Rev Bras Parasitol Vet
rbpv
Revista Brasileira de Parasitologia Veterinária
Rev. Bras. Parasitol. Vet.
0103-846X
1984-2961
Colégio Brasileiro de Parasitologia Veterinária
Resumo
Espécimes de Oncicola venezuelensis (Marteau, 1997) foram recuperados de fragmentos do tecido intestinal de uma fêmea de Puma concolor (Linn, 1771) encontrada morta em Petrópolis, Rio de Janeiro, em 2017. Um total de 140 helmintos foram recuperados. Cinco machos e 5 cinco fêmeas dos helmintos foram analisados morfologicamente, bem como 50 ovos dos parasitos recuperados no conteúdo intestinal. Morfologicamente, esses helmintos eram compatíveis com o gênero Oncicola, devido ao tamanho e formato da probóscide, o tamanho e disposição do leminisco e a morfometria dos ovos, que apresentaram membrana externa da casca delicada e clara. A partir da histopatologia, pode-se verificar que os helmintos estavam profundamente inseridos na mucosa, atingindo até a camada muscular. Um espécime também foi identificado molecularmente com primers universais que amplificam a região ITS-1.5.8S.ITS-2. Após as análises moleculares, foi verificado que os helmintos apresentavam 99% de identidade com sequência gênica de O. venezuelensis que está depositada no Genbank. É importante enfatizar, que esse parasito foi muito pouco relatado na literatura, demonstrando a importância deste relato.
Introduction
There are around 1298 valid species of Acanthocephala distributed in four class (Amin, 2013). In Class Archiacanthocephala, Order Oligacanthorhynchida has a single Family Oligacanthorhynchidae, which contains 12 genera, including the genus Oncicola (Amin, 2013). This genus has 24 species that infect carnivorous animals such as mephetids, mustelids, procyonids, felids and canids (Amin, 2013). In the case of the genus Oncicola, carnivores are prominent definitive hosts (Nickol et al., 2006; Núñez & Drago, 2017).
Helminths of the genus Oncicola inhabit the small intestine of the definitive hosts. The pathogenic condition that they cause relate mainly to the chronic inflammatory response that stems from their attachment to the host intestinal mucosa via their proboscis (Richardson, 2013; Núñez & Drago, 2017). This may produce nodules similar to granulomas and, consequently, tissue fibrosis. In homeothermic hosts, the proboscis may penetrate deeply in the various layers of the small intestine (Núñez & Drago, 2017).
Several species of Oncicola had already been described in Brazil, simply through morphological analyses of the adult forms. Among these species, O. sigmoides (Meyer, 1932) collected from Galictis sp. and Conepatus sp., and O. luehei (Travassos, 1917) from Nasua nasua (Linn., 1766), in Pará, São Paulo, Minas Gerais, Mato Grosso and Mato Grosso do Sul; O. macrurae (Meyer, 1931) from Leopardus wiedii (Schinz, 1821) in Pará; O. magalhaesi (Machado Filho, 1962) from Puma concolor (Linn., 1771) in São Paulo; O. micracantha (Machado Filho, 1949) from Conepatus chinga (Molina, 1782) in Rio Grande do Sul; O. paracampanulata (Machado Filho, 1963) from Puma yagouaroundi (Saint-Hilaire, 1803) in São Paulo, Paraná and Pará; O. oncicola (Ihering, 1892) from Panthera onca (Linn., 1758) in São Paulo and Minas Gerais, from P. yagouaroundi and Leopardus pardalis (Linn., 1758) in São Paulo and from L. wiedii in Pará; and O. campanulata (Diesing, 1851) from L. pardalis, Leopardus geoffroyi, P. onca and P. concolor, and O. chibigouzouensis (Machado Filho, 1963) from L. pardalis, in Mato Grosso (Vieira et al., 2008). The morphological description of O. venezuelensis form L. pardalis in the Serra da Capivara, Piauí was associated with molecular techniques once by Santos et al. (2017).
The aim of the present study was to report the occurrence of Oncicola venezuelensis infecting Puma concolor in the state of Rio de Janeiro, Brazil, using tools for microscopic, histopathological and molecular analysis.
Material and Methods
The result from the present analysis was inserted in a report on a larger project that was registered under SISBIO number 57635-3, authentication code 0576350320190522.
In August 2017, a female Puma concolor was found dead on the Brejal highway (Figure 1), in Petrópolis, state of Rio de Janeiro. The carcass was sent to the headquarters of the National Park of Serra dos Órgãos. The animal was of 1.2 m long and weighed 17 kg.
Figure 1
Location of the Brejal region in green and the city of Petrópolis in black, on a map of the state of Rio de Janeiro.
Morphology
A segment of the small intestine was sent to the Parasitology Laboratory of the Fluminense Federal University. It was washed in a sterile buffered saline solution and the parasites adhering to the mucosa were carefully removed and were viewed under a stereoscopic microscope (Diag Tech® XTL 6445, São Paulo, Brazil). The helminths were stored in receptacles containing 70% glycerinated alcohol. Subsequently, they were cleared using 10% phenol for 30 minutes and were individually laid out on microscope slides for morphological analysis.
The liquid that resulted from washing the intestinal segment was aliquoted into conical-based tubes, for subsequent recovery of eggs. These tubes were subjected to centrifugation-sedimentation for 5 minutes, at 252g. Microscope slides of the sedimented eggs were covered with a 24 × 32 mm coverslip.
Intestinal segments that contained the helminths were photographed. Parts of these tissues had been fixed in 10% formalin for 48 hours and then cut out, embedded in paraffin blocks and sectioned at 5 µm using a microtome Leika RM 2125 RT (Leica®, Germany) for mounting on microscope slides for analysis. These slides were stained with hematoxylin-eosin (hematoxylin – Confiança® São Paulo, Brazil; eosin - Reagen®, Rio de Janeiro, Brazil).
The slides with the sectioned tissues were analyzed under an optical microscope. The adult forms of the helminths and the eggs were measured and photomicrographed under an optical microscope (Olympus® BX 41, Tokyo, Japan) connected to a digital camera (Samsung® SDC415, Korea) using the software (Honestech® TVR, USA). Measurements of the helminths, their internal structures and their eggs were described using (minimum and maximum values), followed by the mean and standard deviation. So are these the specimens that were measured and included in Tables 1
and 2.
Table 1
Minimum and maximum values, means and standard deviations of the different parts of the bodies of female specimens of Oncicola and their eggs that were recovered in the present study and other studies.
Biometry (µm)
This study
Other reports about Oncicola sp.
