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ABSTRACT

Hydrological models (HMs) can be applied for different purposes, and a key step is model calibration using objective functions (OF) to 
quantify the agreement between observed and calculated discharges. Fully understanding the OF is important to properly take advantage 
of  model calibration and interpret the results. This study evaluates 36 OF proposed in the literature, considering two watersheds of  
different hydrological regimes. Daily simulated streamflow time-series, using a distributed hydrological model (MGB‑IPH), and ten 
daily streamflow synthetic time-series, generated from the observed and calculated streamflows, were used in the analysis of  each 
watershed. These synthetic data were used to evaluate how does each metric evaluate hypothetical cases that present isolated very 
well known error behaviors. Despite of  all NSE-derived (Nash-Sutcliffe efficiency) metrics that use the square of  the residuals in 
their formulation have shown higher sensitivity to errors in high flows, the ones that use daily and monthly averages of  flow rates in 
absolute terms were more stringent than the others to assess HMs performance. Low flow errors were better evaluated by metrics 
that use the flow logarithm. The constant presence of  zero flow rates deteriorate them significantly, with the exception of  the metrics 
TRMSE (Transformed root mean square error) did not demonstrate this problem. An observed limitation of  the formulations of  
some metrics was that the errors of  overestimation or underestimation are compensated. Our results reassert that each metric should 
be interpreted specifically thinking about the aspects it has been proposed for, and simultaneously taking into account a set of  metrics 
would lead to a broader evaluation of  HM ability (e.g. multiobjective model evaluation). We recommend that the use of  synthetic time 
series as those proposed in this work could be useful as an auxiliary step towards better understanding the evaluation of  a calibrated 
hydrological model for each study case, taking into account model capabilities and observed hydrologic regime characteristics.

Keywords: Model calibration; Hydrologic simulation; Performance measures; MGB-IPH.

RESUMO

Modelos hidrológicos (MHs) podem ser aplicados para diferentes propósitos, uma etapa fundamental é a calibração do modelo usando 
funções objetivo (FO) para quantificar a concordância entre as vazões observadas e calculadas. O entendimento completo das FO é 
importante para aproveitar adequadamente a calibração do modelo e interpretar os resultados. Este estudo avalia 36 FO propostas 
na literatura, considerando duas bacias hidrográficas de diferentes regimes hidrológicos. Séries temporais diárias de vazão simulada, 
usando um modelo hidrológico distribuído (MGB-IPH), e dez séries temporais sintéticas diárias, geradas a partir das vazões observadas 
e calculadas, foram usadas na análise de cada bacia hidrográfica. Esses dados sintéticos foram usados ​​para avaliar como cada métrica 
avalia os casos hipotéticos que apresentam comportamentos de erro isolados muito conhecidos. Apesar de todas as métricas derivadas 
de NSE (eficiência de Nash-Sutcliffe) que usam o quadrado dos resíduos em sua formulação terem demonstrado maior sensibilidade 
a erros nas vazões altas, os que usam médias diárias e mensais das vazões em termos absolutos foram mais rigorosos que os outros 
para avaliar o desempenho dos MHs. Erros nas vazões baixas foram melhor avaliados por métricas que usam o logaritmo das vazões. 
A presença constante de vazões zero os deteriora significativamente, com exceção das métricas TRMSE (erro quadrático médio da 
raiz transformada) não demonstraram esse problema. Uma limitação observada das formulações de algumas métricas foi que os erros 
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INTRODUCTION 

Hydrologic models (HMs) are used to represent hydrological 
processes in order to obtain information for water resources 
planning and management. They enable a rapid response to 
several scenarios and assist decision-making processes regarding 
land use change, climate variability, and water-intensive scenarios, 
among others, for water resources in a given region (Tucci, 2005; 
Beven, 2012).

HMs usually need to be calibrated to be useful in solving 
practical problems. During the calibration process, parameter values 
are defined to enable the model to closely match the behavior of  
the real-world system. Model calibration partially compensates 
for different types of  hydrological uncertainties, such as those 
associated with input data, hydrological processes, mathematical 
formulation of  the hydrologic model, spatiotemporal discretization, 
and observations (Efstratiadis & Koutsoyiannis, 2010; Beven, 2012).

The response of  the hydrological system is commonly 
represented by observed streamflow time-series. Thus, during 
calibration of  HMs, observed and calculated hydrographs are 
compared at points along the drainage network. More recently, 
efforts have been made to combine such analysis together with 
other hydrological process variables such as evapotranspiration 
(Herman et al., 2018), soil moisture (Rajib et al., 2016) and surface 
temperature (Zink et al., 2018). However, comparison between 
observed (Qo) and calculated (Qc) streamflows predominates as 
the most widely used approach (Troin et al., 2015; Zhang et al., 
2016; Molina-Navarro et al., 2017).

One approach for HM calibration is manual calibration, 
based on manually changing model parameters and visually 
comparing observed and calculated hydrographs. This is an intuitive 
way to judge the fit quality and is even preferred by many users 
(Pappenberger & Beven, 2004), being actually the most widely used 
one (Boyle et al., 2000). This procedure uses the experience of  the 
hydrologist to assess several aspects of  observed and calculated 
hydrograph similarities, such as peak flows, peak times, rise and 
recession limbs, drought flows, and flood durations. However, 
subjectivity in choosing one of  many different parameter sets 
results from personal preferences for denoting more the peak 
flow or drought errors (Krause et al., 2005; Garcia et al., 2017), 
even when a model that represents the overall behavior of  the 
observed hydrographs is intended. Another remarkable shortcoming 
is that the manual search for optimal parameters poorly explores 
the parameter space.

Automatic calibration is a second approach for HM 
calibration. It uses metrics to mathematically assess the degree 
of  agreement between Qo and Qc. Each metric weights the error 
between Qo and Qc, considering a specific mathematical formulation 

that must be minimized or maximized as an objective function 
(OF) of  an optimization problem. Manual calibration could also be 
performed by manually varying model parameters and evaluating 
model performance by inspecting such metrics.

Metrics such as correlation coefficient (r), coefficient of  
determination (r2), root mean square error (RMSE), and Nash-
Suttclife efficiency (NSE) are the most widely used (Gupta et al., 
2009; Westerberg et al., 2011; Wohling et al., 2013). Coefficients 
such as r and r2 evaluate the collinearity between Qo and Qc, while 
metrics such as RMSE measure the mean error between Qc and 
Qo in the flow unit itself. Metrics such as NSE assess the HM 
performance against a baseline model represented by the mean 
of  all streamflow observations.

As each metric weights the error between Qo and Qc in 
different ways, its formulation and selection criteria should be 
considered for the correct interpretation of  results. An HM may 
be applied for different purposes, which means that the ability of  
an HM to reproduce different aspects of  the observed streamflow 
regime may vary in relevance for a given application (Garcia et al., 
2017). For example, an HM developed for estimating water 
availability in semiarid climate regions should be evaluated for 
its ability to represent the drought period. On the other hand, an 
HM for flood warning must be evaluated regarding its capability 
to simulate high streamflows.

