoplerythrinus unitaeniatus (Characidae, Cypriniformes) en Guyane; création d’une nouvelle famille: les Guyanemidae (Dracunculoidea). Bull Mus Nat 1974; 232(156): 803-812.
  • Pinheiro RHS, Cardoso PJ, Monks S, Santos JN, Giese EG. First record of Spirocamallanus krameri (Nematoda: Camallanidae) in Brazil: morphological review. An Acad Bras Cienc 2020;92(2 Suppl 2): e20180721. http://doi.org/10.1590/0001-3765202020180721 PMid:33146270.
    » http://doi.org/10.1590/0001-3765202020180721
  • Pinheiro RHS, Tavares-Dias M, Giese EG. Helminth parasites in two populations of Astronotus ocellatus (Cichliformes: Cichlidae) from the eastern Amazon, Northern Brazil. Rev Bras Parasitol Vet 2019; 28(3): 425-431. http://doi.org/10.1590/s1984-29612019052 PMid:31365720.
    » http://doi.org/10.1590/s1984-29612019052
  • Pinheiro RHS, Teixeira VA, Tavares-Dias M, Giese EG. Spirocamallanus krameri and Contracaecum sp. third-stage larvae (Nematoda) in Hoplerythrinus unitaeniatus (Erythrinidae) of eastern Amazon (Brazil). Ann Parasitol 2021; 67(2): 305-312. http://doi.org/10.17420/ap6702.343 PMid:34598402.
    » http://doi.org/10.17420/ap6702.343
  • Poulin R, Presswell B, Bennett J, Angeli Dutra D, Salloum PM. Biases in parasite biodiversity research: why some helminth species attract more research than others. Int J Parasitol Parasites Wildl 2023; 21: 89-98. http://doi.org/10.1016/j.ijppaw.2023.04.010 PMid:37182112.
    » http://doi.org/10.1016/j.ijppaw.2023.04.010
  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PT, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev Camb Philos Soc 2019; 94(3): 849-873. http://doi.org/10.1111/brv.12480 PMid:30467930.
    » http://doi.org/10.1111/brv.12480
  • Ribeiro TS, Lizama MA, Takemoto RM. Metazoan endoparasites diversity of Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) as an indicator of environmental alterations on a tropical aquatic system. Acta Parasitol 2014; 59(3): 398-404. http://doi.org/10.2478/s11686-014-0260-0 PMid:25119352.
    » http://doi.org/10.2478/s11686-014-0260-0
  • Simões RO, Robles MR. Editorial: helminth biodiversity. Front Vet Sci 2023; 9: 1126460. http://doi.org/10.3389/fvets.2022.1126460 PMid:36744221.
    » http://doi.org/10.3389/fvets.2022.1126460
  • Tavares-Dias M, Goncalves RA, Oliveira MSB, Neves LR. Parasites community in Chaetobranchus flavescens Heckel, 1840, (Cichliformes: Cichlidae) from the Eastern Amazon, Brazil. Bol Inst Pesca 2018; 44(1): 10-16. http://doi.org/10.20950/1678-2305.2018.262
    » http://doi.org/10.20950/1678-2305.2018.262
  • Tavares-Dias M, Oliveira MSB, Gonçalves RA, Silva LMA. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitol 2014; 59(1): 158-164. http://doi.org/10.2478/s11686-014-0225-3 PMid:24570063.
    » http://doi.org/10.2478/s11686-014-0225-3
  • Tavares-Dias M, Santos GG, Brito-Júnior IA. Protozoários e metazoários parasitos de sete espécies de Cichlidae da bacia Igarapé Fortaleza, estado do Amapá (Brasil). Biota Amazôn 2019; 9(4): 29-32. http://doi.org/10.18561/2179-5746/biotaamazonia.v9n4p29-32.
  • Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 2020; 70(4): 330-342. http://doi.org/10.1093/biosci/biaa002 PMid:32284631.
    » http://doi.org/10.1093/biosci/biaa002
  • Timi JT, Lanfranchi AL. A new species of Cucullanus (Nematoda: Cucullanidae) parasitizing Conger orbignianus (Pisces: Congridae) from Argentinean waters. J Parasitol 2006; 92(1): 151-154. http://doi.org/10.1645/GE-3513.1 PMid:16629329.
    » http://doi.org/10.1645/GE-3513.1
  • Vieira LO, Campos DS, Oliveira RF, South J, Coelho MSP, Paiva MJS, et al. Checklist of the fish fauna of the Munim River Basin, Maranhão, north-eastern Brazil. Biodivers Data J 2023; 11: e98632. http://doi.org/10.3897/BDJ.11.e98632 PMid:38327355.
    » http://doi.org/10.3897/BDJ.11.e98632
  • Virgilio LR, Martins WMO, Lima FS, Takemoto RM, Camargo LMA, Meneguetti DUO. Endoparasite fauna of freshwater fish from the upper Juruá River in the Western Amazon, Brazil. J Helminthol 2022; 96: e55. http://doi.org/10.1017/S0022149X2200027X PMid:35904029.
    » http://doi.org/10.1017/S0022149X2200027X
  • Yamada F, Takemoto RM. Metazoan parasite fauna of two peacock-bass cichlid fish in Brazil. Check List 2013; 9(6): 1371-1377. http://doi.org/10.15560/9.6.1371
    » http://doi.org/10.15560/9.6.1371

Publication Dates

  • Publication in this collection
    16 Sept 2024
  • Date of issue
    2024

History

  • Received
    27 May 2024
  • Accepted
    17 July 2024
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br