Rio de Janeiro
Oncicola venezuelensis (Piauí. Brazil) Santos et al. 2017
Oncicola venezuelensis (St. John Island. U. S. Virgin Islands) Fuller, Nickol. 2011
Oncicola venezuelensis (Venezuela) Marteu. 1977
Female (n=5)
Female (n=7)
Female (n=15)
Female (n=2)
Total lenght
6170-8520
6250-13250
13200-18300
15000-16000
7340 ± 810
9890
15500
NR
Total width
2010-2400
1000-1950
1800-2600
1900-2200
2200 ± 120
1470
2200
NR
Proboscis lenght
500-550
430-600
432-480
0.50-0.55
520 ± 24.49
540
458
NR
Proboscis width
550-600
650-700
528-566
0.60-0.62
602 ± 34.87
670
547
NR
Proboscis receptacle
1300-1450
970-1200
1001-1390
1200-1400
1362.5 ± 64.95
1060
1210
NR
Lemnisci
8600-13400
NR
≤10000
10000-12000
10100 ± 19000
NR
NR
NR
Hooks
I - Lenght
80-170
110-140
115-139
95-145
107 ± 23
127
127
NR
I - Base length
30-90
NR
NR
NR
46.5 ± 18.51
NR
NR
NR
II - Lenght
80-200
80-120
120-139
95-135
121 ± 36.73
103
131
NR
II - Base length
30-110
NR
NR
NR
73.5 ± 23.51
NR
NR
NR
III - Lenght
70-180
70-100
98-110
70-110
106.5 ± 24.75
88
102
NR
III - Base length
20-110
NR
NR
NR
53.5 ± 23.72
NR
NR
NR
IV - Lenght
70-190
70-90
91-96
65-95
115 ± 23.45
84
92
NR
IV - Base length
20-60
NR
NR
NR
36.25 ± 10.53
NR
NR
NR
V - Lenght
50-130
70-100
77-86
65-75
94.5 ± 16.87
81
82
NR
V - Base length
20-60
NR
NR
NR
33 ± 9.54
NR
NR
NR
VI - Lenght
50-110
50-70
74-82
60-75
79.45 ± 22.4
62
77
NR
VI- Base length
10-70
NR
NR
NR
32.5 ± 13.74
NR
NR
NR
Neck lenght
250-400
300-340
250-302
500
314 ± 48.86
320
289
NR
Neck width
496-504
400-550
384-422
620
500 ± 2.82
476
396
NR
Cerebral ganglion length
130-180
110
110-149
NR
152 ± 17.88
NR
131
NR
Cerebral ganglion width
110-130
110
62-86
NR
112 ± 10.95
NR
73
NR
Uterine bell length
300-650
350-500
499-538
0.65
535 ± 126.19
422
520
NR
Uterine bell width
103.6-150
NR
259-336
0.33
125.53 ± 23.52
NR
301
NR
Uterus lenght
480-750
400-720
672-816
1000
611.9 ± 117.03
610
752
NR
Sphincter length
220-370
200-400
264-384
NR
212 ± 92.17
318
330
NR
eggs (n=50)
eggs (n=NR)
eggs (n=NR)
eggs (n=NR)
Length
35-74
30-55
67-72
NR
59.8 ± 11.29
42
69
Width
25-70.3
22-30
43-50
NR
39.4 ± 10.12
26
47
NR: Not reported.
Table 2
Minimum and maximum values, means and standard deviations of the different parts of the bodies of male specimens of Oncicola that were recovered in the present study and other studies.
Biometry (µm)
This study
Other reports about Oncicola sp.
Rio de Janeiro
Oncicola venezuelensis (Piauí. Brazil) Santos et al. 2017
Oncicola venezuelensis (St. John Island. U. S. Virgin Islands) Fuller, Nickol 2011
Oncicola venezuelensis (Venezuela) Marteu. 1977
Male (n=5)
Male (n=3)
Male (n=10)
Male (n=2)
Total length
5020-8210
5630-12500
6500-8400
13500-14000
6790 ± 970
9170
8000
NR
Total width
2060-2550
750-1500
1200-1300
2000
2280 ± 180
1170
1200
NR
Proboscis lenght
450-550
400-500
336-348
0.50-0.55
490 ± 37.41
433
344
NR
Proboscis width
580-600
370-600
476-480
0.60-0.62
596 ± 8
507
479
NR
Proboscis receptacle
1300-1400
600-1180
1001-1390
1200-1400
1334 ± 76.31
960
1210
NR
Lemnisci
5500-13000
NR
≤ 10000
10000-12000
9700 ± 3400
NR
NR
NR
Hooks
I - Lenght
50-120
120-125
115-139
95-145
96.84 ± 23.85
NR
127
NR
I - Base length
20-70
NR
NR
NR
48.95 ± 16.19
NR
NR
NR
II - Lenght
60-170
145-150
120-139
95-135
105.33 ± 29.18
NR
131
NR
II - Base length
30-100
NR
NR
NR
60.67 ± 18.43
NR
NR
NR
III - Lenght
70-120
125
98-110
70-110
97.5 ± 14.36
NR
102
NR
III - Base length
20-70
NR
NR
NR
38.13 ± 11.03
NR
NR
NR
IV - Lenght
40-120
105-110
91-96
65-95
92.78 ± 18.02
NR
92
NR
IV - Base length
20-70
NR
NR
NR
37.22 ± 11.16
NR
NR
NR
V - Lenght
70-120
95-105
77-86
65-75
90.56 ± 16.05
NR
82
NR
V - Base length
20-60
NR
NR
NR
37.78 ± 14.45
NR
NR
NR
VI - Lenght
50-110
95-100
74-82
60-75
92 ± 16.57
NR
77
NR
VI- Base length
20-80
NR
NR
NR
36 ± 17.17
NR
NR
Neck lenght
200-300
220-270
250-302
500
254 ± 40.7
245
289
NR
Neck width
200-550
200
384-422
620
424± 122.08
NR
396
NR
Cerebral ganglion length
140-190
NR
110-149
NR
157.5 ± 22.17
NR
131
NR
Cerebral ganglion width
100-140
NR
62-86
NR
124 ± 17.07
NR
73
NR
Anterior testis length
500-660
930-1180
NR
1800-2000
593.33 ± 68.23
NR
NR
NR
Anterior testis width
370-550
500-600
NR
720
460 ± 64.81
NR
NR
NR
Posterior testis length
540-730
1040-1250
NR
NR
608.33 ± 66.99
NR
NR
NR
Posterior testis width
300-580
600-680
NR
NR
430 ± 92.38
NR
NR
NR
Cement glands length
570-800
600-700
528-672
850
712 ± 77.04
NR
595
NR
Cement glands width
420-950
550-850
269-288
350
500 ± 244.86
NR
281
NR
Safftigen's pouch length
600-790
1150-1200
1056-1392
NR
670 ± 70.59
NR
1264
NR
Safftigen's pouch width
310-600
550-650
288-480
NR
466 ± 109.10
NR
384
NR
Copulatory bursa length
300-520
1500
NR
NR
398.33 ± 73.35
NR
NR
NR
Copulatory bursa width
210-620
550
NR
NR
356.67 ± 131.23
NR
NR
NR
NR: Not reported.
