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ABSTRACT

The concern with water quality has been promoting development of  better monitoring and control techniques every day. As sediments 
transport most of  water contaminants, their study is fundamental. Given the large number of  variables for estimating sediment 
concentration and high costs of  monitoring campaigns, it becomes necessary to develop more accessible methods which bring 
satisfactory practical results. Therefore, this work deals with application of  the principle of  maximum entropy, a probabilistic method to 
determine concentration of  sediments in river channels with various concentrations and particle sizes. For this purpose, it was proposed 
a relationship between the theory of  entropy parameters in order to reduce the computational effort. The results were satisfactory at 
concentrations above 10 g/L with R2 greater than 0.88. The calculated squared errors in this study were lower than those found when 
using the theory of  entropy by Tsallis and the equation of  Rouse, classic models for determining the sediment concentration profile. 
The applicability of  the proposed model and the ease of  using the probabilistic method, since it reduces the amount of  data needed 
to perform the estimate, makes it feasible on a global scale.
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RESUMO

A preocupação com a qualidade das águas vem promovendo o desenvolvimento de técnicas cada dia melhores de monitoramento e 
controle. Como os sedimentos transportam a maior parte dos contaminantes da água, seu estudo é fundamental. Diante do elevado 
número de variáveis existentes para a estimativa da concentração de sedimentos e elevados custos de campanhas de monitoramento, 
torna-se necessário o desenvolvimento de métodos mais acessíveis e que tragam resultados práticos satisfatórios. Para tanto, este trabalho 
trata da aplicação do princípio da entropia máxima, um método probabilístico, para determinar a concentração de sedimentos em calhas 
com diversas concentrações e granulometrias. Para isso, foi proposta uma relação entre os parâmetros do princípio da entropia máxima 
para determinar o índice entrópico e facilitar o cálculo. Os resultados mostraram-se satisfatórios para concentrações acima de 10 g/L 
com R2 superiores a 0,88. Os erros quadráticos calculados neste trabalho foram inferiores aos encontrados quando utilizada a teoria da 
entropia por Tsallis e pela Equação de Rouse, modelos clássicos de estimativa do perfil de concentração de sedimentos. A aplicabilidade 
do modelo proposto e a facilidade da utilização do método probabilístico, já que reduz a quantidade de dados necessários para realizar 
a estimativa, torna-o viável em escala global.

Palavras-chave: Sedimentologia; Recursos hídricos; Modelagem.
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INTRODUCTION

Concern about water resources is now a reality. It is known 
that the amount of  water is not changed on the planet, but its 
distribution and quality make it impossible to use. Poleto et al. 
(2009) state that most of  water contamination is due to sediments, 
especially the fine sediments that are transported to distant areas. 
In urban areas this effect is greater due to large diffuse pollution.

In order to identify and solve this problem, programs for 
monitoring the quantity and quality of  sediment should be made 
feasible in an integrated water resources management system. 
However, resources are limited to serve the entire national territory. 
It is necessary to use more accessible techniques which bring 
satisfactory practical results.

The knowledge of  the sediment transport rate is necessary 
for a number of  purposes such as control and management 
of  watersheds, river channels, sedimentation in reservoirs and 
transport of  pollutants. To determine this, it is necessary to find 
the average sediment concentration in a section of  the channel 
(CUI; SINGH, 2014).

Solid discharge measurement can be done by direct and 
indirect methods and is divided into solid discharge measurement 
in suspension, responsible in most cases for about 90% of  the 
total discharge, and by the measurement of  solid drag discharge, 
remaining with the rest of  the percentage (CARVALHO, 2008).

Suspended solid discharge is the measure of  transport of  
suspended sediment. The sediment distribution in a river section 
is not uniform. According to Vanoni (1977), the forces acting on 
the sediment particle are a function of  particle size (granulometry), 
flow regime (laminar or turbulent), stream velocity, bed obstacles, 
water temperature, and so forth. Then, for the same composition 
of  bottom sediments, particles drag, roll or move by salting if  
velocity is low, and as velocity increases, some of  that sediment is 
carried to a zone where the flow is larger, turning into suspended 
sediment. The rest remains in the deepest layer of  the water body 
(CARVALHO, 2008; SOS, 1963; WMO, 1981).

The sediment in suspension is subject to the action of  
flow velocity in the horizontal direction, predominantly, and 
its weight (ONGLEY, 1996; MERTEN  et  al., 2014). For this 
reason, the sediment concentration has a minimum on the surface 
and a maximum near the bed, for a varied granulometry. Sand 
particles are coarser sediments and present an increasing surface 
variation for the bed. The finer ones, such as silt and clay, have 
an approximately uniform distribution (SOS, 1963). For this 
reason, the measurement at one point does not represent the 
concentration of  the section. It is necessary to perform sampling 
along the section, punctual or vertical, in a number suitable for 
the characterization of  the section.

An important consideration to be made is that direct 
measurements in rivers are instantaneous measurements, because 
when it comes to flow measurement and sediment concentration, 
when collecting water at one point, the next will not be at the 
same time. Unless all water from the section is collected at a given 
time, the measurement of  sediment discharge in rivers is always 
by sampling.

In current operations, the average sediment concentration 
of  the section of  a channel is determined with the ratio of  the 
representative sediment concentration to the average sediment 

concentration of  a vertical section line. This is a common practice 
in sampling the average depth to directly determine the mean 
vertical concentration.

However, during floods and periods of  unstable flow, 
where sediment transport is significant, strong currents make 
sampling of  the average depth unfeasible. As an alternative to this 
situation, models that translate the average concentration into a 
single sample are used.

Mathematical models are developed to describe the 
distribution of  sediment concentration from the bed to the surface 
of  the water in channels. These models can be used to estimate the 
average sediment concentration quickly using point samples in rivers. 
Simons and Sentürk (1992) attribute to O’Brien‑Chistiansen the 
first deterministic turbulent diffusion equation for the non‑uniform 
sediment distribution, derived from the continuity equation that 
can be used in two-dimensional uniform turbulent flow.

A classic example of  a deterministic method is the Rouse 
equation (ROUSE, 1937). Several combinations of  this equation 
are derived for estimating sediment concentration.

Einstein (1950) was the first to present a proposal for 
the study of  sediment transport based on the probabilistic 
concept in the description of  the movement of  solid particles. 
The theoretical model devised by Einstein is based on the intense 
exchange between the particles that are in movement and those 
that are at rest. This model expresses the equilibrium condition 
between these exchanges. From this, other researchers began to 
use the concept of  probability in their studies. According to Paiva 
(2007), the most relevant ones were: Brown (1950) Einstein and 
Barbarossa (1952), Colby and Hembree (1955), Toffaleti (1969). 
The work of  Toffaleti (1969) is based on the Einstein method and 
allows the separate calculation of  suspended and trailing sediments.

According to Chiu et al. (2000), models can be produced 
with the combination of  deterministic and probabilistic concepts. 
The complementary feature of  the two concepts strengthens the 
method and better describes sediment transport characteristics.

Cui and Singh (2014) compared the estimation of  sediment 
discharge by the Tsallis entropy theory with the Prandtl von 
Karman methods and the Rouse equation, and verified that the 
methods based on the entropy of  both Tsallis and Shannon 
presented better results.

Therefore, the principle of  the maximum entropy by 
Tsallis is used to estimate the sediment concentration profile. 
However, one disadvantage of  using the entropy is in the high 
number of  unknowns, 3 unknowns and only 2 equations, making 
it an underdetermined system in which there are infinite solutions. 
Due to complexity of  equations, a relation was proposed between 
two parameters, in this way, the number of  unknowns was reduced 
and the numerical solution became possible. The alternative 
formulation allows the use of  3 points of  measurements in the 
field, maximum and minimum concentration, and any point 
in the vertical to estimate the average sediment concentration. 
This facilitates estimation of  sediment concentration and reduces 
field sampling time.

Thus, the main objective of  the work is to apply an 
alternative formulation to determine the entropic index m and 
compare the results with those found in works of  Einstein and 
Chien (1955) and Coleman (1981). The results were satisfactory 
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for concentrations above 10 g/L in all studied profiles, regardless 
of  granulometry and flow conditions.

Entropy theory

In 1824, the French physicist Carnot envisioned the 
Second Law of  Thermodynamics in his studies on the flow of  
energy. By 1877, the Austrian Ludwig Boltzmann for the first 
time introduced the statistical concept of  entropy, establishing a 
direct relationship between entropy and molecular disorder of  a 
random thermal process, according to Resnick (2008).

Recently, Capek and Sheehan (2004) presented 21 formulations 
of  entropy that can be divided into 5 categories according to the 
application: 1) devices and process impossibilities; 2) motors; 
3) balance; 4) entropy; or 5) mathematical sets and spaces.

In general, it can be said that the entropy is a variable that 
reflects the state in which a thermodynamic system can be found. 
(CHIU, 1987; CONTE, 2005; CUI; SINGH, 2014; KUMBHAKAR; 
GHOSHAL, 2016; SINGH, 2011; YEVJEVICH, 1972).

