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ABSTRACT

Understanding the probabilistic behavior of  extreme rainfall on a fine temporal and spatial scales is crucial for design and risk assessment 
of  hydraulic structures. However, information at appropriate resolutions is frequently limited or unavailable at the locations of  interest, 
thereby requiring the estimation of  Intensity-Duration-Frequency (IDF) curves at the regional scale. In this paper, we resort to simplified 
approaches for rainfall disaggregation and spatialization for deriving a regional IDF equation for the Grande River catchment, in the 
Brazilian state of  Bahia. Our results suggest that, at the daily time scale, the maximum rainfall amounts can be reasonably described 
by the light-tailed Gumbel distribution in the study region. The spatialization procedures indicated that, whereas both the Inverse 
Distance Weighting (IDW) and the ordinary kriging techniques could capture the spatial variability of  rainfall quantiles, for several 
durations of  practical interest, only the former was able to model the spatial variability of  the IDF parameters. Finally, despite the 
simplifying assumptions, we were able to derive smooth spatial surfaces for the aforementioned quantities, which might be useful for 
the design of  hydraulic structures at ungauged sites.

Keywords: Heavy rainfalls; IDF; IDW; Kriging.

RESUMO

Compreender o comportamento probabilístico de chuvas extremas em escalas temporais e espaciais é crucial para o projeto e avaliação 
de risco de estruturas hidráulicas. Porém, informações em resolução adequada são frequentemente limitadas ou indisponíveis nos locais 
de interesse, o que, por sua vez, exigiria a estimativa de curvas de intensidade-duração-frequência (IDF) em escala regional. Neste artigo, 
empregam-se abordagens simplificadas para desagregação e espacialização de chuvas para derivar uma equação IDF regional para a 
bacia do Rio Grande, no estado da Bahia. Os resultados sugerem que, na escala de tempo diária, as quantidades máximas de chuva 
na região de estudo podem ser descritas razoavelmente pela distribuição de Gumbel. Os procedimentos de espacialização indicaram 
que, enquanto tanto a Ponderação pelo Inverso da Distância (IDW) quanto as técnicas de krigagem ordinária poderiam capturar a 
variabilidade espacial dos quantis de chuva, apenas a primeira foi capaz de modelar a variabilidade espacial dos parâmetros IDF para 
várias durações de interesse prático. Finalmente, apesar das premissas simplificadoras, foi possível derivar superfícies espaciais lisas 
para as grandezas mencionadas, o que pode ser útil para o projeto de estruturas hidráulicas em locais desprovidos de monitoramento.

Palavras-chave: Chuvas intensas; IDF; IDW; Krigagem.
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INTRODUCTION

Reliable rainfall estimates, at suitable temporal and spatial 
scales, are required for planning and designing water infrastructure 
for flood conveyance, and for developing strategies for flood 
hazard mitigation. In this sense, the probabilistic understanding 
on extreme rainfall at a given site or region is necessary for 
supporting decision making processes regarding the cost-risk 
tradeoff  in such projects (Nunes et al., 2021). In general, for the 
sub daily time scales, the random behavior of  extreme rainfall 
is summarized by Intensity-Duration-Frequency (IDF) models, 
which accommodate, in a single parametric form, the functional 
relationships among the maximum rainfall intensities and their 
durations and frequencies (or return periods) (Sabino et al., 2020).

Extreme rainfall events are increasing around the world 
and in Brazil, originating large floods more frequently, decreasing 
the economic productivity and causing damages and economic 
losses in both urban and rural areas (Aragão et al., 2013; Asadieh & 
Krakauer, 2017). Large rainfall datasets can be used to understand 
the random behavior of  rainfall, so the study of  the variability of  
this variable and its spatiotemporal distribution can help handling 
changes in patterns of  precipitation at several scales of  interest 
(Bougara et al., 2020).

Using uninterrupted records of  rainfall data from rain 
gauges is the most usual alternative to estimate an IDF relationships 
(Souza et al., 2019). However, in many regions of  the world there 
is a reduced number of  pluviograph information, which hinders 
the probabilistic modeling of  extreme rainfall at sub daily time 
scale. Then, disaggregation techniques for estimating short duration 
rainfall are useful for dealing with this problem. Parametric and 
nonparametric approaches que been extensively utilized in this 
context. The former might encompass both point processes 
models and the self-similarity (or fractal) approach (Diez-Sierra 
& del Jesus, 2019) and require sub daily information at the target 
site, which is, more often than not, limited or unavailable. The 
latter, in turn, resorts to resampling techniques for deriving sub 
daily rainfall amounts from the data at the target sites themselves 
or from neighbor gauges (e.g., Aguilar & Costa, 2020), but are 
computationally expensive and have limited extrapolation abilities.