Molecular study
To perform molecular analyses, five adult specimens, weighing-around 50 mg were placed in a conical-based tube containing 15 mL of sterile buffered saline solution. This tube was then subjected to three cycles of centrifugation at 447g for 10 minutes. Afterwards, the helminths were macerated on a Petri dish using a scalpel blade. The macerate was placed in a 1.5 mL microtube, 200 µL of the tissue buffer and 40 µL of the enzyme proteinase K was added. This material was then incubated at 37 °C (Nova Técnica, São Paulo, Brazil) in a bacteriological chamber for 24 hours. Subsequenthly, 20 µL of the enzyme proteinase K was added and incubate for 2 hours at 55 °C. After this incubation, no helminth tissue particles were evidenced. For DNA extraction the High Pure PCR Template Preparation (Roche®, Indianapolis, USA) commercial kit was used.
The primer for implementing the PCR was chosen after verifying the morphological characteristics. A pair of universal eukaryote primers described by Chen et al. (2010) was used. These amplified the ITS1-5.8S-ITS2 region of RNAr: forward (5’-GTCGTAACAAGGTTTCCGTA -3’) and reverse (5’-TATGCTTAARTTCAGCGGGT -3’). The total volume of the reaction mix was 25 µL, consisting of 5 µL of each primer (at 10 pM), 7 µL of the DNA extracted and 8 µL of ultrapure water. For this PCR, the PuReTaqTM Ready-To-GoTM PCR (GE®, New Jersey, USA) beads were used. The reaction was performed using the following cycling: 94 °C for 2 min, followed by 40 cycles at 95 °C for 30 s, 55 °C for 30 s, 72 °C for 60 s and 72 °C for 7 min. Electrophoresis was performed using 1.5% agarose gel, and the bands were viewed by adding red gel. The amplified product was purified using the Promega commercial kit Wizard SV Gel and PCR Clean-Up System (Promega®, Wisconsin, USA). Following this, the purified product was subjected to genetic sequencing in an automated sequencer. The sequences were input to the BioEdit 7.2.5 (Hall, 1999) software and were compared with the reference sequences deposited in GenBank (Table 3). To compile the phylogenetic tree, the Mega® software, version 6 (Tamura et al., 2013), with the maximum likelihood (ML) algorithm in the Tamura Nei model with 5000 bootstraps, was used.
Table 3
Helminth species and genera used in the phylogenetic analysis of this study.
Species
Family
Genbank acess number
Genbank Reference
Oncicola venezuelensis
Oligacanthorhynchidae
KU521566
Santos et al. (2017)
Oncicola sp.
Oligacanthorhynchidae
AF416416
Garcia-Varela et al. (2003) Unpublished
Macracanthorhynchus ingens
Oligacanthorhynchidae
AF416414.1
Garcia-Varela et al. (2003) Unpublished
Mediorhynchus sp.
Gigantorhynchydae
AF416413
Garcia-Varela et al. (2003) Unpublished
Acanthosentis cheni
Quadrigyridae
JX960752
Song et al. (2013) Unpublished
Neoechinorhynchus roseum
Neoechinorhynchidae
FJ388981
Martínez-Aquino et al. (2009)
Neoechinorhynchus emyditoides
Neoechinorhynchidae
KC004175
Pinacho-Pinacho et al. (2013) Unpublished
Neoechinorhynchus schmidti
Neoechinorhynchidae
KC004173
Pinacho-Pinacho et al. (2013) Unpublished
Pseudoacanthocephalus nguyenthileae
Echinorhynchidae
KC491890
Tkach et al. (2013)
Pseudoacanthocephalus nickoli
Echinorhynchidae
KC491884
Tkach et al. (2013)
Polymorphus minutus
Polymorphidae
AY532067
Garcia-Varela et al. (2005)
Polymorphus altmani
Polymorphidae
AY532066
Garcia-Varela et al. (2005)
Moniliformis moniliformis
Moniliformidae
AF416415
Garcia-Varela et al. (2003) Unpublished
Heteroxynema cucullatum
Heteroxynematidae
MH011309
Bell et al., 2018
Necator americanus
Ancylostomatidae
MH6658431
Monteiro et al. (2018)
Results
Morphology
Oncicola venezuelensis (Marteau, 1977)
A total of 140 helminths and 50 eggs were recovered. Measurements were made of 10 helminths (5 males and 5 females) and on all the eggs (Tables 1
and 2). Trunk globous that was slightly wider in the anterior portion. Males 6790 µm long (5020-8210) by 2280 µm wide (2060-2550) and females 7340 µm long (6170-8520) and 2200 µm wide (2010-2400). Proboscis globular, 490 µm long (450-550) by 596 µm wide (580-600) in males and 520 µm long (500-520) and 602 µm wide (550-600) in females with six rows of six hooks each. Proboscis receptacle single walled, 1334 µm long (1300-1400) in males and 1362 µm long (1300-1450) in females (Figure 2D). Cerebral ganglion, males 157.5 µm long by 124 µm wide and females 152 µm long by 112 µm wide. Neck short, males 254 µm long (200-300) by 424 µm wide (200-550) and females 314 µm long (250-400) by 500 wide (496-504). Long tubular lemnisci reaching posterior portion of trunk, occasionally rolledinged up. Leminisci in the males had 9700 µm long and in the females 10100 µm long medium (Figure 2).
Figure 2
Line drawings of mature Oncicola venezuelensis from Puma concolor, in Rio de Janeiro. (A) Entire male; (B) Egg detected in sediment stool; (C) Outline showing shape of a gravid female; (D) Proboscis of a female.
Males: Reproductive tract in posterior half of trunk. Testes elliptical, in tandem. Anterior testis 593 µm long (500-600) by 460 µm wide (370-550). Eight cement glands in pairs 712 µm long (570-800) by 500 µm wide (420-950) and Safftigen pouch 670 µm long (600-790) by 466 µm wide (310-600). Copulatory bursa 398 µm long (300-520) and 356 µm wide (210-620) (Figure 2A).
Females: Uterine bell 535 µm long (300-650) and 125.53 µm wide (103.6-150), uterus 611 µm long (480-750), uterine bell, vagina with sphincter 212 µm long (220-370) and genital pore in the posterior region (Figure 2C). The eggs were generally very pale and slightly oval, with a very delicate external membrane with medium 59.8 µm long by 39.4 µm wide (Figure 2B). The measurements on the females, eggs and males are reported in Table 2 .