Conte (2005) identifies a certain physical similarity between 
a hydraulic and a thermal system. The author compares these two 
systems as if  they were two reservoirs that are disconnected at 
first: one is hot and the other is cold in the thermal reservoirs 
or one is full and the other is empty in the hydraulic reservoirs. 
After providing a communication between the two reservoirs, 
hot-cold or full-empty, it will take some time to establish the 
equilibrium condition of  these reservoirs. In the final state, the 
two thermal reservoirs will have an average temperature and the 
two hydraulic reservoirs will be level. In both cases, the physical 
concept of  entropy is present, according to the Second Law of  
Thermodynamics, the two systems, irreversibly, will never return 
spontaneously to their original state, unless a certain amount 
of  energy is expended to perform such an operation. In the 
hydraulic reservoir, the energy that causes the water to move is the 
gravitational potential. In thermodynamic systems, it was necessary 
to introduce the concept of  an “invisible” variable that was called 
entropy, to represent the flow of  something moving from one 
reservoir to the other. In this way, Minei (1999) points out that 
the Second Law of  Thermodynamics consists of  the description 
of  the spontaneous change of  the energy distribution, from the 
unequal to the balanced one. According to Minei (1999), Clausius 
in 1950 suggested that this process of  leveling applied to all forms 
of  energy and to all events in the Universe.

In an isolated system, the entropy always grows. Since it is 
a probabilistic process, it is valid only for systems composed of  
a very large number of  particles moving chaotically, according to 
the law of  large numbers in probability theory (MINEI, 1999).

A system is characterized by its macroscopic variables, which 
are those quantities that can be measured in the laboratory: volume, 
pressure, temperature, total energy, chemical constitution. These 
quantities, however, are not sufficient to fully define the state of  the 
system. There are a huge number of  “microscopic variables” that are 
difficult to determine: the position and velocity of  each individual 
particle, the quantum state of  atoms or molecular structure, etc. 
For a “macroscopic state”, there is a very large but finite number 
of  possible “microscopic states” defined by the distribution of  
particles, atoms or molecules, in space or by distribution of  energy 

between them. Due to the chaotic movement and the constant 
shocks between them, there is a certain “microscopic state” or 
“complexion” at each moment. As no state has preponderance 
over the others, there is a continual change of  “microscopic 
states.” The number of  “microscopic states” satisfying a given 
“macroscopic state” is called the thermodynamic probability of  
the state, the statistical weight of  the state, or the number of  
complexions. Unlike mathematical probability, which always has the 
value of  a function of  its own, the value of  P is always expressed 
by an integer, usually very large. If  a spontaneous transformation 
occurs in an isolated system which, as a consequence, changes the 
“macroscopic state” of  the system, this means that the new state 
has a greater amount of  “microscopic states” or “complexions” 
satisfying it than the previous one. As a result, it increases the 
thermodynamic probability of  the system and, simultaneously, 
the entropy of  the system (MINEI, 1999, p. 13).

Thus, Capek and Sheehan (2004) state that entropy is a 
macroscopic quantitative measure of  microscopic disorder.

The statistical concept of  entropy has evolved. In 1948, 
Shannon proposed a theory with more solid mathematical bases, 
establishing a connection between entropy and typical sequences 
that allowed the solution of  numerous problems in the areas of  
coding and transmission of  data in the communication systems 
in general. Considering the example of  Hancock (1961), a student 
randomly flips through a book and stops, casually, in the chapter 
Discrete Probability. If  he already knew the subject, he will get 
little or no information from the reading. If  this is your first 
contact with the topic, he will be receiving a lot of  information 
in that reading.

Thus, what differentiates the first situation from the second 
is the notion of  uncertainty, that is, the greater the uncertainty 
about the result of  a message “state”, the greater the amount of  
information associated with that result. If  it is possible to predict 
the outcome of  a post-message situation in advance, then certainly 
no information was passed by it. The measurement of  post-message 
“state” information must be based on the probability of  occurrence 
of  this situation. Entropy, therefore, is a measure of  information 
or degree of  uncertainty about a given system (SHANNON, 
1948). Shannon’s entropy can be seen as a discrete form of  the 
classical Boltzmann-Gibbs entropy (CAPEK; SHEEHAN, 2004).

If  an event occurs and a message is transmitted to 
communicate it, the amount of  information transmitted to the 
receiver is defined by Equation 1:

log p'Information Received
p

 
=  

 
 	 (1)

where: p  ′ =  probability of  the event, next to the receiver, after 
the arrival of  the message; p = probability of  the event, next to 
the receiver, before the arrival of  the message.

Assuming only the no-noise transmission situation, that is, 
the received message is the same as the transmitted message, the 
receiver is sure that it is receiving the correct message. Thus, the 
probability p’ will be 1. The amount of  information will depend 
only on the probability of  the event prior to the message, so 
Equation 1 can be defined by Equation 2:

log log1Information Received  p
p

 
= = − 

 
 	 (2)
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There are other definitions that do not involve the logarithm, 
but the definition of  Equation 2 is simple, since it does not lead to 
contradictions and has useful properties in the analysis (MINEI, 
1999). According to the same author, the numerical value of  
the amount of  information depends on the base used for the 
logarithms. In the transmission of  information, normal is the 
base 2. Thus, an information unit is called a binary digit, usually 
called bit (SHANNON, 1948). In a situation where there are only 
two equally likely alternatives, a bit of  information will tell which 
event occurred. Minei (1999) exemplifies this as in the launching 
of  a coin. There are two alternatives, heads or tails, with equal 
probabilities. The result “tails” provides the specific amount of  
information according to Equation 3:

( )log log2 2
1   2 1 bit
2

 − = = 
 

 	 (3)

Considering a source producing 3 symbols, A, B and C, 
“A” occurs with probability P(A), “B” with probability P(B) and 
“C” with probability P(C). The amount of  information associated 
with “A” is ( )log2 P A− , the one associated with “B” is ( )log2 P B−  
and the one associated with “C” is ( )log2 P C− . “A” occurs in time 
only with the probability P(A), “B” only with P(B) and C, only with 
P(C), and the average information H is defined by Equation 4:

( ) ( ) ( ) ( ) ( ) ( )log log log2 2 2H  P A P A  P B P B P C P C= − − −  	 (4)

The concept of  entropy is already well established and 
used in statistics and information theory. Generalizing the result 
in Equation 4 for an X source and generating m independent 
symbols, if  the jth symbol has a probability of  occurrence p (Xj), 
the entropy can be quantified in terms of  probability according 
to Equation 5:

( ) ( ) )(j jH X   p X  log p X= − ∑  	 (5)

where: ( )jp X  = the probability of  the system being in state X 
with values of  {Xj, j = 1, 2, ....}.

This has been shown in ideal systems, H(X) defined by 
Equation 5 is equivalent to the entropy of  thermodynamics.

The entropy by Tsallis is a generalization of  the 
Boltzmann‑Gibbs and Shanoon entropy (CAPEK; SHEEHAN, 
2004; CUI, 2011). The main advantage of  Tsallis entropy is 
mathematical simplicity. It has been applied to numerous different 
physical phenomena which are considered beyond the reach of  
equilibrium thermodynamics. Notably, these include non‑extensive 
long range systems, e.g., gravitational, electrostatic, such as plasmas 
and multiparticles, self-gravitating systems such as galaxies and 
globular clusters. It was applied to self-organizing behaviors and 
to chaotic systems such as financial markets, traffic, locomotion 
of  microorganisms, subatomic particle collisions, and tornadoes. 
Unfortunately, its underlying physical base was not well established, 
prompting critics to label it as just a “curve fit.” Its simplicity and 
adaptability, however, cannot be denied (CAPEK; SHEEHAN, 
2004).

According to the concept of  entropy, under conditions of  
static equilibrium, the system tends to have the maximum entropy 
over current constraints (CONTE, 2005).

However, the entropy H defined by Equation 5 is the 
average information content of  a data sample. If  the variable X 
is continuous, the entropy can be expressed by Equation 6:

( ) ( ) ( )lnH X   p X p X dX= − ∫  	 (6)

where ( )p X  is the probability density function so that ( )p X dX  
is the probability of  the variable being between X and X+dX.

The maximum entropy is related to the amount of  
information about a variable X, which is equivalent to the maximum 
uncertainty of  X so far measured.

The principle of  maximum uncertainty reveals that the 
maximum entropy is a function of  the number of  possibilities 
N that this system can find. For example, the act of  playing a 
6-sided die. The maximum entropy of  this system is ln6, since the 
probability of  a given face facing upwards is the same for all faces. 
It can be said that the entropy decreases as information about the 
system increases or vice versa (CONTE, 2005).

It is 0 in purely deterministic cases in which the joint 
probability function ( )jp X  = 1 and (Xi) = 0 for every i other than 
j. Maximizing the system entropy will make uniform probability 
distribution possible as long as it meets the constraints.

According to Minei (1999), the lower the entropy, the more 
unequal the energy distribution. The greater the entropy, the more 
balanced the distribution. In this way, the maximum entropy has 
the equilibrium state of  a system. The spontaneous tendency 
is in the sense of  balancing unequal distributions of  energy, so 
everything moves in the direction of  a low to a high entropy.

According to the concept of  entropy, it is possible, by 
maximum entropy, to determine the maximum uncertainty, 
randomness or disorder of  a system. Considering a hydrological 
system, the principle of  maximum entropy is used to model the 
probability distribution of  the possible state of  the system. The data 
can be collected for parameter estimation and later validation 
(KUMBHAKAR; GHOSHAL, 2016).

Application of  entropy in hydrology and hydraulics

In general, in the traditional approach to hydraulics, the 
quantities involved are treated in a deterministic manner. In fact, 
these quantities, represented by an average value, are sample means 
and should be presented statistically by a mean and a variance, 
considering the uncertainty of  any sample mean (MINEI, 1999).