An alternative to aforementioned difficulties is using 
disaggregation indices in daily rainfall data series, i.e., from 
pluviometric stations (Back, 2020). In Brazil the most used method 
for disaggregation is that by CETESB (Aragão et al., 2013), which, 
albeit not based on a rigorous mathematical formalism, relies, 
to some extent, on the self-similarity rationale (Serinaldi, 2010) 
for linking maximum rainfall intensities across short time scales 
over large regions.

In addition to the usual scarcity of  rainfall information at fine 
time resolution, many regions in Brazil still lack IDF relationships 
due to the limited density of  rainfall gauging stations with either 
daily or sub daily records. An example is the western region of  the 
state of  Bahia, in which there is a growing demand for water to 
supply farmers and irrigation projects in several watersheds. The 
Grande River Basin is one of  the most important contributors 
to the São Francisco flow rates, having the highest potential 
contribution (14.2%), and the second highest real contribution 
(10.9%) (Pereira et al., 2007). Many rivers in Grande River catchment 

have already reached the legal limits for granting water use, which 
has led to serious conflicts among users (Gonçalves et al., 2020).

Also, according to Jesus and Nascimento (2020), the region of  
the Rio Grande catchment is frequently affected by extreme rainfall 
events, as the state of  Bahia is exposed to different meteorological 
systems, but the limited availability of  rainfall data might hinder 
the appropriate management of  water resources (Moreira & Silva, 
2010), mainly with respect to flood risk assessment and flood 
mitigation. Up to 2020, the municipality of  Barreiras was the only 
city with a properly defined IDF relationship in the Grande River 
catchment - although 15 equations have been recently determined 
for the region by Moreira et al. (2020) on the basis of  relatively 
small datasets and potentially high levels of  estimation uncertainty.

The use of  geostatistical tools for spatialization of  
extreme rainfall quantiles constitutes an alternative for regions 
with scarcity of  rain gauges. In these cases, the interpolation of  
quantiles associated to pre-established durations frequently used 
for hydraulic design may provide predictions of  the quantities of  
interest (Souza et al., 2019). The main techniques for this purpose 
are the Inverse Distance Weighting (IDW) and the Ordinary Kriging 
(Pizarro et al., 2018; Rabelo et al., 2018; Souza et al., 2019), the 
former being based on a deterministic approach whereas the latter 
stems from the theory of  geostatistics (Ly et al., 2013).

In view of  the foregoing, the objectives of  this study are 
to determine IDF relationships for the region of  the Grande 
River catchment, and to elaborate isoline maps for the parameters 
of  the IDF equations and for quantiles usually utilized in urban 
drainage design. The results of  the study might provide a better 
understanding of  the spatial distribution of  extreme precipitation 
across the region, as well as provide quantile estimates for design 
purposes. The remainder of  the paper is organized as follows. 
In Section 2, a brief  description of  the study region and the 
methodological steps are provided, with focus on the theoretical 
reasoning and the simplifying assumptions utilized for deriving 
our models. Section 3 presents the results for at-site IDF modeling 
and the subsequent spatial analyses for estimating IDF parameters 
and quantiles at ungauged locations. Finally, in Section 4, we 
present the concluding remarks of  the study and future research 
developments.

MATERIAL AND METHODS

The Grande River catchment is located in the Brazilian state 
of  Bahia (Figure 1), with geographic limits defined by the states 
of  Piauí, Goiás and Tocantins, and by the Corrente river basin 
and some basins of  the middle reach of  the São Francisco River. 
Its geographic coordinates are 10º10’S to 13º20’S and 43º08’W to 
46º37’W. The drainage area of  the catchment is about 75.000 km2 
and its topography is mainly characterized by abrupt altimetric 
amplitude changes in some sites.