Macroscopically, adults partially attached to serous membrane intestinal wall could be seen and in mucous content (Figure 3A, B). Adults attached to the mucosa were surrounded by fibrous connective tissue (Figures 3C). Histopathological slides stained with hematoxylin-eosin showed that the parasites were attached by means of the proboscis and its hooks surrounded by collagenous tissue (Figures 3D, E). Parasite eggs are surrounded by host tissue (Figure 3F). Adult were deeply attached as far as the muscle layer (Figure 3G). The results from the morphological analysis, measurements on the parasites made it possible to identify them as members of the genus Oncicola.
Figure 3
(A) Adult specimen attached to the serous membrane of the intestinal wall; (B) Segment jejunum with mucous content and specimens of adult attached to the mucosa; (C) Cut surface of a nodule located close to the pylorus region with parasites; (D) Histological section in which the proboscis with its hooks can be seen surrounded by collagenous tissue; (E). Collagenous tissue, in 400 x, observed in figure D; (F) Histological section through the nodule with parasite eggs surrounded by granuloma; (G) Histological section through a fragment of jejunum, in which the adult form of the parasite can be seen to be deeply attached to in muscle layer; (D-G) Hematoxylin and eosin staining.
Molecular study
After alignment of the nucleotide sequence obtained in the present study with other sequences of the phylum Acanthocephala retrieved from GenBank, it could be seen that the present sequence had 99% similarity with a sequence of Oncicola venezuelensis that had been recovered from a specimen of Leopardus pardalis in Serra da Capivara, Piauí (Figure 4).
Figure 4
Maximum likelihood (ML) algorithm used with the Tamura Nei model that was based on the gene sequence obtained from the ITS1-5.8S-ITS2 region, compared with reference sequences from different species of helminths of the phylum Acanthocephala that had been detected in different animas, and from Necator americanus, obtained from GenBank. The numbers associated with the branches refer to the bootstrap values for 5000 replications.
Discussion
In this study, it could be seen that the helminths presented morphology compatible with the family Oligacanthorhynchidae and genus Oncicola, since they had a globous body in the anterior region, a spherical proboscis with six rows of hooks, a proboscis receptacle on a single wall, inserted into the base of the proboscis, and presence of a cerebral ganglion. It was also observed that the males had cement glands. However, it was difficult to quantify the number of cement glands. This fact also reported by Yamaguti (1963). Oncicola hooks were strongly attached to the mucosa of the small intestine of the felid. This characteristic was similar to what was described by Richardson (2013) and Núñez & Drago (2017). Through histopathology it was possible to confirm the proboscis’ deep insertion in tissues, reaching the muscle layer. Unfortunately, through histopathology it was not possible to characterize the inflammatory cells in the most of the tissue, because of the autolysis process. The autolysis process occurred because the carcass was found at random in a Conservation Unit by a person, who had no experience in forensic analysis, so it is not known how long the carcass was exposed in the environment. This type of situation ends up being a reality evidenced in studies with wild animals in free living, highlighting the importance and rarity of the information that is generated with this type of material.
The eggs found in the present study had a delicate clear external shell membrane. This was morphologically similar to what was described by Yamaguti (1963) for the genus Oncicola and by Santos et al. (2017) and Fuller & Nickol (2011) for the species O. venezuelensis, which were reported infecting, an ocelot in Piauí, Brazil, and a feral cat in the U.S. Virgin Islands, respectively.
In addition, tubular lemnisci were observed extending to the posterior trunk where they tapered and rolled up. Not much is known about the importance of lemnisci, but these structures may have a function relating to transportation of fluids to the proboscis, with importance in the hydraulic system for its eversion (Núñez & Drago, 2017). In the present study, the lemnisci were long: around 9700 µm in males and 10000 µm in females. They occupied a large portion of the parasite’s body. Fuller & Nickol (2011) also reported similar measurement for lemnisci in O. venezuelensis, of around 10000 µm.
According to Marteau (1977), few authors have reported measurements on lemnisci in species of the genus Oncicola. Nonetheless, this structure is fundamental in microscopy for classifying this parasite. This author provided the first description of O. venezuelensis infecting L. pardalis in Venezuela and also reported characteristics of the lemnisci that were similar to what was found in the present study, with compatible length measurements of around 10000 to 12000 µm.
Measurements of the proboscis were compatible with described by Santos et al. (2017) and Marteau (1977), who reported that the proboscis was around 500 to 550 µm in length by 600 to 620 µm in width. However, measurements the proboscis of specimens from wild felids in Brazil, both in Rio de Janeiro and in Piauí, as well as from an ocelot in Venezuela, were slightly bigger than those from worms infecting feral cats in the United States by Fuller & Nickol (2011). Changes in biometry of worms may be related to geographical locations and hosts species (Barbosa et al., 2017). Morphological examination of our specimens suggested that they might belong to the species O. venezuelensis. In order to ensure correct identification and study the phylogenetic interrelationships of these specimens we performed a molecular analysis using universal eukaryote primers that amplified the ITS1-5.8S-ITS2 region (Chen et al., 2010). In general, the sequence analyzed was within the Acanthocephala group next to Macracanthorhynchus, a genus that is also inserted into the same Oncicola family, Oligacanthorhynchidae. The sequence analyzed showed 99% identity with the species O. venezuelensis. The high branch support in the phylogenetic tree as well as the pairwise comparison evidence confirmed the identity of our specimens as O. venezuelensis.
The histopathological analysis on the tissues showed that the parasites were strongly attached to the deep tissue layers of the small intestine. In some places, they were surrounded by collagenous tissue, thus suggesting chronic infection. Despite the strong insertion of the parasite in the host tissue with the proboscis, in this report it was not possible to characterize the inflammatory cells, since the tissue was already very autolyzed, since the feline carcass was found in the environment for an undetermined period of the time. Although this finding is rare, Núñez & Drago (2017) emphasized that when high parasite loads are present, acanthocephalans may cross the intestinal wall, thus causing the death of the host, since they carry bacteria that can reach the peritoneal cavity.
This is the second report of O. venezuelensis in Brazil. However, this is the first description of this infection in P. concolor. It is important to emphasize that the number of nucleotide sequences in the phylum Acanthocephala deposited in GenBank remains very small. This is especially so regarding the genus Oncicola, which draws attention to the need to conduct molecular studies to phylogenetically validate the 24 species of Oncicola, which have only been reported through morphological descriptions.
Acknowledgements
We would like to thank the National Park of Serra dos Órgãos, the University Center of Serra dos Órgãos and the Primatology Center of the State of Rio de Janeiro for supplying the helminths and tissues, which were fundamental for conducting this study.