The concept of  entropy as used in Information Theory 
provides the degree of  uncertainty of  a particular result in a 
process; therefore, for the treatment of  hydrological variables, 
one can calculate the entropy of  these variables from historical 
and/or measured data and thus characterize the unexpected or the 
inherent variability of  the process (CHIU, 1987; ESPILDORA; 
AMOROCHO, 1973; SINGH, 1989). Several works have been 
developed applying the theory of  entropy. In the area of  water 
resources (SINGH, 1997; HUSAIN, 1989), in the application in 
hydrology (WANG; ZHU, 2001; SINGH, 1998), in historical series 
of  precipitation and flow, mainly. In the prediction of  hydrological 
variables (CONTE, 2005; WEIJS et al., 2010), in the evaluation of  
the prediction and stability of  river flows (MUKHOPADHYAY; 
KHAN, 2015), in the estimation of  the sediment concentration 
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(SINGH; CUI, 2015; CUI; SINGH, 2014; GAN  et  al., 2014; 
LIEN; TSAI, 2003; CHIU  et  al., 2000; LUO; SINGH, 2011; 
GOMEZ; PHILLIPS, 1999; SING  et  al., 1988; CHIU, 1988; 
CHAO-LIN CHIU, 1987; SINGH; KRSTANOVIC, 1987), in 
the estimation of  the precipitation ratio X flow (SINGH, 2012; 
CONTE, 2005; SONUGA, 1976), in river processes (XU; ZHAO, 
2013; DESHPANDE; KUMAR, 2013), among other applications.

The velocity distribution equation derived from the principle 
of  maximum entropy has advantages over the universal equation 
of  velocity distribution of  Prandtl-von Karman. The maximum 
entropy applied to the velocity distribution and sediment transport 
reflects the effect of  particle size of  suspended sediment, coarse 
material and sediment concentration. They can be used as variables 
to characterize and compare various flows (SINGH; CUI, 2015; 
CHAO-LIN CHIU, 1987).

Chiu et al. (2005) and Minei (1999) established river flow 
estimation methods using the probabilistic model based on the 
Shannon entropy with the velocity measurement at only one point 
of  a vertical of  the river or some points of  that river vertical. 
This greatly reduces the time and cost of  sampling. In addition, it 
makes possible the measuring during floods when the water level 
undergoes large variations in a short time. This technique can 
be applied when using radars on the surface of  water and even 
ADCPs (Acoustic Doppler Current Profiler), especially during 
floods. The surface velocity is measured and then it is possible 
to find the entropy parameters. The channel section is calculated 
by calculating the discharge or total flow (MORIASI et al., 2007). 
The discharge data obtained by such methods can also be used to 
understand the ratios of  the discharge phases occurring during 
unstable high flow periods, which have the forms different from 
those presented by the conventional classification curves obtained 
with constant flow periods (CHIU et al., 2005). Such advances 
should add scientific knowledge to hydrology and may also 
contribute greatly to engineering projects for flood control. Once 
the channel section is known, the discharge or total flow is calculated 
(CHIU et al., 2005; MORAMARCO et al., 2013). The discharge 
data obtained by such methods can also be used to understand 
the ratios of  the discharge phases occurring during unstable 
high flow periods, which have the forms different from those 
presented by the conventional classification curves obtained with 
constant flow periods (CHIU et al., 2005). Such advances should 
add scientific knowledge to hydrology and may also contribute 
greatly to engineering projects for flood control.

MATERIAL AND METHODS

To determine the sediment concentration in different flow 
regimes and grain sizes, two data series were collected by Coleman 
(1981) and Einstein and Chien (1955). These two data series were 
used because of  their significance in sediment transport studies 
and because they present the greatest detail of  the sediment 
concentration profile. These two aspects are important for the 
validation of  the proposed method.

For this, the conditions of  accomplishment of  each one 
of  the works under different conditions of  flow and granulometry 
will be detailed.

The Coleman (1981) experiment was performed on a 
rectangular channel 0.356 m wide and 15 m long with an adjustable 
slope to maintain the flow. The particle size (D), discharge (Q) 
and velocity (U*) of  each profile are shown in Table 1.

On the other hand, the Einstein and Chien (1955) experiment 
was performed on a 0.31 m wide, 0.36 m deep, and 12.19 m long 
channel. The slope was adjusted through a connector ranging from 
0.0185 to 0.025, and the discharge ranged from 0.074 to 0.085 m3/s. 
The water depth (H), the mean velocity (U*) and the diameter at 
which 50% of  the material is retained (D50) can be seen in Table 2.

Three different types of  sand were used in their experiments 
of  Einstein and Chien (1955), which were evaluated as coarse, 
with D50 of  1.3 mm, medium with D50 of  0.94 mm and fine 
with D50 of  0.274 mm.

Table 1. Conditions of  the Coleman (1981) experiment.

Profile D Q U*

mm m3/s m/s
Coleman1 0.105 0.064 0.041
Coleman2 0.105 0.064 0.041
Coleman3 0.105 0.064 0.041
Coleman4 0.105 0.064 0.041
Coleman5 0.105 0.064 0.041
Coleman6 0.105 0.064 0.041
Coleman7 0.105 0.064 0.041
Coleman8 0.105 0.064 0.041
Coleman9 0.105 0.064 0.041
Coleman10 0.105 0.064 0.041
Coleman11 0.105 0.064 0.041
Coleman12 0.105 0.064 0.041
Coleman13 0.105 0.064 0.041
Coleman14 0.105 0.064 0.041
Coleman15 0.105 0.064 0.041
Coleman16 0.105 0.064 0.041
Coleman17 0.105 0.064 0.041
Coleman18 0.105 0.064 0.041
Coleman19 0.105 0.064 0.041
Coleman21 0.210 0.064 0.041
Coleman22 0.210 0.064 0.041
Coleman23 0.210 0.064 0.041
Coleman24 0.210 0.064 0.041
Coleman25 0.210 0.064 0.041
Coleman26 0.210 0.064 0.041
Coleman27 0.210 0.064 0.041
Coleman28 0.210 0.064 0.041
Coleman29 0.210 0.064 0.040
Coleman30 0.210 0.064 0.041
Coleman31 0.210 0.064 0.041
Coleman32 0.420 0.064 0.041
Coleman33 0.420 0.064 0.041
Coleman34 0.420 0.064 0.041
Coleman35 0.420 0.064 0.041
Coleman36 0.420 0.064 0.041
Coleman37 0.420 0.064 0.041
Coleman38 0.420 0.064 0.043
Coleman39 0.420 0.064 0.044
Coleman40 0.420 0.064 0.045
U* = the shear velocity. D = diameter of  the particles. Q = flow.
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The flow conditions and granulometry of  each of  the profiles 
(S) of  Einstein and Chien (1955) can be visualized in Table 2.

Method for the estimation of  sediment 
concentration

The estimation of  the sediment concentration using 
the Tsallis entropy implies in (1) definition of  Tsallis entropy, 
(2)  specification of  restrictions, (3) maximization of  entropy, 
(4) determination of  Lagrange multipliers, (5) determination of  the 
probability density function and maximum entropy, (6) hypothesis of  
cumulative probability distribution, and (7) sediment concentration 
distribution. These steps were detailed by (CUI; SINGH, 2014) 
and are described below. After these steps, changes in sediment 
concentration distribution were performed to reduce the number 
of  parameters and to facilitate calculations (8).

Definition of  the Tsallis entropy

Given that the concentration of  sediments “c” is a random 
variable with function of  density and probability, f(c), then the 
Tsallis entropy (TSALLIS, 1988) of  “c”, H(c), can be expressed 
by Equation 7:

( ) ( ) ( ) ( ){ }      
Cm Cmm m 1

Ch Ch

1 1H c 1 f c dc f c 1 f c dc
m 1 m 1

−  = − = − −       − −  
∫ ∫ 	 (7)

where c, ch ≤ c ≤ cm, is the value of  the random variable c, cm is the 
maximum value of  “c” or bed concentration, ch is the concentration 
on the water surface, the symbol m represents the entropy index, 
and H represents the entropy of  f(c) or “c” (CHIU; JIN, 1997).

When m = 1, the entropy by Tsallis is equal to that of  
Boltzmann-Gibbs and Shanoon (CAPEK; SHEEHAN, 2004; 
CUI, 2011). The entropic index, non-extensivity parameter m, is 
considered a measure of  the fractal nature of  the path of  a system 

in phase space. It is able to show the rapid and radical changes in 
behavior and phase (CAPEK; SHEEHAN, 2004).

Specification of  restrictions

The f(c) is a Probability Density Function and must satisfy 
Equation 8:

( )
m

h

c

c
 f c dc   1 =∫  	 (8)

One of  the simplest constraints is the mean or equilibrium 
sediment concentration by volume, called cD. The mean value may 
be known or obtained from observations, and can be expressed 
by Equation 9:

( ) [ ]    
m

h

c

D
c

cf c dc E c c= =∫  	 (9)

Entropy maximization

The entropy H of  c, given by Equation 7 can be maximized, 
according to Jaynes (1957), using the Lagrange multiplier method. 
For this purpose, the Lagrange function L can be expressed by 
Equation 10:

( ) ( ){ } ( ) ( )  
 

        
m m m

h h h

c c cm 1
0 1 D

c c c

f c
L 1 f c dc f c dc 1 cf c dc c

m 1
λ λ−    

= − − − − − −      −       
∫ ∫ ∫ 	 (10)

where λ0 and λ1 are the Lagrange multipliers. Differentiating 
Equation 10 with respect to f, highlighting f  as a variable and “c” 
as a parameter, and equating the derivative to zero, it is obtained:

( )       m 1
0 1

L 10 1 mf c 0
f m 1

λ λ−∂  = → − − − =  ∂ −
 	 (11)

Equation 11 leads to Equation 12

( )     

1
m 1

0 1
m 1 1f c c

m m 1
λ λ −

 
−   = − −  −   

 	 (12)

which represents the less biased density and probability function 
of  sediment concentration “c” based on Jaynes (1957).