Three types of  climates can be found in the catchment: 
humid, in the western portion; sub-humid, in the central portion 
of  the basin; and semiarid, in the east (Figure 1). The average 
annual temperature is 24.3 ºC. The precipitation regime is marked 
by strong seasonality, with the wet months between November 
and May. Mean annual rainfall ranges from 1998 mm, nearby 
the Ondas and the Fêmeas rivers headwaters, to 729 mm, in the 
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city of  Barra-BA, at the confluence with the São Francisco River 
(Moreira & Silva, 2010).

Daily rainfall series from gauging stations in the region and 
120 km away from its border, with at least 30 years of  observations, 
as suggested by Naghettini (2017) for at site frequency analysis, 
were selected in the information system HidroWeb from the 
National Water Agency (Agência Nacional de Águas e Saneamento 
Básico, 2022). A simplified data quality check was performed to 
discard gauges with more than 20% of  missing data (23 gauges) 
and/or time series with less than 30 years of  records (86 gauges), 
as well as to eliminate unreasonably large daily rainfall amounts, 
defined by the sample 30 Quartile plus 1.5 times the empirical 
interquartile range, which could possibly comprise errors. We 
have also applied the Mann-Kendall non-parametric test, at the 
5% significance level, to the reduced series of  annual maximum 
rainfall in each station, for assessing the existence of  monotonic 
trends; in 21 gauges, significant trends were indicated by the test, 
which has led to their exclusion. As a result, from the 175 rainfall 
gauging stations located in the region, only 45 were selected for 
subsequent analyses based on the outlined criteria (Figure 2).

Besides obtaining the timeseries of  annual maximum 
rainfall events, it is necessary to determine the frequency associated 
with the intense precipitations by using probability distributions 
(Naghettini, 2017). Based on Extreme Values Theory, as discussed 
in Papalexiou and Koutsoyiannis (2013), rainfall block-maxima can 
lead to three types of  domains of  attraction, namey, the type-I or 

Gumbel (light upper tail), the type-II or Fréchet (heavy upper tail), 
and the type-III or reversed Weibull (bounded from above). The 
Generalized Extreme Value distribution unifies all these domains 
into a single mathematical form.

Previous research has indicated that maximum rainfall 
amounts, at the daily time scale, are likely to be heavy-tailed variates 
(Opitz et al., 2018; Papalexiou & Koutsoyiannis, 2013; Serinaldi & 
Kilsby, 2014). However, when fitting the GEV distribution with 
the method of  L-moments (Hosking & Wallis, 1997; Naghettini, 
2017), our results seemed to converge to upper-bounded models, 
which, according to Costa and Fernandes (2017), might increase 
bias and uncertainty of  the analysis when the upper bounds are 
defined without a physical basis. As a result, in this study, the Gumbel 
probability distribution was utilized for modeling the rainfall block-
maxima in each gauging station. Parameter estimation was also 
performed with the method of  L-moments (Hosking & Wallis, 
1997; Naghettini, 2017). We note that, despite being a light-tailed 
model, the Gumbel distribution has been widely utilized in heavy 
rainfall studies (Aragão et al., 2013; Guimarães & Naghettini, 1998; 
Libertino et al., 2018; Manke et al., 2022; Moreira et al., 2020).

To evaluate the goodness-of-fit of  the Gumbel distribution 
to the samples, the Anderson-Darling test was performed. We also 
computed the coefficient of  determination (r2) and the percent 
bias (p-bias) (Ferreira et al., 2020; Moriasi et al., 2007), given by 
Equation 1 and Equation 2, respectively, for objectively assessing 
the goodness-of-fit of  the models.

Figure 1. General aspects of  Rio Grande watershed.
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in which ( ) obs iI  is the observed rainfall amounts in time period 
i, ( ) calc iI  denotes the rainfall amounts obtained from the fitted 
model, obsI  is the mean of  observed rainfall amount, calcI  is the 
mean of  calculated intensities of  precipitation and N is the total 
number of  observations.

According to Koutsoyiannis et  al. (1998), although not 
relying on a rigorous theoretical underpin for prescribing a suitable 
functional form, the IDF relationship may be characterized by 
quotient of  power functions, in which the numerator depends 
solely on the return period Tr and the denominator depends on 
the duration or time scale d. Such a model is given by Equation 3.
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λ

θ

⋅
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+
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in which I  is rainfall intensity (mm/h), Tr is return period (years), 
d is rainfall duration (hours) and λ, , θ  and η are the model 
parameters.

