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ABSTRACT

The temporal distribution of  design rainfall hyetographs can be obtained through various procedures. One such method involves 
using temporal distribution curves to disaggregate a rainfall value of  longer duration into chronological values within shorter time 
intervals. This is demonstrated by SCS distribution curves for durations of  6 and 24 hours and the well-known Huff  curves. Another 
approach involves deriving temporal distribution using design hyetograph calculation methods, such as the Chicago and alternating 
block methods, based on Intensity-Duration-Frequency (IDF) equations. This paper aims to combine these approaches and develop 
universal equations capable of  accurately fitting smooth rainfall time distribution curves. The advantage is the replacement of  tables, 
like SCS and Huff, with analytical equations, enhancing usability in spreadsheets. Furthermore, these universal equations can determine 
the temporal rainfall distribution using an IDF equation or fitting a specified design hyetograph like Euler type II. Four numerical 
examples are provided.
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RESUMO

A distribuição temporal dos hietogramas de precipitação de projeto pode ser obtida através de diversos procedimentos. Um desses 
métodos envolve a utilização de curvas de distribuição temporal para desagregar um valor de precipitação de maior duração em valores 
cronológicos dentro de intervalos de tempo mais curtos. Isto é demonstrado pelas curvas de distribuição SCS para durações de 6 e 
24 horas e pelas conhecidas curvas de Huff. Outra abordagem envolve derivar a distribuição temporal usando métodos de cálculo de 
hietograma de projeto, como os métodos de Chicago e de blocos alternados, com base em equações de Intensidade-Duração-Frequência 
(IDF). Este artigo visa combinar essas abordagens e desenvolver equações universais capazes de ajustar com precisão curvas suaves de 
distribuição temporal da chuva. A vantagem é a substituição de tabelas, como as do SCS e Huff, por equações analíticas, melhorando a 
usabilidade em planilhas. Além disso, essas equações universais podem determinar uma distribuição temporal da precipitação usando 
uma equação IDF ou ajustando um hietograma de projeto específico como o Euler tipo II. São fornecidos quatro exemplos numéricos.

Palavras-chave: Distribuição temporal das chuvas; Curvas SCS; Curvas Huff; IDF; Desagregação de chuvas.
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INTRODUCTION

The availability of  a standardized rainfall time distribution 
curve simplifies the process of  obtaining rainfall heights at shorter 
chronological intervals from a rainfall accumulation over an extended 
period. Classic examples of  such curves include the SCS rainfall 
percentage distribution curves for 24-hour rainfall, which were 
established for four regions in the United States (United States 
Department of  Agriculture, 1986), as well as the dimensionless Huff  
curves (Huff, 1990), which apply to both rainfall height and duration.

Typically, curves like those of  SCS and Huff  are presented 
in tabular format or integrated within more complex computer 
applications like TR-55 (United States Department of  Agriculture, 
1986). Working with tabular data might be difficult for people who 
prefer spreadsheets. This problem can be mitigated by introducing 
equations that replicates such tables or distributions.

As a result, by making it compatible with handheld calculators 
or spreadsheets, the suggested equations intend to simplify the 
process of  getting design hyetographs. At the same time, these 
universal equations connect time distribution curves, IDF equations, 
and coefficients for the disaggregation of  daily rainfall episodes.

While examples showcasing the compatibility of  the universal 
equations with SCS and Huff  curves are provided, this article 
does not delve into the practical merits of  these methodologies 
in real-world scenarios. The primary objective of  the article is to 
illustrate the adaptability (universality) of  a well-fitted model to 
any rainfall distribution curve. For a more in-depth understanding 
of  the application of  SCS and Huff  methods, it is recommended 
to refer to the works of  Chin (2023), Fontoura (2019), Yin et al. 
(2016), and Back (2011).

METHODOLOGY

The methodology begins with the temporal cumulative 
equations of  a design hyetograph, as outlined by Silveira (2016), 
derived from the Chicago method (Keifer & Chu, 1957). These 
equations consist of  one for the period before the peak time and 
another for the period after the peak time.
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“Pt” represents the cumulative rainfall height up to the 
time instant “t” while “γ” is a parameter that varies between 
0 and 1, determining the position of  the intensity peak within 
the total duration. “PTOT” stands for the accumulated rainfall of  
the entire hyetograph, and “tp” signifies the time instant at which 
the rain intensity peak occurs. The parameters “a,” “b,” and “n” 

are derived from the Sherman-type Intensity-Duration-Frequency 
(IDF) equation, expressed as:

( )
t n

ai
t b

=
+

	 (3)

The rain intensity with duration “t” is denoted as “it”, 
with “a,” “b,” and “n” being parameters that define the location 
and probability of  occurrence. The parameter “a” is commonly 
determined using an expression such as:

ma k T= 	 (4)

In this case, “T” indicates the return period in years, while 
“k” and “m” are constants.