The use of  HMs is increasing mainly due to the development 
of  user-friendly interfaces, the integration and automation of  data 
preparation steps within Geographic Information Systems, and 
the inclusion of  automatic calibration modules. All of  this speeds 
up the application of  HMs, but it means that less attention and 
time is dedicated to critical appraisal of  the data, evaluation of  the 
calibration process, and analysis of  overall HM results. One of  the 
usually neglected steps is ensuring the correct selection of  OFs for 
HM calibration. The calibration process requires other issues to 
be addressed, such as the size of  observed streamflow time-series 
(e.g. Li et al., 2010; Nelson et al., 2017), the mathematical method 
of  searching for the optimal parameters set (e.g. Bravo et al., 2009), 
and the computational cost involved (Gutierrez et al., 2019).

In the literature, dozens of  metrics are used as OFs for 
HM calibration (e.g. Legates & McCabe Junior, 1999; Krause et al., 
2005; Moriasi  et  al., 2007; Gupta  et  al., 2009; Muleta, 2012; 
Romanowicz et al., 2013; Wohling et al., 2013; Fowler et al., 2018). 
This large number of  alternatives contrasts with the repeated use 
of  a small set of  metrics in current HM calibration approaches. 
Often, such use is made without criteria, which may lead to 
mistaken conclusions about the HM performance.

This study assesses 36 metrics that have been proposed 
in literature for HM calibration by comparing calculated and 
observed hydrographs.

de superestimação ou subestimação são compensados. Nossos resultados reafirmam que cada métrica deve ser interpretada pensando 
especificamente nos aspectos para os quais foi proposta e, considerando simultaneamente um conjunto de métricas, levaria a uma 
avaliação mais ampla da capacidade do MH (ex: avaliação de modelo multiobjetivo). Recomendamos que o uso de séries temporais 
sintéticas, como as propostas neste trabalho, possa ser útil como um passo auxiliar no melhor entendimento da avaliação de um modelo 
hidrológico calibrado para cada estudo de caso, levando em consideração as capacidades do modelo e as características observadas 
do regime hidrológico.

Palavras-chave: Calibração de modelo; Simulação hidrológica; Medidas de desempenho; MGB-IPH.
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Each metric selected for this study has its specific formulation 
that differs from the others and has been explicitly adopted in 
one or more model calibration applications according to the 
mentioned references. But indeed some metrics present strong 
similarities among them. This review of  metrics is exactly one of  
the contributions of  this research. Moreover, the similarities or 
differences obtained within our results may help readers to better 
understand which metrics work similar to each other.

In addition, an analysis of  each metric is carried out in 
order to verify how it is influenced by errors in several components 
of  the calculated hydrographs (e.g. errors in the drought season, 
errors in the rainy season, magnitude of  the error). Ten synthetic 
streamflow time-series were generated to be tested and evaluated by 
each metric, in order to see how does each one evaluate hypothetical 
cases that present isolated very well known error behaviors. Two 
Brazilian large-scale watersheds with contrasting characteristics 
(perennial vs intermittent streamflows) form the case study.

METRICS AS OBJECTIVE FUNCTIONS IN 
HYDROLOGIC MODEL CALIBRATION

A total of  36 metrics commonly used as OFs for HM 
calibration were identified and selected from an extensive literature 
review (Table 1). This list cannot be considered exhaustive, and 
other metrics not included in the list were used in specific analyses 
during HM calibration (e.g. the Richard-Bark flashness index 
proposed by Parker et al., 2019).

Each OF listed in Table 1 is presented with its mathematical 
formulation and its minimum, maximum and optimal values. The 
following section discusses the main issues related to each OF, 
presenting several references for further details.

Metrics r and r2 are some of  the most commonly used in 
several scientific areas and evaluate the degree of  linear association 
and dispersion between two datasets (e.g. Qo and Qc).

NSE is one of  the most widespread OFs adopted for HM 
calibration. Metrics such as NSE assess the HM performance 

Table 1. Metrics used to assess the performance of  hydrological models.

Name (Symbology) Mathematical formulation Min, Max, 
Optimal Units References

Linear correlation 
coefficient (r) ( ) ( )( ) ( ) ( )( )
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NSE on log transformed 
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NSE with calendar day 
mean (NSD) ( ) ( )( )
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NSE with calendar day 
mean calculated on log 
transformed daily flows 
(LNSD)
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Modified form of  NSE 
with calendar day mean 
(MNSD)

( ) ( )

( )
 

n
c i o ii 1

n
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−

−

∑

∑

-∞, 1, 1 - Muleta (2012)

Legend: Qo(i) and Qc(i) are the observed and calculated daily streamflow at time-interval i, ( )o iQ  and ( )  c i  Q are the observed and calculated mean streamflows, 
mQo(i) and mQc(i) are the total monthly streamflows observed and calculated, DQ  is the interannual calendar day mean observed streamflows, ( )ref iQ  is the average 
reference streamflows, ( )

ˆ
o iQ  and ( )

ˆ
c i  Q  are the observed and calculated transformed streamflows, K is the total number of  years in the time-series,  ω is a weighting 

parameter (used ω  = 0.1), ( )cQD p  and ( )oQD p  are the observed and calculated streamflow for the probability p of  the duration curve, ∆p is the interval used 
from the duration curve for the sum, and n is the total number of  records in the time-series.
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Name (Symbology) Mathematical formulation Min, Max, 
Optimal Units References

NSE with calendar 
monthly mean as 
reference model (NSM)

( ) ( )( )
( )( )

2n
c i o ii 1

2n
refo ii 1

Q Q
1

Q Q

=

=

−
−

−
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-∞, 1, 1 - Schaefli And Gupta (2007)

Persistence Index (PI)
( ) ( )( )
( ) ( )( )
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−=
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∑

-∞, 1, 1 - Gupta et al. (1999)

High flow (HF)
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
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1
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-∞, 1, 1 - Rwetabula et al. (2012)

Index of  agreement (D)
( ) ( )( )

( ) ( ) ( ) ( )( )

2n
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Q Q
1

Q Q Q Q

=

=
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∑

∑

0, 1, 1 - Muleta (2012)

Relative variability (α)
( ) ( )( ) ( ) ( )( )/

n n
c i c i o i o i

i 1 i 1
Q Q Q Q

= =
− −∑ ∑

0, ∞, 1 - Wohling et al. (2013)

Normalised bias of  flows 
(β) ( ) ( ) ( ) ( )( )/ *

n 2
c i o i o i o i

i 1

1Q Q Q Q
n =

− −∑
-∞, 1, 0 - Wohling et al. (2013)

Kling-Gupta efficiency 
(KGE) ( ) ( ) ( )

( )

2
c i2 2

o i

Q
1 r 1 1 1

Q
a

 
 − − + − + −
 
 

-∞, 1, 1 - Wohling et al. (2013)

Mean error (ME)
( ) ( )( )n

c i o i
i 1

1 Q Q
n =

−∑
-∞, ∞, 0 m3/s Wohling et al. (2013)