For estimating the parameters of  the IDF relationships, 
the block-maxima series, for the 1-day duration, were extracted 
in each site. Next, the quantiles associated with the return periods 
of  2, 5, 10, 20, 25, 50 and 100 years were estimated from the 
Gumbel quantile function. Then, the daily rainfall amounts, for 
each return period, were desegregated with the method suggested 
by the Departamento de Águas e Energia Elétrica (1980), which, 
despite lacking a rigorous mathematical background, has been 
extensively utilized in many similar studies (Aragão et al., 2013; 
Moreira et al., 2020; Souza et al., 2019), with acceptable errors 
with respect to the intensities derived from-pluviographic data in 
many regions in Brazil (Abreu et al., 2022; Dorneles et al., 2019). 
The disaggregation coefficients are presented in Table 1.

The parameters of  the IDF model, λ, κ , θ  and η were 
estimated using the Differential Evolution Algorithm for global 
optimization, with the package “DEoptmin” (Mullen et al., 2011) 
implemented in R language (R Core Team, 2021). The objective 
function comprised the minimization of  the root mean square 
error (RMSE), shown in Equation 4.
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I I
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−
∑ 	 (4)

Once the IDF parameters over the Grande River basin 
were obtained, they were spatialized using the IDW method. 
According to Pellicone et al. (2018), the variable of  interest z (in 
this case, the IDF parameters) can be calculated at an ungauged 
site with Equation 5.

Figure 2. Grande river basin and selected rain gauges.
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in which iz  denotes the known value of  variable z at a site i, N  
denotes the number of  neighbor stations, id  is the Euclidean 
distance from site i to ungauged site, and p is a control parameter. 
Following the recommendations of  Pellicone et al. (2018) and 
Das and Wahiduzzaman (2022), we have adopted a value of  2 
for parameter p, which entails a larger weight to nearby sites in 
the interpolation procedure.

For the spatialization of  the quantiles, both the IDW 
method and ordinary kriging were considered, as suggested by Das 
and Wahiduzzaman (2022), for comparison. The ordinary kriging, 
which is based on a continuous Gaussian field with covariance 
function materialized by semivariograms, is the most common 
kriging method (Carvalho & Vieira, 2001; Libertino et al., 2018). 
For modeling purposes, the empirical semivariance, which is a 
discrete function used to measure the variability between pairs 
of  points and is formally defined in Equation 6, and a theoretical 
semi-variograms must be computed (Das & Wahiduzzaman, 2022; 
Pellicone et al., 2018).

( ) ( )

( )
( ) ( )( )2

1

ˆ 1
2

N h

i i
i

h I u I u h
N h

γ
=

= ⋅ − +
⋅ ∑ 	 (6)

in which h is the distance between two gauged sites, ( )ˆ hγ  is the 
semivariance, ( )N h  is the number of  pairs of  sites at distance h, 
and ( )iI u  is the value of  parameter in site iu .

A theoretical semi-variogram, such as spherical and exponential 
models, is defined by the lag-distance in which the semi-variance 
is computed, the sill, the range and the nugget (Libertino et al., 
2018). In this study, we have fitted the Spherical, the Gaussian and 
the Exponential semivariograms with the maximum likelihood 
method. Model selection was based on the minimum value of  the 
Sum of  Squared Errors (SSE), expressed by Equation 7.
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in which N  is the number of  sites.
For assessing the effectiveness of  the spatialization 

procedure, we have resorted to cross-validation, as recommended 
by Pellicone  et  al. (2018) and Das and Wahiduzzaman (2022). 

Goodness-of-fit measures encompasses the RMSE and p-bias, 
which were computed with the empirical and the predicted rainfall 
intensities for events with duration of  24h and return period of  2 
and 50 years. Finally, the quantiles associated with return periods 
of  2, 10, 25 and 50 years with a duration of  15 minutes and 12 
hours were spatialized using the best model to provide examples 
of  the overall methodology.

RESULTS AND DISCUSSION

We first fitted the Gumbel model to the reduced time-
series of  all 45 rainfall gauging stations. The goodness-of-fit was 
formally assessed by the Anderson-Darling test, which has high 
power in the tails of  the distributions, and by the computation of  
the coefficient of  determination (r2) and the percent bias (p-bias).