Determination of  Lagrange multipliers

Equation 12 has unknown λ0 and λ1 that can be determined 
using Equations 8 and 9. The Lagrange multiplier λ1 is associated 
with the mean concentration and λ0 with the total probability. 
These multipliers have opposite signals, with λ1 positive and λ0 
negative. The substitution of  Equation 12 in Equation 8 leads to:

   
m

h

1
c

m 1
0 1

c

m 1 1 c dc 1
m m 1

λ λ −
 

−   − − =  −   
∫  	 (13)

The integration of  Equation 13 will be:

      

m m m
m 1 m 1 m 1

0 1 m 0 1 h
1

1 m 1 1 1c c 1
m m 1 m 1

λ λ λ λ
λ

− − −
 

−      − − − − − − =      − −       

	 (14)

Table 2. Conditions of  the Einstein and Chien (1955) experiment.

Profile
H U* D50

mm m/s mm
RunS1 138 0.115 1.3
RunS2 120 0.129 1.3
RunS3 120 0.133 1.3
RunS4 115 0.144 1.3
RunS5 109 0.144 1.3
RunS6 142 0.118 0.94
RunS7 142 0.118 0.94
RunS8 139 0.115 0.94
RunS9 135 0.118 0.94
RunS10 128 0.125 0.94
RunS11 133 0.0767 0.274
RunS12 132 0.0767 0.274
RunS13 134 0.0767 0.274
RunS14 124 0.0767 0.274
RunS15 124 0.0767 0.274
RunS16 119 0.0767 0.274

H= water depth. U*= mean velocity or shear velocity. D50 = 
diameter at which 50% of  the material is retained.
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Likewise, the substitution of  Equation 12 in Equation 9 
will be:

  
m

h

1
c

m 1
0 1 D

c

m 1 1c c dc c
m m 1

λ λ −
 

−   − − =  −   
∫  	 (15)

Equation 15 can be integrated by parts such as:

 

 

  

  

  
 

     

m m
m 1 m 1

1 D m 0 1 m

m
m 1

h 0 1 h
1

2m 1 2m 1
m 1 m 1

0 1 m 0 1 h

m 1c c c
m 1 m 1

1 m 1 1c c
m 1 2m 1

1 1c c
m 1 m 1

λ λ λ

λ λ
λ

λ λ λ λ

− −

−

− −
− −

   − = − − −   − −   

− − − − + − − 

 
    − − − − − −    − −     

 	  (16)

Equations 14 and 16 can be solved numerically for λ0 and 
λ1 for specified values of  c, cm, ch, and m.

Determination of  the Cumulative Distribution 
Function (CDF) and maximum entropy

Integrating Equation 12 from ch to c yields the Cumulative 
Distribution Function of  c, F(c), according to:

( )      

m m m
m 1 m 1 m 1

0 1 h 0 1
1

m 1 1 1 1F c c c
m m 1 m 1

λ λ λ λ
λ

− − −
 

−      = − − − − −−      − −       

	 (17a)

If  the flow of  sediments on the water surface is insignificant, 
that is, ch = 0, then Equation 17a becomes:

( )        

m m m
m 1 m 1 m 1

0 0 1
1

m 1 1 1 1F c c
m m 1 m 1

λ λ λ
λ

− − −
 

−      = − − − − −      − −       

	 (17b) 

Now, the maximum entropy of  c is obtained by inserting 
Equation 17b into Equation 7:

( )
( )

m
m 1

m h
1

2m 1 2m 1
m 1 m 1

0 1 m 0 1 h

m 1 1c  c
m 2m 1  1H c

m 1 1 1  c   c    
m 1 m 1

λ

λ λ λ λ

−

− −
− −

 
−  − + + +  −  =   −      − − − − − −     − −       

	 (18)

Equation 18 is expressed in terms of  λ0 and λ1, Lagrange 
multipliers, by the lower limit of  concentration, ch, and upper 
limit of  concentration cm.

Cumulative Distribution Function (CDF)

The cumulative distribution function of  “c”, F(c), in terms 
of  flow depth can be written as:

( ) 0

0 0

h y yF c 1
h h
−

= = −  	 (19)

Equating Equation 19 with Equation 17a, it becomes:

( )
m m m

m 1 m 1 m 1
0 1 h 0 1

1 0

m 1 1 1 1 yF c  c   c    1  
m m 1 m 1 h

λ λ λ λ
λ

− − −
 

−      = − − − − − − = −      − −       

	 (20)

Distribution of  sediment concentration

For simplicity, considering * 1
1 

m 1
λ λ= −

−
, then Equation 

20 can be written as:

( )

m 1
m m

m 1*
1 * 1 h

1 1 0

1 m m 1 y m 1c  1   c   
m 1 m h m

λ λ λ λ
λ λ

−

−
 

 − −  = − − − + − −    −    
 

	(21)

If  ch = 0, Equation 21 reduces to:

m 1
m m

m 1*
1 *

1 1 0

1 m m 1 y m 1c  1  
m 1 m h m

λ λ λ
λ λ

−

−
 

 − −  = − − − +    −    
 

 	 (22)

Equation 22 represents the defined sediment concentration 
distribution in terms of  flow depth.

Reparametrization

The distribution of  sediment concentration can be simplified 
using a dimensionless entropy parameter defined as:

1 m

1 m * 1

c 1 m   
c m 1
λµ

λ λ λ
= −

− −
 	 (23)

Dividing Equation 22 by cm, we obtain:

m 1
m m

m 1*
1 *

m 1 m 1 m 0

c 1 m m 1 y m 1 1    
c c c m 1 m h m

λ λ λ
λ λ

−

−
 

 − −  = − − − +    −    
 

 	 (24)

Since *

1 m

1 1
c
λ
λ µ

= − , μ from Equation 23, Equation 24 can 

be reformulated as:

m 1
m m

m 1

m m 0

c 1 m y1  1  1   
c m 1 c h

µ
µ

−

−

 
      = − − − +     −        

 	 (25)

If  ch = 0 at y = h0, Equation 25 reduces to:

m 1
m m

m 1

m

1 m0 1  1  1   
m 1 c

µ
µ

−

−

 
  

   = − − −   −      

 	 (26)

Equation 26 suggests:

( )
m

mm 1
m 1

m

m 1 1    
m 1 c

µ µ−
−

  = − − − 
 	 (27)

Substituting Equation 27 into Equation 25, the distribution 
of  the dimensionless sediment concentration with ch = 0 becomes:
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( ) ( )

m 1
m m m

m 1 m 1
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c 1 y1  1  1  1 1   1   
c h

µ µ
µ

−

− −

 
      = − − − + − − − −    
     

 

 	 (28)

Equation 28 expresses the sediment concentration 
distribution as a function of  the vertical distance y.

Reduction of  parameters

In order to estimate the sediment concentration distribution 
in a given section, it was used the probabilistic model of  Cui and 
Singh (2014), which can be visualized in Figure 1, expressed by 
Equation 29:

( )

m 1
m ma

m 1*
1 * 1 h

1 1 0

1 m m 1 y m 1c  1   c   
m 1 m h m

λ λ λ λ
λ λ

−

−
 

 − −  = + − − + + +    −    
 

	 (29)

Since * 1
1 

m 1
λ λ= −

−
 where:

c = concentration of  sediments at a vertical distance y, dimensionless; 
cm = maximum value of  C or concentration in the bed, dimensionless; 
ch = concentration on the water surface, dimensionless; m = entropy 
parameter, dimensionless; λ1 = Lagrange multiplier, dimensionless; 
h0 = depth of  flow, in meters; a = parameter related to the 
characteristics of  sediment particles.

Equation 29 differs from Equation 22 by the introduction 
of  parameter “a” which is related to particle characteristics such 
as size, roughness, among others (CUI; SINGH, 2014).

Equation 29 can be rewritten to any point (Equation 30) 
and to the one with the highest sediment concentration at the 
deepest point of  the river (Equation 31).
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m ma
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1 * 1 h

1 1 0
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m 1 m h m

λ λ λ λ
λ λ

−

−
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 

	(30)

( ) ( )
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−

−
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 

	 (31)

Reorganizing Equation 29 suggested by Cui and Singh 
(2014), we have:

( )

m 1
m ma
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m 1 m 1 h 0
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−

−
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	(32)

Inverting Equation 31 deduced in this work, it becomes:
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 	 (33)

Equating Equations 32 and 33:
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Simplifying the equality expressed in Equation 34, 

considering ( ) ,

ma
m 1

1 * 1 h
m 1 y m 1 T1 1   c

m D m
λ λ λ −− −   = − − + +      
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( ) ( )
m
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, we have:
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λ
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 	 (35)

Therefore, we obtain a system with three unknowns: 1  λ , 
,a  e m and two equations. The variables ch, c and cm, as well as y 

and h0 must be obtained in the field data. In this work the relation 
of  ( )exp 1  m F c λ= .

Equation 35 is the basis of  the developed method. Unlike 
previous work, the minimum concentration is not considered as 0.