Given that Equations 1 and 2 reflect chronological cumulated 
rainfall heights through time in a continuous way with no pauses, in 
order to standardize the rainfall variable (expressed as a percentage 
of  total rainfall), it suffices to divide these equations by “PTOT”. 
The IDF equation can be used to achieve this normalization:
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Performing this normalization yields the following equations:
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After the peak
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Now, we can get the following equations by canceling out 
the “a” in the numerator with the “a” in the denominator and 
using an algebraic manipulation of  multiplying the equation by 
(tTOT/tTOT)^n, where “tTOT“ is the total duration of  the hyetograph, 
keeping in mind that tp = γ.tTOT, we reach the following equations:
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This equation preserves continuity throughout time, which 
means it stays valid regardless of  time interval.

The ratios Pt/PTOT, t/tTOT and b/tTOT are dimensionless; thus 
the dimensionless expressions for the continuous time distribution 
curve of  rainfall heights over time are given by :
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Here, Pt´ (=Pt/PTOT) represents the dimensionless accumulated 
precipitation, ranging between 0 and 1. Similarly t´ (=t/tTOT) 
denotes the dimensionless time, also varying between 0 and 1. 
Additionally, b´ = b/tTOT, signifies the normalized parameter “b´”.

The resulting equations were validated by fitting them to 
the SCS Type I and IA, SCS Type II and Type III distributions 
(United States Department of  Agriculture, 1986), as well as the 
Huff  curves proposed by Huff  (1990). For this purpose, the 
SolverTM module within Microsoft ExcelTM spreadsheet software 
was utilized. The objective functions chosen for minimization 
were the Mean Squared Error (MSE) and the Mean Squared 
Percentage Error (MSPE). The parameters subjected to fitting 
were b´, n and γ.

RESULTS

Fitting the SCS distributions

The Type I and IA, Type II, and Type III curves account 
for the geographical variations in rainfall. Types I and IA reflect 
the maritime climate of  the Pacific coast of  the USA, characterized 
by wet winters and dry summers. The Type II distribution is 
applicable to almost the entire continental United States, excluding 
the Gulf  of  Mexico and Atlantic coast regions. These regions are 
represented by the Type III curve, which considers tropical storms 
and their associated high 24-hour rainfall values. Despite being 

initially developed for the United States, SCS curves are frequently 
adopted for research in other countries. While the original curves 
were formulated for 24-hour durations, variations for shorter 
durations exist, focusing on the most intense precipitation periods.

After minimizing the Mean Squared Error (MSE) objective 
function, the achieved results, for both SCS 24-hour and 6-hour 
durations, are presented in Table 1.

The outcomes depicted in Table 1 indicate reduced Mean 
Squared Percentage Error (MSPE) values, which accounts for the 
good visual alignments seen in Figures 1 to 4. The alignment for 
the Type IA 24-hour curve, on the other hand, may be slightly 
less marked.

The parameter γ, which signifies the degree of  symmetry 
in the hyetograph (where γ = 0.5 implies perfect symmetry), is 
approximately 0.5 or very close to it in the Type II and Type III 
curves for both 6 hours and 24 hours. The conventional graphical 
and tabular representations of  the original Type II and Type III 
curves also suggest this symmetry. In contrast, for the Type I and 
IA curves, there is an evident shift of  the peak of  the hyetograph. 
This shift is more pronounced in the 24-hour Type IA fit.

Overall, the use of  the universal equation effectively 
quantified the differences between the curves. In terms of  the γ 

Table 1. Parameters b´, n and γ of  the SCS curves.
Type b´ n γ MSPE
I (24h) 0.001466 0.608 0.410 0.017195

IA (24h) 0.129108 0.546 0.293 0.219439
II (24h) 0.001957 0.755 0.493 0.010405
III (24h) 0.022281 0.794 0.500 0.040088

I (6h) 0.025795 0.629 0.383 0.048977
IA (6h) 0.001577 0.415 0.465 0.020974
II (6h) 0.007717 0.762 0.488 0.078862
III (6h) 0.014864 0.694 0.500 0.025629

Figure 1. Fitting the 24-hour SCS I and II curves.
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parameter, there were clear distinctions between SCS curves I, 
IA, and II (for both 6 and 24-hour durations), with a resemblance 
between curves II and III. The parameters b′ and n play a role in 
shaping the curve and encompass the dynamics of  rainfall processes 
aggregated over time (Van de Vyver and Demarée, 2010). It was 
expected that these parameters would exhibit variability.

Fitting the HUFF distributions

Huff  (1967) conducted an analysis involving 261 hourly 
rainfall events recorded by 49 rain gauges positioned in a triangular 
arrangement within a 7 x 7 grid, covering a square area of  

1,036 km2 (400 mi2) in Illinois, USA, over a period of  12 years. 
In this study, Huff  (1967) organized the rainfall data into graphs 
that depict dimensionless cumulative precipitation (expressed as 
a percentage) as a function of  dimensionless cumulative duration 
(also expressed as a percentage). Subsequently, he grouped these 
graphs into four major quartiles.