The results in Figure 3a and 3b indicate that, for most 
gauging stations, the Gumbel model was able to capture the patterns 
of  variability of  the maximum daily rainfall amounts, although a 
slight tendency of  systematic underestimation of  the empirical 
quantiles was perceived from the value of  p-bias. In addition, all 
the p-values resulting from Anderson-Darling test were larger than 
the significance level of  the test, which also provides evidence of  
suitability of  the Gumbel distribution for modeling the rainfall 
amounts in our study area.

After fitting the Gumbel probability distribution (parameters 
depicted in Figure 4), the desegregation method recommended by 
Departamento de Águas e Energia Elétrica (1980) was applied for 
providing estimates of  the maximum rainfall amounts at sub daily 
time scales, considering the return periods of  2, 5, 10, 20, 25, 50 
and 100 years. Then, the parameters of  each IDF equation were 
estimated with the Differential Evolution Algorithm for global 
optimization. Results are summarized in Table 2, along with the 
goodness-of-fit assessment of  the regression models.

As one may observe from Table 3 (and also in Figure 5), 
the parameters in the numerator of  the IDF model, λ and κ , which 
control the decay of  the upper tail of  the Gumbel distribution, 

Table 1. Disaggregation coefficients to different rainfall durations.
Ratio of  
durations Coefficient Ratio of  

durations Coefficient

24h / 1day 1.14 30min / 1h 0.74
12h / 1day 0.85 25min / 30 min 0.91
10h / 24h 0.82 20min / 30min 0.81
8h / 24h 0.78 15min / 30min 0.70
6h / 24h 0.72 10min / 30min 0.54
1h / 24h 0.42 5min / 30min 0.34

Source: Departamento de Águas e Energia Elétrica (1980).

Figure 3. (a) coefficient of  determination (r2) and (b) p-bias 
(%) for the goodness of  fit between sample dada and quantiles 
of  Gumbel probability distribution, for estimative of  empirical 
plotting positions it was used Cunnane approximation.
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smoothly vary across space, with a few abrupt variations at 
specific locations. This is probably related to distinct climate and 
topographic conditions along the study region (Aragão et al., 2013; 
Campos et al., 2014, 2017), which might intensify storm bursts at 
short time scales. In contrast, the parameters in the denominator, 
η and θ , are constant for all rainfall gauging stations, which may be 
ascribed to the disaggregation method – in effect, all gauges are 
located in the same isozone defined by the Departamento de Águas 
e Energia Elétrica (1980). This might constitute a major limitation 

of  our approach because previous research (Blanchet et al., 2016; 
Innocenti et al., 2017) has indicated that the maximum rainfall 
scaling regime across durations is strongly affected by climate and 
terrain complexity and, hence, such parameters are expected to 
vary across large geographic regions.

Figure 6 depicts the goodness-of-fit assessment of  the IDF 
models. The median values of  RMSE, p-bias and r2 are 6.07, -3.40 
and 0.997, respectively, which, along with the relatively narrow 
interquartile amplitudes, might suggest an overall good agreement 

Table 2. IDF parameters and goodness-of-fit metrics for the model in Equation 3.

Rain gauge λ κ θ η RMSE p-bias 
(%)

Coefficient of  
determination (r2)