In the simulation, besides the relation ( )exp 1 m F c λ=  of  m, 
it was adopted the function ( )( )/y ho *22a a'=  For the parameter “a”, 
where a’ is a parameter to be measured, y is the depth of  the point 
and ho is the maximum depth. As well as “m”, a’ is determined 
by the solution of  the system detailed in the item “Reduction of  
parameters”, presented in Equation 35, taking into consideration 
T1 and T2.

Validation

In order to evaluate efficiency of  the model, the following 
statistical coefficients were applied: Nash-Sutcliffe efficiency 
(NSE); coefficient of  determination (R2); Deviation between 
observed and simulated flows (D%); Pbias; ratio of  the root 
mean square error to the standard deviation of  measured data 
(RSR); e  root‑mean-square error (RMSE). Subsequently, their 
formulations are presented, where cobs and ccalc refer to the observed 
and calculated concentrations, respectively, in g/L.

According to Molnar (2011), the value of  the Nash-Sutcliffe 
coefficient indicates the adjustment of  the simulated data to those 
observed in the 1: 1 line, which can vary from -∞ to 1. Molnar 

Figure 1. Uniform flow of  sediments. Where c  (y) = concentration 
of  sediments at a vertical distance y, dimensionless; cm = maximum 
value of  C or concentration in the bed, dimensionless; ch = 
concentration on the water surface, dimensionless; h0 = depth 
of  flow, in meters; θ angle of  inclination of  the bed.
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(2011) presented the following classification for this coefficient, 
using daily simulation step: NSE> 0.8 the model is considered 
excellent; 0.8 <NSE <0.6 the model is considered very good; 
0.4 <NSE <0.6 the model is considered good, between 0.4 and 
0.2, satisfactory and <0.2 insufficient. According to Moriasi et al. 
(2007), NSE values above 0.5 qualify the model for simulation.

( )
( )

2N
obsi calcii 1

2N
obsi obsi 1

c c
NSE 1

c c
=

=

−
= −

−

∑

∑
 	 (36)

The R2 value, according to Willmott et al. (1985), is an 
indicator of  the correlation between observed and simulated 
values, with amplitude of  variation between 0 and 1, where the 
value 1 indicates a perfect fit. This coefficient is considered one 
of  the most sensitive statistics to extreme values. R2 values above 
0.5 are considered as acceptable (Moriasi et al., 2007).
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 	 (37)

The value of  D means the average trend of  the estimates 
produced by the model and, when positive, expresses a tendency of  
overestimation and when negative, of  underestimation. Liew et al. 
(2003) cited by Viola et al., (2012) present the following ranges 
and respective interpretations of  D: <10%, very good; between 
10% and 15%, good; between 15% and 25%, satisfactory and> 
25%, the model produces inadequate estimates regarding the trend.

( )
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i 1

obsi

c c *100
c
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=
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Pbias also measures deviation of  data. When positive, 
the model tends to overestimate the data and when negative, to 
underestimate the simulated data in relation to the measured ones. 
An ideal model would have a value of  0.

( ) ( )
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 	 (39)

RSR is the relation between the root mean square error 
to the standard deviation of  measured data:
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 	 (40)

The root-mean-square error allows to quantify the 
magnitude of  the deviations of  the simulated values in relation to 
the observed ones. The closer to 0, the better the data adjustment. 
It is expressed by:

( )2N
calci obsii 1 c c

RMSE
N

= −
= ∑  	 (41)

Moriasi  et  al. (2007) reported intervals of  values and 
performance evaluations for the recommended statistics and 
established guidelines for evaluation of  flow simulation models, 
sediment transport and nutrients. Based on this analysis, they 

recommended three quantitative statistics: Nash-Sutcliffe efficiency 
(NSE), percent bias (Pbias) and ratio of  the root mean square 
error to the standard deviation of  measured data (RSR), besides 
the graphic techniques, to be used in the evaluation of  models. 
In general, model simulation can be judged to be satisfactory if  
NSE> 0.50 and RSR <0.70, and if  PBIA <= 55% for sediments.

RESULTS AND DISCUSSION

Using the relation of  ( )exp 1 m F c λ= , it was possible to 
reduce the solution of  sediment concentration profile estimation 
to 2 unknowns.

It is possible to note in Figure 2 the estimate made with the 
data of  Coleman (1981). The profiles from 2 to 20 correspond to 
group 1, from 22 to 31 group 2 and 33 to 40 group 3. The data from 
group 1 have a granulometry of  0.105 mm, group 2 of  0.210 mm 
and group 3 of  0.420 mm. All Coleman data were simulated with 
a constant flow of  0.064 m3/s. Concentrations were minimal 
in the first experiments of  each group increasing until the last. 
Profiles 1, 21 and 32 had the concentration 0 and are not mentioned. 
Profiles 20, 31 and 40 had the highest concentrations.

It can be observed (Figure 2) that the model is better suited 
to profiles with high concentrations. Profiles 2, 3, 22 and 23 and 
all profiles of  Group 3 show differences between the measured 
and estimated values at the surface.

It can be seen from the D% value that the model 
overestimated the concentrations below 5 g/L of  the profiles 2 to 6 
of  Group 1 and 22 to 27 of  Group 2 as can be proved by the 
D% value (see Table 3). It also overestimated the concentrations 
below 10 g/L with a grain size of  0.420 mm from the Group’s 
33-40 profiles. Although profiles 2, 22, 33, 34 and 35 showed 
unsatisfactory results for NSE, all other profiles presented 
satisfactory results for R2.

Taking into account that the Pbias limit for sediments is 
55%, the measured data had values smaller than those observed 
only in profiles 2, 33, 34, 35 and 36. Therefore, by Pbias, there was 
no overestimation of  the profiles 3.4, 5.6, 22, 23, 24.25, 26, 27.37, 
38, 39 and 40 as verified by D%. The limit value of  D% is 25% 
(LIEW et al., 2003 cited by VIOLA et al., 2012), more restrictive than 
that of  55% for Pbias (MORIASI et al., 2007), since it is a reference 
for watershed modeling, however Pbias is specific for sediments.

Analyzing the data according to R2 and NSE, for Group 1, 
values above 0.92 and 0.84 for R2 and NSE, respectively, were obtained, 
except for profile 6. For Group 2, values higher than 0.89 and 0.76 
were obtained for R2 and NSE, respectively, with the exception 
of  profile 22. For Group 3, values above 0.88 and 0.72 for R2 and 
NSE, respectively, were obtained, except for profiles 33, 34 and 35. 
With the exception of  profiles 2, 6, 22, 33, 34 and 35, which 
present concentrations below 10 g/L, all other results presented 
high values, above 0.72 for NSE and above 0.88 for R2. This shows 
the efficiency of  the proposed method.

The profiles are suitable for RSR, with values below 0.7, 
except profiles 2, 6, 22, 33, 34 and 35, which have concentrations 
below 10 g/L.

As for RSME, it was found the highest value of  12.87.
In general, analyzing the set of  statistical coefficients, the 

model was efficient to determine sediment concentration profile in 
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Figure 2. Profiles of  sediment concentration measured by Coleman (1981) were identified by points and calculated in this work were 
identified by the solid lines. Where y (m) is the depth of  the flluxo given in meters and c (g / L) the sediment concentration given in g / L.
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Table 3. Summary of  the results of  this work using data from Coleman (1981).

Profile
c 

measured 
(g/L)

Parameters Calculated sediment concentration profile

λ1 a
c

estimated 
(g/L)