Mean absolute error 
(MAE) ( ) ( )

n
c i o i

i 1

1 Q Q
n =

−∑
0, ∞, 0 m3/s Legates & McCabe Junior 

(1999)

Mean absolute relative 
error (MARE) ( ) ( )

( )
 

n c i o i

i 1 o i

Q Q1
n Q=

−
∑

0, ∞, 0 - Rientjes et al. (2013)

Mean square error (MSE)
( ) ( )( )n 2

c i o i
i 1

1 Q Q
n =

−∑
0, ∞, 0 (m3/s)2 Legates & McCabe Junior 

(1999)

Root mean square error 
(RMSE) ( ) ( )( )n 2

c i o i
i 1

1 Q Q
n =

−∑
0, ∞, 0 m3/s Romanowicz et al. (2013)

Transformed root mean 
square error (TRMSE) ( ) ( )( )ˆ ˆn 2

c i o i
i 1

1 Q Q
n =

−∑
0, ∞, 0 m3/s Kollat et al. (2012)

Ratio of  RMSE to 
standard deviation of  
observations (RSR)

( ) ( )( ) ( )( )/
n n2 2

oc i o i o i
i 1 i 1

Q Q Q Q
= =

− −∑ ∑
0, ∞, 0 - Muleta (2012)

Modification of  RMSE to 
high flow errors (NHF)

( ) ( )( ) ( )

( )
*

2
n 2 o i

c i o i
i 1 o max

Q1 Q Q
n Q=

 
 −
 
 

∑

0, ∞, 0 m3/s Fenícia et al. (2007)

Legend: Qo(i) and Qc(i) are the observed and calculated daily streamflow at time-interval i, ( )o iQ  and ( )  c i  Q are the observed and calculated mean streamflows, 
mQo(i) and mQc(i) are the total monthly streamflows observed and calculated, DQ  is the interannual calendar day mean observed streamflows, ( )ref iQ  is the average 
reference streamflows, ( )

ˆ
o iQ  and ( )

ˆ
c i  Q  are the observed and calculated transformed streamflows, K is the total number of  years in the time-series,  ω is a weighting 

parameter (used ω  = 0.1), ( )cQD p  and ( )oQD p  are the observed and calculated streamflow for the probability p of  the duration curve, ∆p is the interval used 
from the duration curve for the sum, and n is the total number of  records in the time-series.

Table 1. Continued...
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against a baseline model represented by the mean of  all streamflow 
observations. An adaptation of  NSE is the NSE calculated with 
the logarithm of  the daily streamflows (LNS). In this way the 
oversensitivity of  NSE to extreme values is reduced and the 
sensitivity for lower values is increased (Krause  et  al., 2005). 
Another adaptation of  NSE with this aim is the modified form of  
the NSE (MNS), computed with the absolute value of  the linear 
difference between Qo and Qc (Krause et al., 2005).

Other modifications to NSE are related to alternative 
benchmark models used instead of  the mean of  all streamflow 
observations (e.g. Schaefli & Gupta, 2007; Krause et al., 2005; 
Muleta, 2012). One of  these metrics measures HM performance 
relative to a reference model given by the interannual calendar day 
mean (named NSD by Muleta, 2012). Similar to LNS, the LNSD 

(NSE with calendar day mean calculated on log transformed daily 
streamflows) was proposed. Following MNS, the MNSD (Modified 
form of  NSE with calendar day mean) uses the absolute value 
of  the linear differences. The NSE that use calendar monthly 
mean streamflow as a reference model (NSM) was used for daily 
HM calibration. Also derived from NSE, Persistence Index (PI) 
uses previously observed values as the reference model, which is 
appropriate in a streamflow forecasting context (Bennett et al., 
2013). This index measures the relative magnitude of  the residual 
variance against the variance of  errors obtained by a persistence 
model (Gupta et al., 1999).

HF (high flow) metric was proposed to evaluate the 
performance of  a HM in reproducing peak streamflow values 
(Rwetabula et al., 2012). Willmott’s index of  agreement (D) was 

Name (Symbology) Mathematical formulation Min, Max, 
Optimal Units References

Modification of  RMSE to 
low flow errors (NLF)

( ) ( )( ) ( ) ( )

( )
*

2
n 2 o max o i

c i o i
i 1 o max

Q Q1 Q Q
n Q=

 −
 −
 
 

∑

0, ∞, 0 m3/s Fenícia et al. (2007)

Sum of  squared erros 
of  the streamflows 
logarithmic (SLOGQ)

( ) ( )( )n 2
c i o i

i 1
logQ logQ

=
−∑

0, ∞, 0 (m3/s)2 Hogue et al. (2000)

Sum squared errors of  
daily streamflows (SSEQ) ( ) ( )( )n 2

c i o i
i 1

Q Q
=

−∑
0, ∞, 0 (m3/s)2 Wohling et al. (2013)

Sum squared errors of  
monthly streamflows 
normalized by basin area 
(SSEMQ)

( ) ( )( )2n
c j o ji 1 mQ mQ

A
= −∑

0, ∞, 0 (m3/s)2/m2 Wohling et al. (2013)

Maximal absolute error 
(MAXAE) ( ) ( )c i o imax Q Q−

0, ∞, 0 m3/s Wohling et al. (2013)

Maximum difference in 
the largest peak flows 
(DHQMAX)

( )( ) ( )( )c i o imax Q max Q−
- ∞, ∞, 0 m3/s Wohling et al. (2013)

Relative volume error 
(ΔV) ( )( ) ( )( ) ( )( )/

n n n
c i o i o i

i 1 i 1 i 1
Q Q Q

= = =

 
− 

 
∑ ∑ ∑

- ∞, ∞, 0 - Rientjes et al. (2013)

Volumetric efficiency (VE)
( ) ( ) ( ) /

n n
c i o i o i

i 1 i 1
1 Q Q Q

= =

 
− − 
 
∑ ∑

-∞, 1, 1 - Criss & Winston (2008)

Runnoff  coefficient 
percent error (ROCE) ( ) ( )( ) / * %

K
c year o year

k 1

1 Q Q 1 100
K =

−∑
0, ∞, 0 - Kollat et al. (2012)

Combined form of  NSE 
and ∆V (Y)

( )/NSE 1 V+ ∆ -∞, 1, 1 - Rientjes et al. (2013)

Combined form of  NSE 
and MARE (RV)

*NSE MAREω− -∞, 1, 1 - Romanowicz et al. (2013)

Slope of  the streamflow 
duration curve (SFDCE) ( ), % , % , % , %/ * %c 50 c 10 o 50 o 10Q Q Q Q 1 100− − −

0, ∞, 0 - Kollat et al. (2012)

Streamflow duration curve 
index (SDCI) ( ) ( )( ) ( )* / *

np np

c o o
p po p po

1 QD p QD p p QD p p
= =

  
− − ∆ ∆      

∑ ∑
0, ∞, 1 - Tucci (2005)

Legend: Qo(i) and Qc(i) are the observed and calculated daily streamflow at time-interval i, ( )o iQ  and ( )  c i  Q are the observed and calculated mean streamflows, 
mQo(i) and mQc(i) are the total monthly streamflows observed and calculated, DQ  is the interannual calendar day mean observed streamflows, ( )ref iQ  is the average 
reference streamflows, ( )

ˆ
o iQ  and ( )

ˆ
c i  Q  are the observed and calculated transformed streamflows, K is the total number of  years in the time-series,  ω is a weighting 

parameter (used ω  = 0.1), ( )cQD p  and ( )oQD p  are the observed and calculated streamflow for the probability p of  the duration curve, ∆p is the interval used 
from the duration curve for the sum, and n is the total number of  records in the time-series.