946003 38.3407 0.1580 0.1971 0.7580 2.48 0.00 0.9979
1042012 31.5480 0.1884 0.1971 0.7580 8.38 -9.80 0.9963
1047004 35.0560 0.2010 0.1971 0.7580 6.04 4.10 0.9945
1142017 29.6207 0.1641 0.1971 0.7580 17.91 -21.30 0.9979
1142020 30.9594 0.1656 0.1971 0.7580 14.63 -17.40 0.9979
1143002 36.8106 0.2028 0.1971 0.7580 10.27 9.90 0.9942
1143010 36.1907 0.1790 0.1971 0.7580 3.02 0.50 0.9972
1144005 37.2851 0.1727 0.1971 0.7580 3.14 1.60 0.9976
1144014 30.8785 0.2098 0.1971 0.7580 6.08 -5.80 0.9928
1144027 37.9695 0.1890 0.1971 0.7580 8.69 8.70 0.9962
1145001 33.3950 0.1761 0.1971 0.7580 6.95 -8.00 0.9974
1145013 33.9834 0.1547 0.1971 0.7580 10.56 -12.20 0.9978
1145014 36.2693 0.1503 0.1971 0.7580 6.93 -7.60 0.9976
1145019 35.5300 0.1735 0.1971 0.7580 3.42 -2.90 0.9976
1146000 35.4630 0.1878 0.1971 0.7580 3.70 1.20 0.9964
1147000 37.3212 0.1493 0.1971 0.7580 5.16 -5.20 0.9975
1147002 36.9048 0.1761 0.1971 0.7580 3.27 1.60 0.9974
1147003 37.3500 0.1459 0.1971 0.7580 5.91 -6.10 0.9973
1242015 27.5183 0.1830 0.1971 0.7580 18.80 -22.60 0.9969
1243000 32.2353 0.1785 0.1971 0.7580 8.95 -10.60 0.9973
1243019 37.3445 0.1768 0.1971 0.7580 4.07 3.00 0.9974
1244011 35.9524 0.1736 0.1971 0.7580 2.91 -1.70 0.9976
1244019 39.7183 0.1888 0.1971 0.7580 12.63 13.70 0.9962
1245004 35.3445 0.1736 0.1971 0.7580 3.68 -3.40 0.9976
1245005 38.5224 0.1415 0.1971 0.7580 4.91 -4.40 0.9968
1245007 37.5838 0.1421 0.1971 0.7580 6.39 -6.50 0.9969
1245015 35.5498 0.1862 0.1971 0.7580 3.53 0.90 0.9965
1246000 37.7133 0.1844 0.1971 0.7580 6.80 6.50 0.9967
1246001 36.0317 0.1714 0.1971 0.7580 3.02 -2.20 0.9977
1247002 32.8359 0.1723 0.1971 0.7580 9.01 -10.60 0.9977
1343008 33.6851 0.1733 0.1971 0.7580 6.94 -8.00 0.9976
1344013 35.8251 0.1757 0.1971 0.7580 2.88 -1.50 0.9975
1344014 34.6589 0.1904 0.1971 0.7580 3.50 -0.30 0.9960
1344015 37.9329 0.1872 0.1971 0.7580 8.07 8.00 0.9964
1344016 35.4643 0.1400 0.1971 0.7580 10.99 -12.40 0.9967
1344017 35.4002 0.1808 0.1971 0.7580 3.01 -1.10 0.9971
1345000 33.2569 0.2411 0.1971 0.7580 13.78 11.70 0.9851
1346000 31.8437 0.1492 0.1971 0.7580 16.31 -19.10 0.9975
1346001 34.9734 0.1673 0.1971 0.7580 5.60 -6.20 0.9979
1346002 34.7456 0.1871 0.1971 0.7580 3.31 -1.10 0.9964
1346004 37.7059 0.1491 0.1971 0.7580 4.53 -4.30 0.9975
1346005 32.1770 0.1908 0.1971 0.7580 6.55 -7.40 0.9960
1346006 35.7780 0.1556 0.1971 0.7580 6.63 -7.40 0.9978
1346007 36.1201 0.1852 0.1971 0.7580 4.02 2.20 0.9967
1347001 32.4031 0.1415 0.1971 0.7580 16.81 -19.60 0.9968
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between model estimates and the empirical evidence. We note, 
however, that, despite the very smooth spatial variation of  the 
coefficient of  determination, the values of  RMSE and p-bias 
might be large at some gauging stations, which could indicate that 

the modeled quantile curves have offsets with respect to the 1:1 
line in these locations. Moreover, we could not associate these 
large deviations with climate or topographic gradients, which, at 
least to some extent, may suggest some lack of  fit of  the Gumbel 
model to the sample points in these gauges.

Figure 7 and Figure 8 illustrate the spatial variation of  
parameters λ and κ  across the Rio Grande River catchment, as 
estimated with the IDW technique. Spatial patterns cannot be 
readily perceived for λ, which suggests that local features, such 
as more complex topography, might exert a stronger influence in 
the variation of  the referred parameter than larger scale features 
such as climate conditions. For κ , however, a noticeable gradient 
develops in the southwestern-northeastern direction, with a possible 
exception to a relatively small region at the southern portion of  
the catchment. This gradient may suggest that climate is the main 
driver of  the variation of  κ , given that the western portion of  
the catchment is a semi-humid climate area whereas the eastern 
portion comprises a semi-arid region (Bahia, 2003).