D % Error NSE R2 PBIAS RSR RMSE

2 3.3 0.020 1.03 a 8.48 8.9 396.6% Sup 61.8 -4.24 I 0.99 S -169% I 1.54 I 5.65
3 5.7 0.050 1.02 a 4.9 6.5 126.6% Sup 9.5 0.84 Exc 0.88 S -14% S 0.43 S 1.98
4 8.9 0.072 1.03 a 7.63 9.6 74.5% Sup 8.4 0.97 Exc 0.98 S -8% S 0.18 S 1.48
5 12.1 0.085 1.03 a 8.05 12.2 41.7% Sup 0.3 0.97 Exc 0.98 S 0% S 0.16 S 1.82
6 15.0 0.100 1.03 a 9.42 14.2 39.3% Sup -9.6 0.35 S 0.41 S 5% S 0.83 I 11.66
7 18.7 0.105 1.03 a 8.94 18.5 20.5% S -3.0 0.95 Exc 0.95 S 1% S 0.22 S 4.04
8 22.3 0.115 1.03 a 8.48 20.8 10.4% B -18.1 0.96 Exc 0.96 S 7% S 0.20 S 4.50
9 25.7 0.122 1.03 a 8.71 24.0 9.8% MB -20.7 0.96 Exc 0.97 S 7% S 0.19 S 5.04
10 29.7 0.130 1.03 a 8.48 26.3 4.7% MB -41.7 0.95 Exc 0.96 S 12% S 0.23 S 7.25
11 32.8 0.138 1.03 a 8.48 29.6 8.3% MB -38.9 0.95 Exc 0.97 S 10% S 0.21 S 7.94
12 34.9 0.139 1.03 a 8.48 31.4 -0.5% MB -41.3 0.96 Exc 0.97 S 10% S 0.20 S 7.70
13 38.4 0.142 1.03 a 8.48 33.2 -5.2% MB -62.6 0.94 Exc 0.96 S 14% S 0.23 S 9.47
14 41.3 0.145 1.03 a 8.48 35.9 -5.4% MB -64.3 0.94 Exc 0.96 S 13% S 0.23 S 10.45
15 43.9 0.150 1.03 a 8.48 38.3 -5.9% MB -67.2 0.95 Exc 0.96 S 13% S 0.22 S 11.22
16 46.3 0.152 1.03 a 8.71 40.8 -4.4% MB -66.4 0.95 Exc 0.96 S 12% S 0.21 S 11.50
17 46.2 0.155 1.03 a 8.48 42.2 -2.0% MB -49.0 0.96 Exc 0.97 S 9% S 0.19 S 10.80
18 47.0 0.156 1.03 a 8.48 42.7 -5.7% MB -51.9 0.95 Exc 0.97 S 9% S 0.20 S 11.40
19 50.3 0.158 1.03 a 8.48 45.7 -1.8% MB -55.3 0.96 Exc 0.97 S 9% S 0.19 S 11.41
20 52.6 0.164 0 45.7 -5.1% MB -82.5 0.96 Exc 0.97 S 13% S 0.19 S 12.87
22 2.8 0.040 1 a 3.32 7.1 416.2% Sup 47 -4.21 I 0.97 S -141% I 1.11 I 4.39
23 5.5 0.058 1 a 3.32 8.1 157.8% Sup 31.0 0.76 MB 0.96 S -47% S 0.48 S 2.83
24 8.5 0.080 1 a 3.04 9.1 78.4% Sup 7.3 0.97 Exc 0.98 S -7% S 0.18 S 1.63
25 11.5 0.100 1 a 3.32 13.2 57.9% Sup 20.3 0.94 Exc 0.96 S -15% S 0.24 S 3.37
26 14.2 0.100 1 a 3.32 13.9 29.2% Sup -3.1 0.97 Exc 0.97 S 2% S 0.18 S 2.78
27 16.9 0.114 1 a 3.32 16.7 26.6% Sup -3.0 0.96 Exc 0.97 S 1% S 0.18 S 3.60
28 19.9 0.122 1 a 3.32 19.6 18.4% S -2.7 0.97 Exc 0.97 S 1% S 0.17 S 3.96
29 22.6 0.130 1 a 3.32 21.9 14.4% B -8 0.95 Exc 0.96 S 3% S 0.20 S 5.74
30 25.2 0.136 1 a 3.32 24.5 10.6% B -8.6 0.95 Exc 0.96 S 3% S 0.21 S 6.86
31 26.9 0.135 1 a 3.52 27.7 14.1% MB 9.2 0.91 Exc 0.92 S -3% S 0.29 S 10.10
33 0.7 0.030 1.02 a 1.59 5.8 1658.7% Sup 62.4 -57.67 I 0.90 S -799% I 1.71 I 5.47
34 1.1 0.030 1.02 a 1.68 5.9 1085.9% Sup 57.4 -12.19 I 0.92 S -421% I 1.56 I 4.92
35 1.9 0.030 1.02 a 1.68 6.0 689.5% Sup 49.4 -1.83 I 0.95 S -218% I 1.28 I 4.16
36 3.2 0.050 1.02 a 1.68 5.3 328.9% Sup 24.9 0.72 MB 0.95 S -65% I 0.55 S 2.41
37 3.8 0.056 1.02 a 1.68 5.4 214.1% Sup 19.6 0.83 Exc 0.94 S -43% S 0.42 S 2.09
38 4.7 0.062 1.02 a 1.68 5.6 150.4% Sup 10.9 0.86 Exc 0.89 S -19% S 0.38 S 2.22
39 5.3 0.072 1.02 a 1.68 6.1 116.7% Sup 9.3 0.92 Exc 0.93 S -15% S 0.29 S 2.04
40 5.2 0.070 1.02 a 1.68 6.0 110.1% Sup 9.6 0.91 Exc 0.92 S -15% S 0.30 S 2.053

Where Exc = Excellent; MB = Very Good; B = Good; S = Satisfactory; Sub = Underestimate; Sup = Overestimate; I = Unsatisfactory. c = concentration of  sediments 
at a vertical distance y; λ1 = Lagrange multiplier, dimensionless;  a = parameter related to the characteristics of  sediment particles. Nash-Sutcliffe efficiency (NSE); 
coefficient of  determination (R2); Deviation between observed and simulated flows (D%); Pbias; ratio of  the root mean square error to the standard deviation of  
measured data (RSR); e root‑mean-square error (RMSE).

all profiles except for profiles 2, 22, 33, 34 and 35, both with low 
concentrations. Profile 6 was anomalous and did not fit as well.

The simulation performed with Einstein and Chien 
(1955) is shown in Figure 3 and Table 4. Each RunS is a sediment 
concentration profile with different velocities and granulometries, 
detailed in Table 2.

The calibration of  the model was performed based on the 
coefficients of  R2 and NSE. In order to identify the best results, 
the parameters which brought the highest values of  NSE and R2 
were adopted, respectively, to the concentration profile.

The model of  the present study did not overestimate or 
underestimate the sediment concentration of  the data of  Einstein 
and Chien (1955) according to D% and Pbias%, contrary to the 
data obtained by Coleman (1981).

The RSR values were satisfactory for all profiles.
In Table  4 the measured concentrations X estimated 

concentrations can be visualized. There are acceptable results for 
NSE and R2 for all profiles with NSE higher than 0.73 and R2 
higher than 0.81. The cumulative distribution function (CDF) was 
not well estimated only in the Run6.2 profile. This may be due to 
the fact that practically the whole profile is in low concentrations.

The comparison of  the simulation with the results of  Cui 
(2011) can be visualized in Figure 4 and Table 5. One can observe 
the adherence of  the calculated and measured data.

The square error of  RunS1, RunS11 and RunS13 profiles 
of  65.5; 16.43 and 4269, respectively, calculated in this study were 
lower than those found by Cui (2011), of  84.17; 21.4 and 47447, 
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using the Tsallis entropy theory and the Rouse Equation, as can 
be seen in Table 5.

Cui and Singh (2014) compared the estimation of  sediment 
discharge by the entropy theory by Tsallis and Shannon with the 
same data from Coleman (1981) and Einstein and Chien (1955). 

The authors observed that, although there were no significant 
differences between the results, the Tsallis entropy theory presents 
more accurate results. In order to improve the results, the authors 
used correction factors. In the same work, they compared the 
results with the Prandtl von Karman methods, Rouse equation 

Figure 3. Sediment concentration profiles measured by Einstein and Chien (1955) were identified by points and calculated in this work 
were identified by the continuous lines. Where y (m) is the depth of  the flluxo given in meters and c (g/L) the sediment concentration 
given in g/L.

Table 4. Summary of  the results of  this work using data from Einstein and Chien (1955).

Profile
c 

measured 
(g/L)

Parameters Sediment concentration profile calculated

λ1 a
c 

estimated 
(g/L)

D % Error NSE R2 PBIAS RSR RMSE

RunS1 34.83 0.29 1.22 a 2.93 30.49 6.4% MB -2.92 1.00 Exc 0.983 S 2% S 0.027 S 0.60
RunS2 59.92778 0.32 1.36 a 3.6 56.27 19.6% S 19.65 1.00 Exc 0.988 S -3% S 0.034 S 1.40
RunS3 77.91111 0.19 1.3 a 2.93 71.86 13.7% B 12.39 1.00 Exc 0.976 S -1% S 0.021 S 1.11
RunS4 106.9867 0.09 1.35 a 2.93 95.77 0.6% MB -13.91 1.00 Exc 0.965 S 2% S 0.016 S 1.18
RunS5 172.2778 0.03 1.03 a 1.59 162.02 12.8% B 55.53 1.00 Exc 0.998 S -3% S 0.022 S 2.36

RunS6_1 11.00333 12 1.48 a 2.37 10.43 15.4% S 6.54 0.95 MB 0.999 S -8% S 0.285 S 1.28
RunS6_2 17.9625 0.2 0.91 a 0.66 16.89 15.3% S 11.23 0.98 Exc 0.941 S 4% S 0.170 S 1.50
RunS7 34.49 0.47 1.33 a 2.86 30.17 22.6% S 2.38 1.00 Exc 0.993 S 0% S 0.028 S 0.58
RunS8 42.4775 0.45 1.22 a 2.93 37.46 23.8% S -3.53 1.00 Exc 0.981 S 2% S 0.020 S 0.63
RunS9 75.22143 0.11 1.17 a 1.88 67.53 15.4% S 10.23 1.00 Exc 0.996 S -1% S 0.022 S 1.13
RunS10 106.4688 0.09 1.2 a 2.13 98.89 18.7% S 32.60 1.00 Exc 0.988 S -3% S 0.025 S 1.90
RunS11 21.09429 13 1.27 a 2.6 21.25 -1.1% MB 2.29 1.00 Exc 0.977 S 1% S 0.061 S 0.53
RunS12 85.95125 1.09 1.17 a 3.91 81.22 21.6% S 35.62 1.00 Exc 0.985 S -4% S 0.029 S 1.99
RunS13 151.4222 0.54 1.19 a 5.55 133.74 7.2% MB -29.96 1.00 Exc 0.973 S 3% S 0.009 S 1.17
RunS14 157.72 0.59 1.19 a 6.27 141.84 22.9% S -52.48 1.00 Exc 0.969 S 43% S 0.015 S 2.01
RunS15 269.6642 0.352 1.2 a 6.39 243.83 23.8% S -72.02 1.00 Exc 0.947 S 16% S 0.011 S 2.35
RunS16 286.1833 0.45 1.18 a 5.44 267.27 18.3% S 23.86 1.00 Exc 0.962 S 26% S 0.006 S 1.35
Where Exc = Excellent; MB = Very Good; B = Good; S = Satisfactory; Sub = Underestimate; Sup = Overestimate; I = Unsatisfactory. c = concentration of  sediments 
at a vertical distance y; λ1 = Lagrange multiplier, dimensionless;  a = parameter related to the characteristics of  sediment particles. Nash-Sutcliffe efficiency (NSE); 
coefficient of  determination (R2); Deviation between observed and simulated flows (D%); Pbias; ratio of  the root mean square error to the standard deviation of  
measured data (RSR); e root‑mean-square error (RMSE).
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and found that the methods of  estimation of  sediment discharge 
based on the entropy of  both Tsallis and Shannon presented better 
results. Cui (2011) also states that Tsallis’s theory represents the 
sediment concentration profile better than Shannon’s. The use of  

( ) exp  1m F c λ=  in addition to producing better results, a R2 higher 
than Cui (2011) with m = 3, it reduces the number of  parameters 
and consequently the computational effort.