How to cite: Palmer JPS, Dib LV, Lobão LF, Pinheiro JL, Ramos RCF, Uchoa CMA, et al. Oncicola venezuelensis (Marteau, 1977) (Acanthocephala: Oligacanthorhynchidae) in Puma concolor in Rio de Janeiro, Brazil. Braz J Vet Parasitol 2020; 29(3): e009620. https://doi.org/10.1590/S1984-29612020046
References
Amin
OM
Classification of the Acanthocephala
Folia Parasitol
2013
60
4
273
305
http://dx.doi.org/10.14411/fp.2013.031
24261131.
Amin OM. Classification of the Acanthocephala. Folia Parasitol 2013; 60(4): 273-305. http://dx.doi.org/10.14411/fp.2013.031. PMid:24261131.
Barbosa
AS
Dib
LV
Uchôa
CMA
Bastos
OMP
Pissinatti
A
Trypanoxyuris (Trypanoxyuris) minutus (Schneider, 1866) among Alouatta guariba clamitans (Cabrera, 1940) in the state of Rio de Janeiro, Brazil
J Med Primatol
2017
46
3
101
105
http://dx.doi.org/10.1111/jmp.12265
28349584.
Barbosa AS, Dib LV, Uchôa CMA, Bastos OMP, Pissinatti A. Trypanoxyuris (Trypanoxyuris) minutus (Schneider, 1866) among Alouatta guariba clamitans (Cabrera, 1940) in the state of Rio de Janeiro, Brazil. J Med Primatol 2017; 46(3): 101-105. http://dx.doi.org/10.1111/jmp.12265. PMid:28349584.
Bell
KC
Demboski
JR
Cook
JA
Sympatric parasites have similar host-associated, but asynchronous, patterns of diversification
Am Nat
2018
192
3
E106
E119
http://dx.doi.org/10.1086/698300
30125233.
Bell KC, Demboski JR, Cook JA. Sympatric parasites have similar host-associated, but asynchronous, patterns of diversification. Am Nat 2018; 192(3): E106-E119. http://dx.doi.org/10.1086/698300. PMid:30125233.
Chen
MX
Zhang
LQ
Wen
CG
Sun
J
Gao
Q
Phylogenetic relationship of species in the genus Aspidogaster (Aspidogastridae, Aspidogastrinae) in China as inferred from its rDNA sequences
Shui Sheng Sheng Wu Hsueh Bao
2010
34
2
312
316
http://dx.doi.org/10.3724/SP.J.1035.2009.00312
Chen MX, Zhang LQ, Wen CG, Sun J, Gao Q. Phylogenetic relationship of species in the genus Aspidogaster (Aspidogastridae, Aspidogastrinae) in China as inferred from its rDNA sequences. Shui Sheng Sheng Wu Hsueh Bao 2010; 34(2): 312-316. http://dx.doi.org/10.3724/SP.J.1035.2009.00312.
Fuller
CA
Nickol
BB
A Description of Mature Oncicola venezuelensis (Acanthocephala: Oligacanthorhynchidae) from a feral house cat in the U.S. Virgin Islands
J Parasitol
2011
97
6
1099
1100
http://dx.doi.org/10.1645/GE-2849.1
21671723.
Fuller CA, Nickol BB. A Description of Mature Oncicola venezuelensis (Acanthocephala: Oligacanthorhynchidae) from a feral house cat in the U.S. Virgin Islands. J Parasitol 2011; 97(6): 1099-1100. http://dx.doi.org/10.1645/GE-2849.1. PMid:21671723.
García-Varela
M
Aznar
FJ
Pérez-Ponce de León
G
Piñero
D
Laclette
JP
Molecular phylogeny of Corynosoma Lühe, 1904 (Acanthocephala), based on 5.8S and internal transcribed spacer sequences
J Parasitol
2005
91
2
345
352
http://dx.doi.org/10.1645/GE-3272
15986610.
García-Varela M, Aznar FJ, Pérez-Ponce de León G, Piñero D, Laclette JP. Molecular phylogeny of Corynosoma Lühe, 1904 (Acanthocephala), based on 5.8S and internal transcribed spacer sequences. J Parasitol 2005; 91(2): 345-352. http://dx.doi.org/10.1645/GE-3272. PMid:15986610.
Garcia-Varela
M
Cummings
MP
Laclette
JP
Phylogenetic Relationships of Archiacanthocephala (Acanthocephala) based on Gene Sequences of 16S, 5.8S and 18S rRNA, Internal Transcribed Spacers 1 and 2, and COI
Direct Submission Genbank
2003
AF416416; AF416414.1; AF416413 (submission numbers)
Garcia-Varela M, Cummings MP, Laclette JP. Phylogenetic Relationships of Archiacanthocephala (Acanthocephala) based on Gene Sequences of 16S, 5.8S and 18S rRNA, Internal Transcribed Spacers 1 and 2, and COI. Direct Submission Genbank; 2003. AF416416; AF416414.1; AF416413 (submission numbers).
Hall
TA
BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT
Nucleic Acids Symp Ser
1999
41
95
98
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95-98.
Marteau
M
Oncicola venezuelensis n. sp. (Archiacanthocephala; Oligacanthorhynchida) parasite de l’Ocelot (Felis pardalis L.)
Ann Parasitol Hum Comp
1977
52
1
25
33
http://dx.doi.org/10.1051/parasite/1977521025
900772.
Marteau M. Oncicola venezuelensis n. sp. (Archiacanthocephala; Oligacanthorhynchida) parasite de l’Ocelot (Felis pardalis L.). Ann Parasitol Hum Comp 1977; 52(1): 25-33. http://dx.doi.org/10.1051/parasite/1977521025. PMid:900772.
Martínez-Aquino
A
Reyna-Fabián
ME
Rosas-Valdez
R
Razo-Mendivil
U
Pérez-Ponce de León
G
García-Varela
M
Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences
J Parasitol
2009
95
5
1040
1047
http://dx.doi.org/10.1645/GE-1926.1
19438288.
Martínez-Aquino A, Reyna-Fabián ME, Rosas-Valdez R, Razo-Mendivil U, Pérez-Ponce de León G, García-Varela M. Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. J Parasitol 2009; 95(5): 1040-1047. http://dx.doi.org/10.1645/GE-1926.1. PMid:19438288.
Monteiro
KJL
Calegar
DA
Carvalho-Costa
FA
Jaeger
LH
Kato-Katz thick smears as a DNA source of soil-transmited helminths
J Helminthol
2018
94
e10
http://dx.doi.org/10.1017/S0022149X18001013
30428936.
Monteiro KJL, Calegar DA, Carvalho-Costa FA, Jaeger LH. Kato-Katz thick smears as a DNA source of soil-transmited helminths. J Helminthol 2018; 94: e10. http://dx.doi.org/10.1017/S0022149X18001013. PMid:30428936.