The spatial patterns of  variation of  parameters λ and κ  
could not be properly captured with the ordinary kriging technique. 
In fact, irrespective of  the semivariogram utilized for modeling 
the Gaussian field, such an approach resulted in oversmoothed 
surfaces, which could not represent local variations in the values 
of  the parameters. The lack of  fit might be, to some extent, 
attenuated by introducing covariates such as topography to the 

Table 3. Summary of  results for ordinary kriging theoretical 
model selection.
Theoretical 

model
2-year return period

SSE Nugget Partial sill Range
Spherical 5.44⋅10-12 0.00 0.0390 58984.2

Exponential 6.91⋅10-12 0.00 0.0428 33410.0
Gaussian 3.58⋅10-12 0.00 0.0396 25808.6

Theoretical 
model

50-year return period
SSE Nugget Partial sill Range

Spherical 3.33⋅10-10 0.00 0.2676 31545.8
Exponential 4.33⋅10-10 0.00 0.2691 13125.0

Gaussian 1.27⋅10-10 0.21 0.3928 9289.8

Figure 4. (a) Gumbel location parameter and (b) Gumbel scale 
parameter obtained using L-moments [[Q1:  Q1]].

Figure 5. Illustration of  variation of  IDF parameters (a) lambda 
and (b) kappa.

Figure 6. Boxplot of  goodness-of-fit metrics of  (a) RMSE; (b) p-bias (%) and (c) coefficient of  determination between Gumbel 
quantiles and IDF estimations.
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Figure 7. Spatialization of  lambda IDF parameter for Rio Grande watershed.

Figure 8. Spatialization of  kappa IDF parameter for Rio Grande watershed.
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kriging procedure (regression-kriging), but this assessment is 
beyond the scope of  this study and is left for future work.

We then proceed to the spatialization of  maximum rainfall 
quantiles, according to the procedures discussed in the previous 
section – apparently, the spatial variation on the quantiles is much 
smoother than the IDF parameters, which enables the use of  
ordinary kriging for obtaining models with suitable predictive skills. 
A summary of  the parameters of  the semivariograms fitted with 
the kriging technique, for the return periods of  2 and 50 years, 
is provided in Table 3.

Overall, the values of  SSE are not much different, but the 
Gaussian semivariogram consistently outperformed the Exponential 
and the Spherical counterparts and it was hence selected for 
subsequent analyses. We note that the Gaussian semivariogram 
presented the smaller values for the range in both situations, which 
strongly reduces the influence of  more distant sites in prediction. 
Also, the Gaussian model was the only one to exhibit a nugget 
effect for the 50-year return period. This could be ascribed to the 
more pronounced distinctions in the estimates belonging in the 
upper tail of  the Gumbel distribution, which may then manifest 
themselves as “local effects” during the interpolation.

Table 4 presents the results of  quantile spatialization, for 
both IDW and the ordinary kriging techniques, under calibration 
and cross-validation. For both the 2-year and 50-year return 

periods, the values of  RMSE and p-bias indicate that the IDW 
method provided slightly closer quantile estimates to the empirical 
information than the ordinary kriging, although both approaches 
are, to a very small extent, biased towards underestimation. Since 
the IDW model is less complex and performs very similarly to the 
ordinary kriging approach, we selected it for quantile spatialization.

The IDW interpolations, for return periods of  2, 10, 25, 
50 years and duration of  30 min and 12 hours, are presented in 
Figure  9 and in Figure  10, respectively. By analyzing Figure  9 
and Figure 10, one may notice that the spatial distribution of  
the quantiles, for all return periods, resembles that of  climate 
classification (see Figure 1), with a strong gradients of  maximum 

Figure 9. Spatialization of  quantiles associated a precipitation with duration of  30 minutes and return periods of  (a) 2 years; (b) 10 
years; (c) 25 years and (d) 50 years.

Table 4. Summary of  cross-validation results comparing both 
IDW and Ordinary Kriging methods.
Return 
period Step IDW Ordinary Kriging