However, Cui (2011) tested the theory of  entropy with the 
methods of  Chiu (1987) and Tsallis, and both could represent the 
low concentrations below 10 g/L better than in the present work. 
Therefore, a limitation of  using the method proposed in this work 
is the estimation of  concentrations below 10 g/L.

It can be verified that it was possible to determine, by the 
proposed method, the sediment concentration with different 
velocities and granulometry. The method can be applied for various 
flow conditions and granulometry above 10 g/L.

CONCLUSION

According to the analysis of  results. it can be concluded:

1)	 It is possible to use the maximum entropy principle to 
simulate sediment concentration profile under different 
flow conditions, granulometry and concentration;

2)	 The use of  the relation ( )exp 1 m F c λ=  facilitates calculations, 
reduces the number of  model parameters and consequently 
computational effort, and better represent the variations 
of  sediment concentration along the profile;

3)	 The model satisfactorily represents concentrations above 
10 g/L;

4)	 The method can be applied in other estimations, besides 
sediments, since changes are made in the equation according 
to the type of  parameter to be determined.

REFERENCES

BROWN, C. B. Sediment transport. In: ROUSE, H. (Ed.). Engineering 
hydraulics. New York: Wiley, 1950.

CAPEK, V.; SHEEHAN, D. P. Challenges to the second law of  
thermodynamics: theory and experiment. In: MERWE, A. V. 
D. Fundamental theories of  physics. Denver: University of  Denver, 
2004. 367 p. v. 146.

CARVALHO, N. O. Hidrossedimentologia prática. 2. ed. Rio de Janeiro: 
Interciência, 2008. 599 p.

CHAO-LIN CHIU, M. Entropy and probability concepts. Journal 
of  Hydraulic Engineering, v. 113, n. 5, p. 583-599, 1987. http://dx.doi.
org/10.1061/(ASCE)0733-9429(1987)113:5(583). 

CHIU, C. L. Entropy and probability concepts in hydraulics. Journal 
of  Hydraulic Engineering, v. 113, n. 5, p. 583-599, 1987. http://dx.doi.
org/10.1061/(ASCE)0733-9429(1987)113:5(583). 

CHIU, C. L. Entropy and 2-D velocity distribution in open channels. 
Journal of  Hydraulic Engineering, v. 114, n. 7, p. 738-756, 1988. http://
dx.doi.org/10.1061/(ASCE)0733-9429(1988)114:7(738). 

Figure 4. Profile of  sediment concentration measured by Einstein and Chien (1955) were identified by points, calculated by Cui (2011) 
were dashed and in this work by continuous lines. Where y/D is the relation of  the depth of  the point y by the total depth D, and C/
Cm is the ratio of  the concentration at the point y by the maximum concentration Cm.

Table 5. Comparison of  the estimate of  this work with other methods.

Profile
Tsallis Rouse Equation In this work

Square 
Error NSE R2 Square 

Error NSE R2 Square 
Error NSE R2

RunS1 84.17 0.98 0.98 65.5 0.98 0.98
RunS11 21.4 0.97 0.98 61.33 0.91 0.97 16.43 0.97 0.98
RunS13 47447 0.59 0.79 22910 0.85 0.94 4269 0.97 0.97

Nash-Sutcliffe efficiency (NSE); coefficient of  determination (R2).

http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1988)114:7(738)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1988)114:7(738)


RBRH, Porto Alegre, v. 22, e23, 2017

Principle of  maximum entropy in the estimation of  suspended sediment concentration

CHIU, C. L.; HSU, S. M.; TUNG, N. C. Efficient methods of  
discharge measurements in rivers and streams based on the 
probability concept. Hydrological Processes, v. 19, n. 20, p. 3935-3946, 
2005. http://dx.doi.org/10.1002/hyp.5857. 

CHIU, C.; JIN, W.; CHEN, Y. Mathematical models of  distribution 
of  sediment concentration. Journal of  Hydraulic Engineering, v. 126, 
n. 1, p. 16-23, 2000. http://dx.doi.org/10.1061/(ASCE)0733-
9429(2000)126:1(16). 

CHIU, C.-L.; JIN, W. Entropy-based modeling and measurement of  
sediment concentration. In: CONGRESS OF THE INTERNATIONAL 
ASSOCIATION OF HYDRAULIC RESEARCH, 27., 1997. 
Proceedings... Madrid: IAHR, 1997. p. 1203-1208.

COLBY, B. R.; HEMBREE, C. H. Computation of  total sediment 
discharge Niobrara River near Cody. Nebraska: U.S. Geological Survey 
Water-Supply. 1955. 187 p. Paper 1357.

COLEMAN, N. L. Velocity profiles with suspended on the 
open-channel distribution. Water Resources Research, v. 22, n. 10, p. 
1377-1384, 1981. http://dx.doi.org/10.1029/WR022i010p01377. 

CONTE, A. E. Entropia e distribuição exponencial simples. In: 
CONTE, A. E. Aspectos de um hidrograma máximo mais provável. São 
Paulo: Clube de Autores, 2005. p. 29-39.

CUI, H. Estimation of  velocity distribution and suspended sediment 
discharge in open channels using entropy. 2011. 212 f. Thesis (Doctoral 
Dissertation) - Office of  Graduate Studies, Texas A&M University, 
Texas, 2011.

CUI, H.; SINGH, V. P. Suspended sediment concentration in open 
channels using tsallis entropy. Journal of  Hydrologic Engineering, v. 
19, n. 5, p. 966-977, 2014. http://dx.doi.org/10.1061/(ASCE)
HE.1943-5584.0000865. 

DESHPANDE, V.; KUMAR, B. Review and assessment of  the 
theories of  stable alluvial channel design. Water Resources, v. 39, n. 4, 
p. 481-487, 2013. http://dx.doi.org/10.1134/S0097807812040033. 

EINSTEIN, H. A. The bed load function for sediment transportation in 
open channels. Washington: Soil Conservation Service, USDA, 1950. 
(Technical Bulletin, 1026).

EINSTEIN, H. A.; BARBAROSSA, N. L. River channel roughness. 
Transactions of  the American Society of  Civil Engineers, v. 117, p. 1121-
1132, 1952.

EINSTEIN, H. A.; CHIEN, N. Effects of  heavy sediment concentration 
near the bed on velocity na sediment distribution. Berkeley: University of  
California, 1955. (M. R. D. Sediment Series, 8).

ESPILDORA, B.; AMOROCHO, J. Entropy in the assessment 
of  uncertainty in hydrologic systems and models. Water Resources 
Research, v. 9, n. 6, p. 1511-1522, 1973. http://dx.doi.org/10.1029/
WR009i006p01511. 

GAN, Y.; DUAN, Q.; GONG, W.; TONG, C.; SUN, Y.; CHU, W.; 
YE, A.; MIAO, C.; DI, Z. A comprehensive evaluation of  various 
sensitivity analysis methods: a case study with a hydrological model. 

Environmental Modelling & Software, v. 51, p. 269-285, 2014. http://
dx.doi.org/10.1016/j.envsoft.2013.09.031. 

GOMEZ, B.; PHILLIPS, J. Deterministic uncertainty in bed load 
transport. Journal of  Hydraulic Engineering, v. 125, n. 3, p. 305-308, 
1999. http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:3(305). 

HANCOCK, J. C. An introduction to the principle of  communication 
theory. New York: McGraw-Hill, 1961. 254 p.

HUSAIN, T. Hydrologic uncertainty measure and network design. 
Water Resources Bulletin, v. 25, n. 3, p. 527-534, 1989. http://dx.doi.
org/10.1111/j.1752-1688.1989.tb03088.x. 

JAYNES, E. T. Information theory and statistical mechanics. 
Information Theory and Statistical Mechanics, v. 106, p. 620, 1957.

KUMBHAKAR, M.; GHOSHAL, K. One-dimensional velocity 
distribution in open channels using Renyi entropy. Stochastic 
Environmental Research and Risk Assessment, 2016. In press.

LIEN, H.-P.; TSAI, F.-W. Sediment concentration distribution 
of  debris flow. Journal of  Hydraulic Engineering, v. 129, n. 12, 
p. 995-1000, 2003. http://dx.doi.org/10.1061/(ASCE)0733-
9429(2003)129:12(995). 

LUO, H.; SINGH, V. P. Entropy theory for two-dimensional 
velocity distribution. Journal of  Hydrologic Engineering, v. 16, n. 4, 
p. 303-315, 2011. http://dx.doi.org/10.1061/(ASCE)HE.1943-
5584.0000319. 