Table 1. Continued...
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proposed to overcome the limitation of  r2 related to poor HMs 
that consistently overestimate or underestimate the observations 
(Muleta, 2012). Another metric that resembles NSE is the Kling-
Gupta Efficiency (KGE). This is an adaptation and at the same 
time decomposition of  NSE, which facilitates the analysis of  
the relative importance of  its different components (correlation, 
bias, and variability measure - α) in the context of  HM calibration 
(Gupta  et  al., 2009). According to Pechlivanidis  et  al. (2012), 
the KGE sees the calibration process from a multi-objective 
optimization perspective. A modification of  KGE has also been 
proposed by Pool et al. (2018) aiming at achievieng a non-parametric 
calibration criteria.

The normalized bias of  flows (β) indicates the relationship 
between the mean flow difference (Qo and Qc) normalized by the 
standard deviation of  the observed flows (Wohling et al., 2013).

In contrast to the metrics that follow NSE-like formulations, 
there are metrics based on the direct difference between Qo and 
Qc, which are therefore referred to as a type of  error. Examples 
of  this group of  metrics are mean error (ME), mean absolute 
error (MAE), mean absolute relative error (MARE), mean square 
error (MSE), root mean square error (RMSE), and transformed 
root mean square error (TRMSE). ME is the average of  the 
time-series of  errors, thus it identifies whether the HM is more 
biased to overestimate or underestimate streamflows. However, 
it does not quantify these errors distinctly. Despite other metrics 
mentioned in this group do not compensate for the positive and 
negative error values like ME, their values do not indicate if  the 
HM overestimates or underestimates the observations. MAE 
quantifies the average of  the time-series of  absolute values of  
the errors, while MARE quantifies the average of  a time-series of  
absolute values of  the error relative to the observed streamflow. 
MSE averages the time-series of  squared errors, avoiding the 
error compensation of  ME, but making the interpretation of  the 
metric’s value difficult as it is in a different unit (i.e. square m3/s). 
RMSE overcomes the limitation of  MSE by applying the root over 
MSE. TRMSE uses a Box-Cox transformation of  the streamflow 
to quantify the RMSE. The Box-Cox transformation, in addition 
to emphasizing low-flow periods, also reduces the impact of  
heteroscedasticity in the RMSE calculation (Hogue et al., 2000; 
Kollat et al., 2012).

Other metrics are derivations of  RMSE as RSR (ratio 
between RMSE and the standard deviation of  the streamflow 
observations (Moriasi et al., 2007), NHF (modification of  RMSE 
for increasing sensitivity to high-flow errors) and NLF (modification 
of  RMSE for increasing sensitivity to low-flow errors) presented 
by Fenícia et al. (2007).

SLOGQ (sum of  squared errors of  the streamflows 
logarithm) metric is a function selected for the calibration of  
parameters that influence the hydrograph recessions (Hogue et al., 
2000). SSEQ (Sum of  squared errors of  daily streamflows) 
and SSEMQ (Sum of  squared errors of  monthly streamflows 
normalized by basin area) metrics, although not calculating 
averages, have similarities to MSE because they represent the 
sum of  squared deviations and result in distinct units of  the 
variable under analysis, which makes interpretation difficult 
(Wohling et al., 2013).

The discrepancy between peak flow values ​​is quantified 
by the MAXAE (maximal absolute error), which has the 
disadvantage of  being subject to a time-interval error (Janssen 
& Heuberger, 1995). Metric DHQMAX (maximum difference 
in the largest peak flows) uses a timeless relationship to quantify 
the difference between maximum observed and calculated 
streamflows. Both metrics are directly related to errors in peak 
streamflows (Wohling et al., 2013).

ΔV (relative volume error) is usually called Bias and is the 
mean error between observed and calculated streamflows expressed 
as a fraction of  the average observed streamflows (Rwetabula et al., 
2012). It is commonly recommended for quantifying water balance 
errors (Rientjes et al., 2013) and indicates whether the model is 
poor in representativeness (Moriasi et al., 2007; Van Liew et al., 
2007). VE (volumetric efficiency), on the other hand, evaluates 
the deviation between observed and calculated hydrographs 
by measuring the area between them, expressed as a fraction 
of  the average observed streamflows (Criss & Winston, 2008). 
ROCE (runoff  coefficient percent error) metric considers water 
balance as the average annual runoff  coefficient percent error. 
As presented in Table 1, the sum occurs during years 1 to k of  
the calibration period, for which an average annual value is then 
calculated (Kollat et al., 2012).

Other metrics combine previously presented metrics to 
measure more than one issue, as Y (combined form of  NSE 
and ΔV (Akhtar et al., 2009)) and RV(combined form of  NSE 
and MARE (Lindström et al., 1997), weighted by a parameter ω. 
The best results of  this metric are obtained with ω equals to 0.1 
according to the application of  the HBV hydrologic model by 
Lindström et al. (1997) and Dakhlaoui et al. (2012).

Finally, SFDCE (slope of  the streamflow duration curve) 
and SDCI (streamflow duration curve index) metrics refer to the 
comparison between the calculated and observed streamflow 
duration curves. SFDCE represents the error in simulating the 
slope of  the streamflow duration curve (Westerberg et al., 2011; 
Kollat  et  al., 2012). SDCI evaluates the similarity between the 
observed and calculated streamflow duration curves from the 
sum of  the differences between all the points that define the 
curves (Tucci, 2005).

METHODOLOGY

The metrics showed in Table 1 were applied to assess the 
performance of  the calculated and synthetic streamflow time-
series in the Piancó River and Furnas subcatchments relative to 
the observed streamflows. This procedure aims to evaluate how 
metrics are influenced by the quality of  the synthetic streamflow 
time-series, and also to compare metrics from synthetic time-series 
to metrics from a calculated streamflow time-series obtained 
from a calibrated HM. Based on the results of  this procedure, 
a critical analysis of  each metric was carried out, showing use 
recommendations and limitations.