Nickol
BB
Fuller
CA
Rock
P
Cystacanths of Oncicola venezuelensis (Acanthocephala: Oligacanthorhynchidae) in Caribbean termites and various paratenic hosts in the U.S. Virgin Islands
J Parasitol
2006
92
3
539
542
http://dx.doi.org/10.1645/GE-3557.1
16883997.
Nickol BB, Fuller CA, Rock P. Cystacanths of Oncicola venezuelensis (Acanthocephala: Oligacanthorhynchidae) in Caribbean termites and various paratenic hosts in the U.S. Virgin Islands. J Parasitol 2006; 92(3): 539-542. http://dx.doi.org/10.1645/GE-3557.1. PMid:16883997.
Núñez
V
Drago
F
Phylum Acanthocephala
Drago
FB
Macroparásitos: diversidad y biologia
La Plata
Universidad Nacional de la Plata
2017
112
127
Núñez V, Drago F. Phylum Acanthocephala. In: Drago FB, editor. Macroparásitos: diversidad y biologia. La Plata: Universidad Nacional de la Plata; 2017. p. 112-127.
Pinacho-Pinacho
CD
Sereno-Uribe
AL
Garcia-Varela
M
Molecular and morphological data reveal a new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from Dormitator maculatus in the Gulf of Mexico
Direct Submission Genbank
2013
KC004175 - KC004173 (submission number)
Pinacho-Pinacho CD, Sereno-Uribe AL, Garcia-Varela M. Molecular and morphological data reveal a new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from Dormitator maculatus in the Gulf of Mexico. Direct Submission Genbank; 2013. KC004175 - KC004173 (submission number).
Richardson
DJ
Achanthocepha
Wiley InterScience
Encyclopedia of life sciences
Chichester
John Wiley & Sons
2013
Richardson DJ. Achanthocepha. In: Wiley InterScience, editor. Encyclopedia of life sciences. Chichester: John Wiley & Sons; 2013.
Santos
EGN
Chame
M
Chagas-Moutinho
VA
Santos
CP
Morphology and molecular analysis of Oncicola venezuelensis (Acanthocephala: Oligacanthorhyncidae) from the ocelot Leopardus pardalis in Brazil
J Helminthol
2017
91
5
605
612
http://dx.doi.org/10.1017/S0022149X16000651
27669886.
Santos EGN, Chame M, Chagas-Moutinho VA, Santos CP. Morphology and molecular analysis of Oncicola venezuelensis (Acanthocephala: Oligacanthorhyncidae) from the ocelot Leopardus pardalis in Brazil. J Helminthol 2017; 91(5): 605-612. http://dx.doi.org/10.1017/S0022149X16000651. PMid:27669886.
Song
R
Li
W
Wu
S
Zou
H
Wang
G
Population genetic structure of the acanthocephalan Acanthosentis cheni in the anadromous, freshwater, and landlocked stock of Coilia nasus: evolutionary adaption of marine helminth to freshwater
Direct Submission Genbank
2013
JX960752 (submission number)
Song, R, Li W, Wu S, Zou H, Wang, G. Population genetic structure of the acanthocephalan Acanthosentis cheni in the anadromous, freshwater, and landlocked stock of Coilia nasus: evolutionary adaption of marine helminth to freshwater. Direct Submission Genbank; 2013. JX960752 (submission number).
Tamura
K
Stecher
G
Peterson
D
Filipski
A
Kumar
S
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0
Mol Biol Evol
2013
30
12
2725
2729
http://dx.doi.org/10.1093/molbev/mst197
24132122.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30(12): 2725-2729. http://dx.doi.org/10.1093/molbev/mst197. PMid:24132122.
Tkach
VV
Lisitsyna
OI
Crossley
JL
Binh
TT
Bush
SE
Morphological and molecular differentiation of two new species of Pseudoacanthocephalus Petrochenko, 1958 (Acanthocephala: Echinorhynchidae) from amphibians and reptiles in the Philippines, with identification key for the genus
Syst Parasitol
2013
85
1
11
26
http://dx.doi.org/10.1007/s11230-013-9409-8
23595488.
Tkach VV, Lisitsyna OI, Crossley JL, Binh TT, Bush SE. Morphological and molecular differentiation of two new species of Pseudoacanthocephalus Petrochenko, 1958 (Acanthocephala: Echinorhynchidae) from amphibians and reptiles in the Philippines, with identification key for the genus. Syst Parasitol 2013; 85(1): 11-26. http://dx.doi.org/10.1007/s11230-013-9409-8. PMid:23595488.
Vieira
FM
Luque
JL
Muniz-Pereira
LC
Checklist of helminth parasites in wild carnivore mammals from Brazil
Zootaxa
2008
1721
1
1
23
http://dx.doi.org/10.11646/zootaxa.1721.1.1
Vieira FM, Luque JL, Muniz-Pereira LC. Checklist of helminth parasites in wild carnivore mammals from Brazil. Zootaxa 2008; 1721(1): 1-23. http://dx.doi.org/10.11646/zootaxa.1721.1.1.
Yamaguti
S
Systema Helminthum
New York
Interscience Publishers
1963
V
The Acanthocephala of Vertebrates
Yamaguti S. Systema Helminthum. New York: Interscience Publishers; 1963. (vol. V, The Acanthocephala of Vertebrates).