RMSE p-bias RMSE p-bias
2 - years Calibration 0.0001 0.00% 0.0017 0.01%

Cross-
validation

0.1915 -0.29% 0.2348 -0.79%

50 - 
years

Calibration 0.0003 0.00% 0.1577 -0.01%
Cross-

validation
0.4699 -1.62% 0.4788 -0.54%



RBRH, Porto Alegre, v. 27, e43, 202210/13

Assessing intensity-duration-frequency equations and spatialization techniques across the Grande River Basin in the state of  Bahia, Brazil

rainfall intensity in the southwestern-northeastern direction. For a 
given exceedance probability, the more intense events occur in the 
semi-arid region, but the gradients do not considerably vary with 
the return period. More abrupt variations are perceived for the 
short duration rainfall amounts (Figure 9), which may be related to 
local orographic influence and are probably a result of  the rougher 
surface obtained for parameter λ of  the IDF equation (which was 
herein utilized for quantile estimation). As the durations increase 
(Figure 10), smoother surfaces are obtained. We should stress, 
however, that the possibly distinct scaling laws across durations 
in large regions, which could affect the spatial distribution of  the 
maximum rainfall intensities (e.g., Ghanmi et al., 2016), are not 
taken into account by our IDF model. As a result, some level of  
bias is expected in the estimation of  the spatial surfaces, which 
should demand careful inspections by practitioners when designing 
hydraulic structures on the basis of  our regional model.

CONCLUSIONS

This paper discussed the estimation of  regional Intensity-
Duration-Frequency (IDF) relationships in the Grande River 
Catchment, a relatively poorly gauged area which is located in the 
Brazilian state of  Bahia. For this, maximum daily rainfall amounts 
were retrieved from 45 gauges inside and in the vicinity of  the 

catchment and disaggregated to sub daily times scales according 
to the procedure suggested by the Departamento de Águas e 
Energia Elétrica (1980). Then, spatial surfaces for the parameters 
of  the IDF models and for some quantiles of  interest for design 
purposes were obtained by the Inverse Distance Weighting (IDW) 
and the ordinary kriging techniques.

Our results suggest that, as opposed to some indications in 
the literature (e.g., Koutsoyiannis, 2021; Papalexiou & Koutsoyiannis, 
2013) the maximum rainfall amounts in the study region can be 
reasonably described by a light-tailed distribution, namely, the 
Gumbel distribution, at the daily time scale (in fact, empirical 
evidence suggested upper-bounded variates for most gauges and 
heavy tailed ones for a few gauges). As a matter of  fact, the use 
of  the Gumbel distribution as a regional model has led to low 
levels of  bias (<10% in absolute value) and did not entail large 
errors for high return levels. A potential advantage of  utilizing the 
Gumbel model is that, as no shape parameter needs to be inferred 
from finite and usually small samples (as in the GEV case), the 
estimation errors in the tail index should not propagate during the 
disaggregation process, which could lead to unreasonably large 
intensities for short duration storms. Nonetheless, as the Gumbel 
model does not comprise a power law, the scaling properties across 
durations may not hold (Koutsoyiannis, 2021), and this could 
certainly affect the disaggregated rainfall amounts.

Figure 10. Spatialization of  quantiles associated a precipitation with duration of  12 hours and return periods of  (a) 2 years; (b) 10 
years; (c) 25 years and (d) 50 years.
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The spatialization processes indicated that, for our dataset, 
the IDW technique was able to model both the IDF parameters 
and rainfall quantiles. Ordinary kriging, in turn, could not represent 
the spatial variation of  the IDF parameters, but performed as 
well as the IDW approach for the rainfall quantiles – the latter 
originated smoother spatial surfaces. This limitation might be 
related to the questionable assumption of  a common mean for 
the Gaussian field in an area with very distinct climate conditions 
and terrain complexity. Also, the abrupt variations of  parameter 
λ might not be described by the smooth surface that stemmed 
from the semivariograms. We hypothesize that including covariates 
such as topography might improve the prediction abilities of  the 
geostatistical model, and this framework will be contemplated in 
our next research developments.

Finally, some remarks should be made regarding our 
simplified approach for rainfall disaggregation. In fact, despite the 
simplicity and the widespread use, the disaggregation approach by 
the Departamento de Águas e Energia Elétrica (1980) does not 
properly capture the spatial variation in the scaling regime of  the 
maximum rainfall intensities – from a physical point of  view, it is 
not reasonable to assume that the same scale exponent and duration 
offset are valid over such a large region (Innocenti et al., 2017). 
This fact might affect quantile estimation and risk assessment. 
However, disaggregation of  daily rainfall amounts for finer times 
scales is still an active research topic (see the discussions in Diez-
Sierra and del Jesus (2019) and Aguilar and Costa (2020)), and our 
approach might be improved in future work if  high-resolution 
rainfall data is made available. Still, practitioners may benefit 
from our results for indirectly estimating floods and designing 
the correspondent conveyance structures at ungauged sites in the 
Grande River catchment.
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