A four-step procedure was used and is described in the 
following sections: 1) metrics selection, 2) data collection from 
two case studies, 3) definition of  ten synthetic streamflow time-
series, and 4) test analysis and results.
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Metrics selection

A total of  36 metrics commonly used as OFs for HM 
calibration were identified and selected from an extensive literature 
review, considering issues related to their frequency of  use; whether 
they are modifications, adaptations or combinations of  preexistent 
metrics; or comprise new concepts, as explained in the previous 
section and summarized in Table 1. It is worth mentioning that 
we have not used these metrics for model calibration, but rather 
to provide the evaluation of  the output of  a hydrologic model 
previously calibrated and also of  hypothetical cases based on 
synthetic time series, as further detailed.

Case studies

Two case studies were selected based on data availability 
and the existence of  previously calibrated HMs, with distinct 
hydrological regimes (intermittent or perennial rivers) and drainage 
area, in order to provide a broader picture regarding the results 
and findings.

The first case study is a subcatchment of  the Piancó 
(drainage area of  ​​4,603.39 km2), located in the Piancó River basin 
(Figure 1B) in northeast Brazil. This is a semiarid region with a large 

number of  intermittent rivers. This study used daily time-series 
of  observed streamflow from 1970 to 2011 (42 years) from Felix 
& Paz (2016), in which the MGB-IPH model (Collischonn et al., 
2007) was applied to the subcatchment.

The hydrological regime of  the Piancó River is characterized 
by strong seasonality, with monthly streamflow ranging from 
405.49 to 0.09 m3/s in the rainy season (January to May) and 
typically zero flows in the driest moths. The river was dry in 37% 
of  the daily time intervals of  the time-series and the driest year 
was 1980, which saw 79% of  the days without streamflow. The 
MGB-IPH model was calibrated and validated by Felix & Paz 
(2016) for the periods 1970-1990 and 1991-2011, respectively, 
through an automatic multi-objective calibration procedure (using 
NSE, LNS and ΔV as OFs), followed by a calibration refinement 
procedure done manually in order to obtain more representative 
and coherent parameters between different hydrological response 
units. A total of  11 parameters was calibrated as detailed in the 
mentioned reference.

The second case study covers the Furnas subcatchment 
with a drainage area of  51,784.41 km2, located in the Grande 
River Basin in southeastern Brazil, in the Paraná hydrographic 
region (Figure 1C). This basin is widely used for hydroelectric 
power generation (Tucci  et  al., 2008). This subcatchment was 
modeled by Bravo et al. (2009), who applied the MGB-IPH model 

Figure 1. Location of  study areas: (A) in Brazil; (B) Piancó subcatchment and (C) Furnas subcatchment.
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using daily streamflow data from 1981 to 2001 (21 years). The 
hydrological regime in Furnas is strongly seasonal, ranging from 
350 m3/s during low flows to over 2,000 m3/s in summer, with 
flood peaks typically reaching 4,000 m3/s (Bravo et  al., 2009). 
These authors applied the MGB-IPH for the period 1970-1980 
during calibration. Validation was carried out for the period 1981-
2001. As with the first study case, calibration of  the MGB-IPH to 
Furnas subcatchment was performed through an automatic multi-
objective calibration procedure with the same OFs, considering 
a total of  10 parameters, as detailed in the mentioned reference.

For both study cases, it was used the version of  the MGB-
IPH model that adopts a square-grid discretization, as presented 
in Collischonn et al. (2007). Pianco subcatchment was divided in 
151 cells of  approximately 5 x 5 km and Furnas subcatchment 
was discretized into 519 cells of  roughly 10 x 10 km. This model 
was selected due to satisfactory results being achieved on several 
applications in different hydrologic regimes (e.g. Oliveira et al., 
2018; Pereira et al., 2014; Paiva et al., 2013; Ribeiro Neto et al., 
2006; Tucci et al., 2005) and due to availability of  previous works 
by the authors. But, in fact, this study could have been performed 
considering the outputs of  any calibrated hydrologic model.

Synthetic streamflow time-series

Eleven daily streamflow time-series were used in the analysis 
carried out in each watershed.

One of  these time-series used the daily calculated streamflow 
(Qhid) from the previous studies of  Felix & Paz (2016) for the 
Piancó subcatchment, and Bravo  et  al. (2009) for the Furnas 
subcatchment. The Qhid time series were useful for providing the 
basis for developing the synthetic time-series and also for serving 
as comparison to these time-series, as detailed bellow.

Ten synthetic daily streamflow time-series were generated 
based on the calculated and observed values in each watershed, as 
result of  idealized error behavior in hypothetical cases (Figure 2). 
The general idea is simple and of  practical understanding: to 
analyze how does each metric evaluate hypothetical cases that 
present isolated very well known error behaviors. We want to 
assess if  the metric is able to detect this known error or if  the 
metric considered it as a perfect model; if  there is a compensation 
effect between systematic errors and perfect match in distinct time 
periods; how much do the metrics penalize each type of  well known 
error or valorized each type of  perfect model capability; and how 
the evulation of  these hypothetical cases relatively to an actual 
typical output of  a calibrated hydrologic model. These synthetic 
time series represent in some cases exaggerated systhematic errors 
or model capabilities that do occur when calibrating a hydrological 
model but at smaller intensity and not isolated from other errors.

For example, the synthetic time-series Qox2 (Qo/2) shows 
in each time interval a streamflow value that is equal to twice 
(half) that which was observed. These time series were proposed 
to detect how each metric evaluated an hypothetical case that 
systematically calculates half  or double of  the discharges in each 
time step. They are perfect models in terms of  predicting timing 
of  recession and peak flows, for instance. And also we intended 
to analyse if  each metric evaluated the actual calibrated model 
better or worse than these Qox2 and Qo/2 hypothetical cases.

Two other synthetic time-series were based on the use 
of  the Q50 (median of  the observed streamflow time-series), 
which was equal to 0.23 m3/s in the Piancó subcatchment and 
to 703 m3/s in the Furnas subcatchment. Thus, the synthetic 
time-series Qo+Q50 (Qo-Q50) shows a streamflow value that 
is equal to the observed one plus (minus) Q50 in each time 
interval. If  the resulting value of  the streamflow for Qo-Q50 was 
less than zero in a time interval, it was considered as zero. The 
Qo+Q50 and Qo-Q50 time series represent hypothetical cases 
that systematically shift up or down, respectively, the observed 
hydrograph by a constant value.

Two synthetic time-series combine calculated and observed 
streamflows over different time periods within the year. The 
synthetic time-series wetQo  ( dryQo ) shows observed streamflow 
values in the wet (dry) periods and calculated streamflow values 
in the dry (wet) periods of  each year. The wetQo  time series 

Figure 2. Observed, calculated and synthetic daily streamflows 
in 1973, Piancó subcatchment.
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represents a hypothetical case that is perfect during wet period in 
reproducing observed values, while maintaining the typical error 
of  a calibrated model during the dry period. Analogously, the 

dryQo  time series is like a hypothetical case in which it perfectly 
reproduces observed flows during the dry period and presents 
typical error during the wet period.