Autoria
João Pedro Siqueira Palmer
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Laís Verdan Dib
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, BrasilFundação Oswaldo CruzBrasilRio de Janeiro, RJ, BrasilLaboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, Brasil
Lucas Fernandes Lobão
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Jessica Lima Pinheiro
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Raissa Cristina Ferreira Ramos
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, BrasilFundação Oswaldo CruzBrasilRio de Janeiro, RJ, BrasilLaboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, Brasil
Claudia Maria Antunes Uchoa
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Otilio Machado Pereira Bastos
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Maria Eduarda Monteiro Silva
Centro Universitário Serra dos Órgãos – Unifeso, Teresópolis, RJ, BrasilCentro Universitário Serra dos ÓrgãosBrasilTeresópolis, RJ, BrasilCentro Universitário Serra dos Órgãos – Unifeso, Teresópolis, RJ, Brasil
Jorge Luiz do Nascimento
Parque Nacional da Serra dos Órgãos – Parnaso, Instituto Chico Mendes de Conservação de Biodiversidade – ICMBio, Teresópolis, RJ, BrasilInstituto Chico Mendes de Conservação de BiodiversidadeBrasilTeresópolis, RJ, BrasilParque Nacional da Serra dos Órgãos – Parnaso, Instituto Chico Mendes de Conservação de Biodiversidade – ICMBio, Teresópolis, RJ, Brasil
Alcides Pissinatti
Centro Universitário Serra dos Órgãos – Unifeso, Teresópolis, RJ, BrasilCentro Universitário Serra dos ÓrgãosBrasilTeresópolis, RJ, BrasilCentro Universitário Serra dos Órgãos – Unifeso, Teresópolis, RJ, Brasil
Centro de Primatologia do Rio de Janeiro – CPRJ, Instituto Estadual do Ambiente – INEA, Guapimirim, RJ, BrasilInstituto Estadual do AmbienteBrasilGuapimirim, RJ, BrasilCentro de Primatologia do Rio de Janeiro – CPRJ, Instituto Estadual do Ambiente – INEA, Guapimirim, RJ, Brasil
Alynne da Silva Barbosa
*
*Corresponding author: Alynne da Silva Barbosa. E-mail: alynnedsb@gmail.com
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, BrasilFundação Oswaldo CruzBrasilRio de Janeiro, RJ, BrasilLaboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, Brasil
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, BrasilUniversidade Federal FluminenseBrasilNiterói, RJ, BrasilDepartamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, BrasilFundação Oswaldo CruzBrasilRio de Janeiro, RJ, BrasilLaboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, Brasil
Centro Universitário Serra dos Órgãos – Unifeso, Teresópolis, RJ, BrasilCentro Universitário Serra dos ÓrgãosBrasilTeresópolis, RJ, BrasilCentro Universitário Serra dos Órgãos – Unifeso, Teresópolis, RJ, Brasil
Parque Nacional da Serra dos Órgãos – Parnaso, Instituto Chico Mendes de Conservação de Biodiversidade – ICMBio, Teresópolis, RJ, BrasilInstituto Chico Mendes de Conservação de BiodiversidadeBrasilTeresópolis, RJ, BrasilParque Nacional da Serra dos Órgãos – Parnaso, Instituto Chico Mendes de Conservação de Biodiversidade – ICMBio, Teresópolis, RJ, Brasil
Centro de Primatologia do Rio de Janeiro – CPRJ, Instituto Estadual do Ambiente – INEA, Guapimirim, RJ, BrasilInstituto Estadual do AmbienteBrasilGuapimirim, RJ, BrasilCentro de Primatologia do Rio de Janeiro – CPRJ, Instituto Estadual do Ambiente – INEA, Guapimirim, RJ, Brasil
Figure 2
Line drawings of mature Oncicola venezuelensis from Puma concolor, in Rio de Janeiro. (A) Entire male; (B) Egg detected in sediment stool; (C) Outline showing shape of a gravid female; (D) Proboscis of a female.
Figure 3
(A) Adult specimen attached to the serous membrane of the intestinal wall; (B) Segment jejunum with mucous content and specimens of adult attached to the mucosa; (C) Cut surface of a nodule located close to the pylorus region with parasites; (D) Histological section in which the proboscis with its hooks can be seen surrounded by collagenous tissue; (E). Collagenous tissue, in 400 x, observed in figure D; (F) Histological section through the nodule with parasite eggs surrounded by granuloma; (G) Histological section through a fragment of jejunum, in which the adult form of the parasite can be seen to be deeply attached to in muscle layer; (D-G) Hematoxylin and eosin staining.
Figure 4
Maximum likelihood (ML) algorithm used with the Tamura Nei model that was based on the gene sequence obtained from the ITS1-5.8S-ITS2 region, compared with reference sequences from different species of helminths of the phylum Acanthocephala that had been detected in different animas, and from Necator americanus, obtained from GenBank. The numbers associated with the branches refer to the bootstrap values for 5000 replications.
Table 1
Minimum and maximum values, means and standard deviations of the different parts of the bodies of female specimens of Oncicola and their eggs that were recovered in the present study and other studies.
Table 2
Minimum and maximum values, means and standard deviations of the different parts of the bodies of male specimens of Oncicola that were recovered in the present study and other studies.
Table 3
Helminth species and genera used in the phylogenetic analysis of this study.
imageFigure 1
Location of the Brejal region in green and the city of Petrópolis in black, on a map of the state of Rio de Janeiro.
open_in_new
imageFigure 2
Line drawings of mature Oncicola venezuelensis from Puma concolor, in Rio de Janeiro. (A) Entire male; (B) Egg detected in sediment stool; (C) Outline showing shape of a gravid female; (D) Proboscis of a female.
open_in_new
imageFigure 3
(A) Adult specimen attached to the serous membrane of the intestinal wall; (B) Segment jejunum with mucous content and specimens of adult attached to the mucosa; (C) Cut surface of a nodule located close to the pylorus region with parasites; (D) Histological section in which the proboscis with its hooks can be seen surrounded by collagenous tissue; (E). Collagenous tissue, in 400 x, observed in figure D; (F) Histological section through the nodule with parasite eggs surrounded by granuloma; (G) Histological section through a fragment of jejunum, in which the adult form of the parasite can be seen to be deeply attached to in muscle layer; (D-G) Hematoxylin and eosin staining.
open_in_new
imageFigure 4
Maximum likelihood (ML) algorithm used with the Tamura Nei model that was based on the gene sequence obtained from the ITS1-5.8S-ITS2 region, compared with reference sequences from different species of helminths of the phylum Acanthocephala that had been detected in different animas, and from Necator americanus, obtained from GenBank. The numbers associated with the branches refer to the bootstrap values for 5000 replications.
open_in_new
table_chartTable 1
Minimum and maximum values, means and standard deviations of the different parts of the bodies of female specimens of Oncicola and their eggs that were recovered in the present study and other studies.
Biometry (µm)
This study
Other reports about Oncicola sp.