MERTEN, G. H.; MINELLA, J. P. G.; HOROWITZ, A. J.; 
MORO, M. Determinação da concentração de sedimentos em suspensão 
em rios com o uso de turbidímetro. Porto Alegre: Edição de Gustavo 
H. Merten, 2014. 97 p.

MINEI, N. Um método expedito para a medição de vazão em rios e 
canais abertos. 1999. 123 f. Thesis (Doctoral Dissertation) - Escola 
Politécnica, Universidade de São Paulo, São Paulo, 1999.

MOLNAR, P. Calibration: watershed modelling, SS. Switzerland: 
Institute of  Environmental Engineering, Chair of  Hydrology and 
Water Resources Management, ETH Zürich, 2011.

MORAMARCO, T.; CORATO, G.; MELONE, F.; SINGH, V. 
P. An entropy-based method for determining the flow depth 
distribution in natural channels. Journal of  Hydrology, v. 497, p. 
176-188, 2013. http://dx.doi.org/10.1016/j.jhydrol.2013.06.002. 

MORIASI, D. N.; ARNOLD, J. G.; VAN LIEW, M. W.; BINGNER, 
R. L.; HARMEL, R. D.; VEITH, T. L. Model evaluation guidelines 
for systematic quantification of  accuracy in watershed simulations. 
Transactions of  the ASABE, v. 50, n. 3, p. 885-900, 2007. http://
dx.doi.org/10.13031/2013.23153. 

MUKHOPADHYAY, B.; KHAN, A. Boltzmann-Shannon entropy 
and river flow stability within Upper Indus Basin in a changing 
climate. International Journal of  River Basin Management, v. 13, n. 1, p. 
87-95, 2015. http://dx.doi.org/10.1080/15715124.2014.965718. 

ONGLEY, E. Water quality monitoring: a practical guide to the design and 
implementation of  freshwater quality studies and monitoring programmes. 

http://dx.doi.org/10.1002/hyp.5857
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:1(16)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:1(16)
http://dx.doi.org/10.1029/WR022i010p01377
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000865
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000865
http://dx.doi.org/10.1134/S0097807812040033
http://dx.doi.org/10.1029/WR009i006p01511
http://dx.doi.org/10.1029/WR009i006p01511
http://dx.doi.org/10.1016/j.envsoft.2013.09.031
http://dx.doi.org/10.1016/j.envsoft.2013.09.031
http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:3(305)
http://dx.doi.org/10.1111/j.1752-1688.1989.tb03088.x
http://dx.doi.org/10.1111/j.1752-1688.1989.tb03088.x
http://dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:12(995)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:12(995)
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000319
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000319
http://dx.doi.org/10.1016/j.jhydrol.2013.06.002
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/10.1080/15715124.2014.965718


RBRH, Porto Alegre, v. 22, e23, 2017

Martins and Poleto

Geneva: United Nations Environment Programme, World Health 
Organization, 1996. 15 p.

PAIVA, L. E. D. A influência do diâmetro representativo do material do 
leito nas fórmulas de calculo do transporte de sedimentos em escoamentos 
com superfície 50 livre. 2007. 384 f. Thesis (Doctoral Dissertation) - 
Universidade Estadual de Campinas, Campinas, 2007.

POLETO, C.; MERTEN, G. H.; MINELLA, J. P. The identification 
of  sediment sources in a small urban watershed in southern Brazil: 
An application of  sediment fingerprinting. Environmental Technology, 
v. 30, n. 11, p. 1145-1153, 2009. PMid:19947145. http://dx.doi.
org/10.1080/09593330903112154. 

RESNICK, H. Fundamentos de física: mecânica. 8. ed. Rio de Janeiro: 
LTC, 2008. v. 1.

ROUSE, H. Modern conceptions of  the mechanics of  turbulence. 
Transaction of  the. American Society of  Civil Engineers, v. 102, n. 1, p. 
463-543, 1937.

SHANNON, C. E. A mathematical theory of  communication. 
The Bell System Technical Journal, v. 27, n. 4, p. 623-656, 1948. http://
dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x. 

SIMONS, D. B.; SENTÜRK, F. Sediment transport tecnology and water 
resources publications. Colorado: Fort Collins, 1992. 897 p.

SING, V. P.; KRSTANOVIC, P. F.; LANE, L. J. Stochastic models 
of  sediment yield. Louisian: Elsevier, 1988.

SINGH, V. P. Hydrologic modelling using entropy. Journal of  the 
Institution of  Engineers, v. 70, p. 55-60, 1989.

SINGH, V. P. The use of  entropy in hydrology and water resources. 
Issue Hydrological Processes, v. 11, n. 6, p. 587-626, 1997. http://
dx.doi.org/10.1002/(SICI)1099-1085(199705)11:6<587::AID-
HYP479>3.0.CO;2-P. 

SINGH, V. P. Entropy-based parameter estimation in hydrology. Amsterdam: 
Water Science and Technology Library, 1998.

SINGH, V. P. Hydrologic synthesis using entropy theory. Journal of  
Hydrologic Engineering, v. 16, n. 5, p. 421-433, 2011. http://dx.doi.
org/10.1061/(ASCE)HE.1943-5584.0000332. 

SINGH, V. P.; CUI, H. Modeling sediment concentration in debris 
flow by Tsallis entropy. Physica A: Statistical Mechanics and its 
Applications, v. 420, p. 49-58, 2015.

SINGH, V. P.; KRSTANOVIC, P. F. A stochastic model for 
sediment yield using the principle of  maximum entropy. Water 
Resources Research, v. 23, n. 5, p. 781-793, 1987. http://dx.doi.
org/10.1029/WR023i005p00781. 

SINGH, V. Probability distribution of  rainfall-runoff  using entropy 
theory. Transactions of  the ASABE, v. 55, n. 5, p. 1733-1744, 2012. 
http://dx.doi.org/10.13031/2013.42364. 

SONUGA, J. O. Entropy principle applied to the rainfall-runoff  
process. Journal of  Hydrology, v. 30, n. 1-2, p. 81-94, 1976. http://
dx.doi.org/10.1016/0022-1694(76)90090-1. 

SUBCOMMITTEE ON SEDIMENTATION – SOS. Determination 
on fluvial sediment discharge. Minneapolis: Inter-Agency on Water 
Resources, 1963. Report. v. 14.

TOFFALETI, F. B. Definitive computations of  sand discharge 
in rivers. Journal of  the Hydraulics Division, v. 95, n. HY1, p. 225-
248, 1969.

TSALLIS, C. Possible generalization of  Boltzmann-Gibbs statistics. 
Journal of  Statistical Physics, v. 52, n. 1-2, p. 479-487, 1988. http://
dx.doi.org/10.1007/BF01016429. 

VANONI, V. A. Sedimentation engineering. New York: ASCE, 1977.

VIOLA, M. R. C. R.; GIONGO, M.; BESKOW, S.; SANTOS, A. 
F. Hydrological modeling in a watershed of  the Lower Araguaia 
River Basin, TO. Journal of  Biotechnology and Biodiversity, v. 3, n. 3, 
p. 38-47, 2012.

WANG, D.; ZHU, Y. Principle of  maximum entropy and its 
application in hydrology and water resources. Shui Kexue Jinzhan, 
v. 12, n. 3, p. 424-430, 2001.

WEIJS, S. V.; SCHOUPS, G.; VAN DE GIESEN, N. Why 
hydrological predictions should be evaluated using. Hydrology and 
Earth System Sciences, v. 14, n. 12, p. 2545-2558, 2010. http://dx.doi.
org/10.5194/hess-14-2545-2010. 

WILLMOTT, C. J.; ACKLESON, S. G.; DAVIS, R. E.; FEDDEMA, 
J. J.; KLINK, K. M.; LEGATES, D. R.; O’DONNELL, J.; ROWE, 
C. M. Statistics for evaluation and comparison of  models. Journal 
of  Geophysical Research, v. 90, n. C5, p. 8995-9005, 1985. http://
dx.doi.org/10.1029/JC090iC05p08995. 

WORLD METEOROLOGICAL ORGANIZATION – WMO. 
Guide to hydrological practices. Geneva, 1981. v. 168.

XU, G.; ZHAO, L. Analysis of  fluvial process based on information 
entropy. Journal of  Tianjin University Science and Technology, v. 43, p. 
347-353, 2013.

YEVJEVICH, V. Probability and statistics in hydrology. Fort Collins: 
Water Resources Publications, 1972.

Authors contributions

Patrícia Diniz Martins: Confection and analysis of  the article.

Cristiano Poleto: Orientation and review of  the article.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19947145&dopt=Abstract
http://dx.doi.org/10.1080/09593330903112154
http://dx.doi.org/10.1080/09593330903112154
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1002/(SICI)1099-1085(199705)11:6%3c587::AID-HYP479%3e3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1099-1085(199705)11:6%3c587::AID-HYP479%3e3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1099-1085(199705)11:6%3c587::AID-HYP479%3e3.0.CO;2-P
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000332
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000332
http://dx.doi.org/10.1029/WR023i005p00781
http://dx.doi.org/10.1029/WR023i005p00781
http://dx.doi.org/10.13031/2013.42364
http://dx.doi.org/10.1016/0022-1694(76)90090-1
http://dx.doi.org/10.1016/0022-1694(76)90090-1
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.5194/hess-14-2545-2010
http://dx.doi.org/10.5194/hess-14-2545-2010
http://dx.doi.org/10.1029/JC090iC05p08995
http://dx.doi.org/10.1029/JC090iC05p08995