The last four synthetic time-series were based on mean 
values derived from the observed streamflow time-series. The 
idea is to have hypothetical cases that conservatively predict 
streamflow following the historic pattern according to the mean 
values at different ways. The synthetic time-series Qo  is simply 
the same streamflow value in each day, equal to the mean observed 
streamflow. The synthetic time-series ( )monthQo  shows the same 
streamflow value in each day of  a given month, equal to the mean 
observed streamflow derived with data of  that month in all years 
of  the observed time-series. Thus, this time-series is comprised 
of  12 distinct values, repeated for every year. The synthetic time-

series ( )month yearQo  shows the same streamflow value in each day 
of  a given month, equal to the mean observed streamflow of  
that specific month. In this way, the streamflow values are distinct 
between months in a given year and in another year. Finally, any 
daily streamflow in the synthetic time-series ( )dayQo  is equal to 
the mean observed streamflow derived from the data for that day 
in all years of  the observed time-series. Between years, the daily 
streamflow values are the same in each day.

RESULTS

Performance of  the synthetic streamflow time-series

Results of  the performance assessment of  calculated and 
synthetic time-series by the 36 selected metrics are discussed below 
(Table 2 and Figure 3).

Table 2. Performance of  the synthetic streamflows time-series related to the performance of  calculated streamflows (Qhid) (F and P 
indicate Furnas and Piancó subcatchments, respectively; green upward arrow: higher metric value; red downward arrow: lower metric 
value; circle: exactly same metric value).

OFs Units Qhid Qox2 Qo/2 Qo+Q50 Qo-
Q50 wetQo dryQo Qo monthQo ( )month yaerQo yearQo

F P F P F P F P F P F P F P F P F P F P F P
r - 0.95 0.85

r2 - 0.90 0.72

NSE - 0.89 0.72

LNS - 0.90 -0.34

MNS - 0.71 0.61

NSD - 0.80 0.66

LNSD - 0.90 0.19

MNSD - 0.54 0.46

NSM - 0.49 0.51

PI - -4.53 0.14

HF - 0.90 0.83

D - 0.97 0.92

α - 0.98 0.90

β - 0.10 0.00

KGE - 0.91 0.82
ME (m3/s) 75.11 0.14

MAE (m3/s) 161.28 10.01
MARE - 18.89 3∙106

MSE (m3/s)2 63672 1153
RMSE (m3/s) 252.33 33.96
TRMSE (m3/s) 1.56 1.58
Legend: Qhid is the time-series of  calculated streamflows; F and P indicate Furnas and Piancó subcatchments, respectively. Linear correlation coefficient (r), Coefficient 
of  determination (r²), Nash-Sutcliffe efficiency (NSE), NSE on log transformed daily flows (LNS), Modified forms of  NSE (MNS), NSE with calendar day mean 
(NSD), NSE with calendar day mean calculated on log transformed daily flows (LNSD), Modified form of  NSE with calendar day mean (MNSD), NSE with calendar 
monthly mean as reference model (NSM), Persistence Index (PI), High flow (HF), Index of  agreement (D), Relative variability (α), Normalised bias of  flows (β), Kling-
Gupta efficiency (KGE), Mean error (ME), Mean absolute error (MAE), Mean absolute relative error (MARE), Mean square error (MSE), Root mean square error 
(RMSE), Transformed root mean square error (TRMSE), Ratio of  RMSE to standard deviation of  observations (RSR), Modification of  RMSE to high flow errors 
(NHF), Modification of  RMSE to low flow errors (NLF), Sum of  squared erros of  the streamflows logarithmic (SLOGQ), Sum squared errors of  daily streamflows 
(SSEQ), Sum squared errors of  monthly streamflows normalized by basin area (SSEMQ), Maximal absolute error (MAXAE), Maximum difference in the largest 
peak flows (DHQMAX), Relative volume error (ΔV), Volumetric efficiency (VE), Runnoff  coefficient percent error (ROCE), Combined form of  NSE and ∆V (Y), 
Combined form of  NSE and MARE (RV), Slope of  the streamflow duration curve (SFDCE) and Streamflow duration curve index (SDCI).
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The synthetic streamflow time-series Qox2 represents the 
output of  a hypothetical case that always doubled the observed 
values. Such a time-series presents perfect linear correlation with 
Qo and, therefore, the r and r2 metrics reached the maximum value, 
superior to the Qhid performance for both basins, as expected. 
For the Furnas subcatchment, all other metrics assessed Qox2 
performance as inferior to the ones obtained with Qhid. Due to 
intermittence and very low streamflows in the Piancó subcatchment, 
however, metrics that use logarithm of  streamflows (e.g. LNS, 
LNSD and SLOGQ) assessed Qox2 performance as much better 
than Qhid, which showed difficulty in representing low streamflow 
values(Figures 3D, 3G and 3W). Furthermore, the TRMSE metric 
assessed Qox2 performance higher than Qhid, as this metric uses a 
transformation of  the streamflows that expands the lower end of  
the scale and thus gives higher emphasis to recessions (Figure 3U). 
All other metrics assessed Qox2 performance as inferior to the 
ones obtained with Qhid in the Piancó subcatchment (Table 2).

The Qox2 performance in both subcatchments was lower 
when assessed by NSE, NSD, NSM, PI, HF, D KGE, and RSR 
metrics, which use the square of  the residual in their formulation. 
Similar lower performance results were obtained by error-type 
metrics, whether they compute squared, absolute, or linear errors, 
as with ME, MAE, MARE, MSE, RMSE, NHF, NLF, SSEMQ, 
SSEQ, ROCE, or DHQMAX and MAXAE. These metrics are 
sensitive to systematic overestimation of  streamflows, especially 

during floods, whether or not the river is intermittent. The MARE 
metric shows higher values in most of  the synthetic time-series 
when compared to the MARE obtained with Qhid. Its values were 
very high for the Piancó River subcatchment (Figure 3R) due to 
recurrent zero streamflows. This factor also was reflected in RV 
values, as this is a MARE-dependent metric.

The synthetic streamflow time-series Qo/2 is similar to 
Qox2 and represents a streamflow value that is equal to half  the 
observed one, in each time interval. For this reason, the r and r2 
metrics had the maximum value for Qo/2 in both subcatchments, 
as expected (Figure 3A and 3B). For Furnas, the MAXAE metric 
showed a lower value for Qo/2 than for Qhid, meaning the HM 
outputs are lower than half  of  the Qhid values in some time intervals 
during flood periods (Table 2). For the Piancó River subcatchment, 
the performance results for Qo/2 were quite different from the 
results from the Furnas subcatchment, except for r and r2. The 
performance of  the Qo/2 time-series was assessed as better than 
the Qhid performance by more than half  of  the metrics. Among 
the metrics that did not follow this behavior are ME, ∆V, KGE 
and metrics based on streamflow duration curves as SFDCE and 
SDCI (Figures 3P, 3AD, 3O, 3AI, and 3AJ). These latter metrics 
did not perform satisfactorily for both subcatchments.