Rio de Janeiro
Oncicola venezuelensis (Piauí. Brazil) Santos et al. 2017
Oncicola venezuelensis (St. John Island. U. S. Virgin Islands) Fuller, Nickol. 2011
Oncicola venezuelensis (Venezuela) Marteu. 1977
Female (n=5)
Female (n=7)
Female (n=15)
Female (n=2)
Total lenght
6170-8520
6250-13250
13200-18300
15000-16000
7340 ± 810
9890
15500
NR
Total width
2010-2400
1000-1950
1800-2600
1900-2200
2200 ± 120
1470
2200
NR
Proboscis lenght
500-550
430-600
432-480
0.50-0.55
520 ± 24.49
540
458
NR
Proboscis width
550-600
650-700
528-566
0.60-0.62
602 ± 34.87
670
547
NR
Proboscis receptacle
1300-1450
970-1200
1001-1390
1200-1400
1362.5 ± 64.95
1060
1210
NR
Lemnisci
8600-13400
NR
≤10000
10000-12000
10100 ± 19000
NR
NR
NR
Hooks
I - Lenght
80-170
110-140
115-139
95-145
107 ± 23
127
127
NR
I - Base length
30-90
NR
NR
NR
46.5 ± 18.51
NR
NR
NR
II - Lenght
80-200
80-120
120-139
95-135
121 ± 36.73
103
131
NR
II - Base length
30-110
NR
NR
NR
73.5 ± 23.51
NR
NR
NR
III - Lenght
70-180
70-100
98-110
70-110
106.5 ± 24.75
88
102
NR
III - Base length
20-110
NR
NR
NR
53.5 ± 23.72
NR
NR
NR
IV - Lenght
70-190
70-90
91-96
65-95
115 ± 23.45
84
92
NR
IV - Base length
20-60
NR
NR
NR
36.25 ± 10.53
NR
NR
NR
V - Lenght
50-130
70-100
77-86
65-75
94.5 ± 16.87
81
82
NR
V - Base length
20-60
NR
NR
NR
33 ± 9.54
NR
NR
NR
VI - Lenght
50-110
50-70
74-82
60-75
79.45 ± 22.4
62
77
NR
VI- Base length
10-70
NR
NR
NR
32.5 ± 13.74
NR
NR
NR
Neck lenght
250-400
300-340
250-302
500
314 ± 48.86
320
289
NR
Neck width
496-504
400-550
384-422
620
500 ± 2.82
476
396
NR
Cerebral ganglion length
130-180
110
110-149
NR
152 ± 17.88
NR
131
NR
Cerebral ganglion width
110-130
110
62-86
NR
112 ± 10.95
NR
73
NR
Uterine bell length
300-650
350-500
499-538
0.65
535 ± 126.19
422
520
NR
Uterine bell width
103.6-150
NR
259-336
0.33
125.53 ± 23.52
NR
301
NR
Uterus lenght
480-750
400-720
672-816
1000
611.9 ± 117.03
610
752
NR
Sphincter length
220-370
200-400
264-384
NR
212 ± 92.17
318
330
NR
eggs (n=50)
eggs (n=NR)
eggs (n=NR)
eggs (n=NR)
Length
35-74
30-55
67-72
NR
59.8 ± 11.29
42
69
Width
25-70.3
22-30
43-50
NR
39.4 ± 10.12
26
47
table_chartTable 2
Minimum and maximum values, means and standard deviations of the different parts of the bodies of male specimens of Oncicola that were recovered in the present study and other studies.
Biometry (µm)
This study
Other reports about Oncicola sp.
Rio de Janeiro
Oncicola venezuelensis (Piauí. Brazil) Santos et al. 2017
Oncicola venezuelensis (St. John Island. U. S. Virgin Islands) Fuller, Nickol 2011
Oncicola venezuelensis (Venezuela) Marteu. 1977
Male (n=5)
Male (n=3)
Male (n=10)
Male (n=2)
Total length
5020-8210
5630-12500
6500-8400
13500-14000
6790 ± 970
9170
8000
NR
Total width
2060-2550
750-1500
1200-1300
2000
2280 ± 180
1170
1200
NR
Proboscis lenght
450-550
400-500
336-348
0.50-0.55
490 ± 37.41
433
344
NR
Proboscis width
580-600
370-600
476-480
0.60-0.62
596 ± 8
507
479
NR
Proboscis receptacle
1300-1400
600-1180
1001-1390
1200-1400
1334 ± 76.31
960
1210
NR
Lemnisci
5500-13000
NR
≤ 10000
10000-12000
9700 ± 3400
NR
NR
NR
Hooks
I - Lenght
50-120
120-125
115-139
95-145
96.84 ± 23.85
NR
127
NR
I - Base length
20-70
NR
NR
NR
48.95 ± 16.19
NR
NR
NR
II - Lenght
60-170
145-150
120-139
95-135
105.33 ± 29.18
NR
131
NR
II - Base length
30-100
NR
NR
NR
60.67 ± 18.43
NR
NR
NR
III - Lenght
70-120
125
98-110
70-110
97.5 ± 14.36
NR
102
NR
III - Base length
20-70
NR
NR
NR
38.13 ± 11.03
NR
NR
NR
IV - Lenght
40-120
105-110
91-96
65-95
92.78 ± 18.02
NR
92
NR
IV - Base length
20-70
NR
NR
NR
37.22 ± 11.16
NR
NR
NR
V - Lenght
70-120
95-105
77-86
65-75
90.56 ± 16.05
NR
82
NR
V - Base length
20-60
NR
NR
NR
37.78 ± 14.45
NR
NR
NR
VI - Lenght
50-110
95-100
74-82
60-75
92 ± 16.57
NR
77
NR
VI- Base length
20-80
NR
NR
NR
36 ± 17.17
NR
NR
Neck lenght
200-300
220-270
250-302
500
254 ± 40.7
245
289
NR
Neck width
200-550
200
384-422
620
424± 122.08
NR
396
NR
Cerebral ganglion length
140-190
NR
110-149
NR
157.5 ± 22.17
NR
131
NR
Cerebral ganglion width
100-140
NR
62-86
NR
124 ± 17.07
NR
73
NR
Anterior testis length
500-660
930-1180
NR
1800-2000
593.33 ± 68.23
NR
NR
NR
Anterior testis width
370-550
500-600
NR
720
460 ± 64.81
NR
NR
NR
Posterior testis length
540-730
1040-1250
NR
NR
608.33 ± 66.99
NR
NR
NR
Posterior testis width
300-580
600-680
NR
NR
430 ± 92.38
NR
NR
NR
Cement glands length
570-800
600-700
528-672
850
712 ± 77.04
NR
595
NR
Cement glands width
420-950
550-850
269-288
350
500 ± 244.86
NR
281
NR
Safftigen's pouch length
600-790
1150-1200
1056-1392
NR
670 ± 70.59
NR
1264
NR
Safftigen's pouch width
310-600
550-650
288-480
NR
466 ± 109.10
NR
384
NR
Copulatory bursa length
300-520
1500
NR
NR
398.33 ± 73.35
NR
NR
NR
Copulatory bursa width
210-620
550
NR
NR
356.67 ± 131.23
NR
NR
NR
table_chartTable 3
Helminth species and genera used in the phylogenetic analysis of this study.
Palmer, João Pedro Siqueira et al. |Oncicola venezuelensis() (Acanthocephala: Oligacanthorhynchidae) em|Puma concolorno Rio de Janeiro, Brasil. Revista Brasileira de Parasitologia Veterinária [online]. 2020, v. 29, n. 3 [Acessado 17 Abril 2025], e009620. Disponível em: <https://doi.org/10.1590/S1984-29612020046>. Epub 10 Jul 2020. ISSN 1984-2961. https://doi.org/10.1590/S1984-29612020046.
Colégio Brasileiro de Parasitologia VeterináriaFCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 -
Jaboticabal -
SP -
Brazil E-mail: cbpv_rbpv.fcav@unesp.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.