The performance of  two synthetic time-series that increased 
(Qo+Q50) or decreased (Qo-Q50) by a constant quantity (Q50) 
the observed streamflow values was assessed. Both time-series 

OFs Units Qhid Qox2 Qo/2 Qo+Q50 Qo-
Q50 wetQo dryQo Qo monthQo ( )month yaerQo yearQo

F P F P F P F P F P F P F P F P F P F P F P
RSR - 0.33 0.53
NHF (m3/s) 96.30 10.19
NLF (m3/s) 177.29 27.01
SLOGQ (m3/s) 59.93 2∙105

SSEQ (m3/s)2/m2 5∙108 8∙106

SSEMQ (m3/s)2 0.19 0.01

MAXAE (m3/s) 5028.1 543.2

DHQMAX (m3/s) 1826.7 -324

∆V % 7.72 0.86

VE - 0.83 0.39

ROCE % 13.14 35.20

Y - 0.83 0.71

RV - 0.87 - 3∙106

SFDCE % 8.84 13.12

SDCI - 0.93 1.05
Legend: Qhid is the time-series of  calculated streamflows; F and P indicate Furnas and Piancó subcatchments, respectively. Linear correlation coefficient (r), Coefficient 
of  determination (r²), Nash-Sutcliffe efficiency (NSE), NSE on log transformed daily flows (LNS), Modified forms of  NSE (MNS), NSE with calendar day mean 
(NSD), NSE with calendar day mean calculated on log transformed daily flows (LNSD), Modified form of  NSE with calendar day mean (MNSD), NSE with calendar 
monthly mean as reference model (NSM), Persistence Index (PI), High flow (HF), Index of  agreement (D), Relative variability (α), Normalised bias of  flows (β), Kling-
Gupta efficiency (KGE), Mean error (ME), Mean absolute error (MAE), Mean absolute relative error (MARE), Mean square error (MSE), Root mean square error 
(RMSE), Transformed root mean square error (TRMSE), Ratio of  RMSE to standard deviation of  observations (RSR), Modification of  RMSE to high flow errors 
(NHF), Modification of  RMSE to low flow errors (NLF), Sum of  squared erros of  the streamflows logarithmic (SLOGQ), Sum squared errors of  daily streamflows 
(SSEQ), Sum squared errors of  monthly streamflows normalized by basin area (SSEMQ), Maximal absolute error (MAXAE), Maximum difference in the largest 
peak flows (DHQMAX), Relative volume error (ΔV), Volumetric efficiency (VE), Runnoff  coefficient percent error (ROCE), Combined form of  NSE and ∆V (Y), 
Combined form of  NSE and MARE (RV), Slope of  the streamflow duration curve (SFDCE) and Streamflow duration curve index (SDCI).

Table 2. Continued...
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showed better performance than Qhid in the Furnas subcatchment 
when assessed by r, r2, MAXAE, DHQMAX, and SFDCE, while 
α showed a better performance only for Qo+Q50. The result for 
r and r2 are the same as the other time-series that present a linear 
correlation with Qo. For the other mentioned metrics, even with 
a high Q50 value in the Furnas subcatchment (Q50 = 703 m3/s, 
which is 72% of  the average daily flow and 9.4% of  the maximum 
daily flow), this was not enough to cause peak streamflow errors 
(which are the focus of  MAXAE and DHQMAX) greater than 
those in Qhid time-series. The performance of  both time-series 
was optimal when assessed by the SFDCE metric since the slope 
of  the streamflow duration curves is exactly the same as the 
observed one (Figure 3AI).

In the case of  the Piancó River subcatchment, Q50 is 
extremely low (Q50 = 0.23 m3/s, equivalent to 1.4% of  the daily 
average streamflow and < 0.02% of  the daily maximum), making 
the Qo+Q50 and Qo-Q50 time-series very similar to Qo. Thus, 
most of  the metrics showed superior performance on these 
synthetic time-series when compared to Qhid, except for the ME, 

∆V, and β, while SFDCE and SDCI showed superior performance 
only for Qo-Q50. The slightly superior performance of  Qo-Q50 
compared to Qo+Q50 was because of  the occurrence of  zero 
streamflow values, meaning that for these days Qo-Q50 = Qo. 
The effect of  having streamflows equal to zero in the observed 
time-series is also responsible for the slope of  the duration curve 
of  these synthetic time-series being different from the observed 
one. Thus, SFDCE metrics did not reach the ideal value in this 
subcatchment, as occurred for Furnas subcatchment.

The errors in the low streamflows in the synthetic time-
series Qo/2 and Qo-Q50 in the Piancó River subcatchment did 
not affect the performance assessed by the LNS, LNSD, LOGQ, 
and TRMSE metrics (Figures 3D, 3G, 3W, and 3U). Unlike in the 
Piancó River subcatchment, the Qo-Q50 synthetic time-series 
for the Furnas subcatchment present higher errors, reducing its 
performance when assessed by those metrics.

The synthetic streamflow time-series wetQo  and dryQo  
represent the output of  a hypothetical case that has no error in 
the wet (dry) periods, and keeps the error of  the adjusted HM in 

Figure 3. Performance metrics values for several streamflow time-series of  a single catchment: results for Piancó river and Furnas 
subcatchments.
Legend: Qhid is the time-series of  calculated streamflows.
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the opposite period. Thus, wetQo  and dryQo  should be evaluated as 
having a better performance than Qhid. Actually, the performance 
of  both time-series was assessed as better than the performance of  
Qhid in almost all metrics. Only two metrics assessed dryQo  with 
same performance as Qhid: MAXAE and DHQMAX (Table 2). 
As these two metrics assess the largest error during floods (wet 
period), the maximum flood error found in dryQo  was equal to 
the one in Qhid (Figures 3AB and 3AC).

Several metrics which compensate for positive and negative 
errors assessed wetQo  and dryQo  as having a lower performance 
than Qhid in the Piancó River subcatchment. This highlights the 
negative aspect of  such metrics (e.g. ME, ∆V and β), as errors 
of  overestimation or underestimation are compensated for. That 
means that a hypothetical case that reproduces exactly the wet 
season but has errors during the dry period, when compared to 
another hypothetical case that also shows errors in the wet period, 
will present lower performance when assessed by these metrics 
(the same results would occur when changing the wet/dry periods). 
For example, the ME of  Qhid in the Piancó River subcatchment 
was -0.14 m3/s, while the ME of  wetQo  was -0.80 m3/s and the 
ME of  dryQo  was 0.66 m3/s (note that the sum of  the latter two 
MEs are equal to the ME of  Qhid). Since the metric Y uses ∆V 
and NSE (which do not compensate errors) in its formulation, 
this effect was not predominant, but led to Y assessing dryQo  as 
of  lower performance than Qhid. It is important to emphasize 
that this result is local-dependent, as a distinct adjusted HM 
error behavior in wet and dry periods could occur (e.g. if  just 
positive or negative errors occur in both periods, there will not 
be a compensation effect).

The remaining synthetic time-series present daily streamflow 
values that are based on temporal averages derived from the 
observed time-series: Qo  (mean streamflow), ( )monthQo  (mean 
monthly streamflow), ( )month yearQo  (mean monthly streamflow by 
year), and ( )dayQo  (mean daily streamflow).

For the Furnas subcatchment, which has perennial rivers, 
these four synthetic time-series were assessed as having lower 
performance than Qhid by most of  the metrics (Table 2). Few 
metrics assessed the performance of  these time-series as better 
than Qhid: the metrics with compensating errors effect (e.g. ME, 
∆V, and β); DHQMAX, which focuses on a point error; and SDCI 
which evaluates the similarity between streamflow duration curves. 
Thus, as synthetic time-series are based on average values, errors in 
high and low values are compensated for, avoiding larger errors in 
higher streamflows. In addition, the time-series ( )month yearQo  showed 
a better performance than Qhid when assessed by MAXAE, 
ROCE, and SFDCE, as this time-series present a lower error 
in the maximum daily streamflow, in the average annual runoff  
coefficient, and in the slope of  the streamflow duration curve.

For the Piancó River subcatchment, the performance 
results of  the four synthetic streamflow time-series, based on 
mean values of  the observed streamflows, were partially the same 
as in the Furnas subcatchment. The error-compensating effect 
of  the ME, ∆V, and β metrics improved the performance of  Qo  
and ( )month yearQo  time-series when compared to Qhid, as also 
ROCE metric. But a distinct pattern was observed in the Piancó 
River subcatchment in logarithm-based metrics (e.g. LNS, LNSD, 
and SLOGQ). These metrics assessed the performance of  only 

( )month yearQo  as better than Qhid. This means that the burden of  
the HM errors in reproducing the streamflow in the dry period 
in the Piancó River subcatchment, with intermittent rivers, was 
large enough for metrics LNS, LNSD, and SLOGQ to assess the 
performance of  Qhid as lower than a synthetic time-series with 
mean monthly streamflow by year. However, Qhid performance 
assessed by these metrics was higher than the performance of  
time-series based on mean streamflows, mean monthly streamflows, 
and even mean daily streamflows.

Closure to response of  performance metrics

It is well described in literature that each metric used 
for hydrologic model calibration has been proposed focused on 
one or some aspects of  the comparison between calculated and 
observed streamflows (e.g. Gupta et al., 1998; Wohling et al., 2013; 
Pushpalatha et al., 2012; Madsen, 2000). As evidenced by our results, 
systematic or large errors in other aspects non-focused by each 
metric may not be accounted or may not have significant effect 
in its evaluation. Users could, therefore, conduct a misjudgement 
of  the overall behaviour of  their model. For example, correlation 
coefficient and coefficient of  determination evaluate the linear 
correlation of  the data. A hypothetical time-series that systematically 
doubled the discharges is evaluated as perfect by those metrics, 
while a distributed model carefully calibrated using state-of-the 
art method does not achieve such performance, as expected. This 
is a classic example in literature, but there were other situations 
we found and that were more distinct from those previously 
discussed in literature.

For instance, it could be highlighted the hypothetical time-
series that represent a perfect reproduction of  observed flows during 
the dry or wet periods and present a behaviour exactly the same of  
the calibrated hydrological model in the opposite period. It means 
that these hypothetical cases are better or equal to the hydrological 
model throughout the year in reproducing observed flows. There 
is no doubt about that, it is conceptual. However, metrics that are 
practically restricted to assessing wet periods (Maximal absolute 
error; and Maximum difference in the largest peak flows) were 
not influenced whether the model was perfect or not during the 
dry period. More importantly, metrics that make compensation 
of  positive and negative errors (e.g. mean error, relative volume 
error, combined form of  NSE and ∆V and normalised bias of  
flows) may lead to the judgement that a model being wrong in 
both wet and dry periods may be of  better performance than 
being wrong just in one of  these periods (considering the same 
behaviour in the other time period).

The results obtained with hypothetical cases that reproduce 
temporal averages of  discharges provided another interesting 
question: how useful is a calibrated HM that performs worse 
than simply assuming as model prediction the monthly or other 
average discharges on time based on observed time series for a 
past period of  time? If  we could simply construct such average 
discharges time series, why to spend time and effort in developing 
hydrological models that perform worse? But is the calibrated HM 
really worse than those hypothetical time-series? Two issues need 
to be discussed to think about the answers for all these questions.

First of  all: a better or worse model for what? The purpose 
of  the model, for which it will be used for, is crucial for properly 
answering the usefulness of  each model. For instance, whether 
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the model will be used to estimate and manage water resources 
availability in dry periods or to estimate flood impacts of  climate 
change scenarios request distinct model capabilities as priority.

This discussion leads the question about ‘how good is a 
model?’ to move towards the second point, the issue we addressed 
within this study, regarding ‘how good is a metric to evaluate 
a model?’. This second question is linked to the first one and 
concerns the way we evaluate model performance. The aim of  the 
model use should be always in mind as a major driver for selecting 
metrics for model evaluation. In the first case, for a model being 
applied for managing water resources availability in dry periods, the 
reproduction of  observed recession flows is crucial and thus model 
calibration should focus on this issue. Our results recommend the 
use of  metrics such as NSD, KGE and RV for perennial rivers 
and LNSD, TRMSE and Y for intermittent ones. For the second 
case, the estimation of  flood impacts using hydrological modeling, 
model calibration should give emphasis on adjusting peak flows. 
Metrics such as MAE, RSR, ∆V and SFDCE are recommended, 
independently of  the river being intermittent or not.

CONCLUSION
This study assessed 36 metrics that are frequently used for 

HM calibration by comparing calculated and observed hydrographs. 
Daily streamflow time-series were used from calculated values by 
MGB-IPH model from previous studies and ten synthetic time-
series generated based on the calculated and observed values, as 
a result of  idealized error behavior in hypothetical cases. Two 
Brazilian large-scale watersheds with contrasting characteristics 
were adopted as case studies.

This study highlighted that knowing the limitations and 
recommendations of  a metric used as an OF is important for 
adequately evaluating a HM output in terms of  observed flow 
regime reproduction. It is already known that the parameter values 
obtained through the calibration process are influenced by the 
OF selected. As the calculated streamflows are dependent on the 
parameter values, this means the OF must be chosen according 
to the reason for the use of  the HM. The purpose for which 
the model will be used for is decisive for properly answering the 
usefulness of  each calibrated model.

Our results reassert that each metric should be interpreted 
specifically thinking about the aspects it has been proposed for. 
In this sense, simultaneously taking into account a set of  metrics 
would lead to a broader evaluation of  HM ability. This highligts 
to the advantages of  adopting a multiobjective model evaluation 
by combining metrics that assess distinct aspects.

For this it is important to initially understand the actual 
behaviour of  observed streamflows. This analysis should not be 
disregarded and will be crucial for adequately interpreting metrics 
results of  HM evaluation.

This study supplies a guideline for the choice of  OFs, while 
the use of  synthetic time series as those proposed in this work 
could be useful as an auxiliary step towards better understanding the 
evaluation of  a calibrated hydrological model for each study case.
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