The first quartile pertains to rainfall events, with their 
peak occurring within the initial 25% of  the total duration. 
The second quartile involves events with peaks between the 25% 
and 50% duration marks. The third and fourth quartiles consist 
of  events where the peaks fall within the ranges of  50-75% and 
75-100% of  the total duration, respectively. Within each of  these 
quartiles, Huff  introduced the concept of  “Huff  curves,” which 
are presented in probability bundles ranging from 10% to 90%. 
In essence, there are four sets of  graphs, each comprising nine 
dimensionless curves depicting temporal distributions of  rainfall.

Huff  (1990) defines probabilities as the historical frequencies 
of  accumulated rainfall values surpassing a certain threshold. 
With this perspective, the 90% curve signifies the boundary where 
most historical data points from accumulated rainfall curves for 
actual events lie above it. This interpretation similarly applies to 
the other curves representing probabilities of  10%, 20%, 30%, 
40%, 50%, 60%, 70%, and 80%. In this conceptual framework, 
a 90% curve characterizes the realm of  more common rainfall 
occurrences, while a 10% curve corresponds to rarer and less 
frequent events.

When referring studies that use the Huff  concept, caution 
is advised because the interpretation can differ. For instance, in 
the study conducted by Bonta (2004), there’s a reversal of  the 
concept. In his work, a 10% “Huff ” curve actually corresponds 
to the 90% Huff  curve, based on the original concept presented 
by Huff  (1990). Such discrepancies highlight the significance 
of  clarifying the interpretation and context when discussing or 
using the Huff  curves in different studies to ensure accurate 
communication and understanding.

Figure 2. Fitting the 24-hour SCS IA and III curves.

Figure 3. Fitting the 6-hour SCS I and II curves.

Figure 4. Fitting the 6-hour SCS IA and III curves.
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Clearly, the original Huff  curves pertain to Illinois (USA). 
However, Huff ’s (1967) contribution was to establish an analytically 
replicable method that could be applied to other locations. Bonta 
(2004) remarks on the challenge of  selecting from the 36 available 
Huff  curves and proposes utilizing all of  them within a Monte 
Carlo process that is employed in rainfall-runoff  models. On the 
other hand, Huff  (1990) recommends employing the median curves 
(50% curves) for design purposes and reserves the suggestion 
of  the 10% curves for situations involving unusual conditions 
in runoff  generation.

The current paper refrains from delving into the specifics of  
how applicable the original Huff  curves are to different locations, 
mirroring the approach taken with the SCS curves. Ideally, the 
collection of  all 36 Huff  (“Huff-like”) curves should be derived 
using data from the particular site of  interest. The proposed 
adaptation outlined in this paper is focused on the median Huff  
curves, drawing from the data explained in Huff ’s (1990) work.

Huff  (1990) observed a predominance of  first quartile 
curves for rainfall durations of  up to 6 hours, second quartile 
curves for durations ranging from 6 to 12 hours, third quartile 
curves for durations of  12 to 24 hours, and fourth quartile curves 
for rainfall lasting longer than 24 hours. The outcomes achieved 
through the minimization of  the Mean Squared Error (MSE) 
objective function, considering the 15 tabulated curves presented 
in Huff  (1990), are shown in Table 2.

The outcomes displayed in Table 2 demonstrate reduced 
Mean Squared Percentage Error (MSPE) values, which account 
for the good visual alignments in Figures 5, 6, 7 and 8.

Fitting any dimensionless rainfall distribution

It is expected that the proposed analytical equations can fit 
any dimensionless rainfall distribution because this is S-shaped curve, 
a smooth function. Soldevila et al (2019) presents the S-shaped 
rainfall curves of  some classical methods like Alternating Block, 
Triangular and Sifalda for Valencia, Spain. Another method like 

these is Euler’s Type II hyetograph, which is more recent (DWA 
Rules and Standards, 2006). It is recommended for modelling 
sewer systems in Germany, being a hyetograph with the highest 
precipitation intensity located at 0.3 times the total duration of  
precipitation.

There are no generalized dimensionless precipitation 
curves for these methods, so it is not possible to fit representative 
equations in advance as was done for SCS and Huff. However, 
the proposed equations can be fit to dimensionless hyetographs 
already calculated by these methods.

Following are four examples of  fitting the equations 
proposed for the synthesis of  hyetographs based on SCS and 
Huff  curves, and Chicago and Euler II distributions.

Table 2. Parameters b´, n and γ of  the Huff  curves.
Huff  curve 50% b´ n γ MSPE

1QPt 0.192882 0.898 0.018 0.009850
2QPt 2.058141 0.486 0.295 4.222665
3QPt 0.077070 0.519 0.612 0.170782
4QPt 0.063740 0.590 0.916 0.310243

1Q10-50 0.379444 1.164 0.035 0.286376
2Q10-50 2.866894 3.339 0.295 4.539326
3Q10-50 0.124159 0.653 0.626 0.521046
4Q10-50 0.120152 0.743 0.902 0.771908
1Q50-400 0.233444 1.069 0.087 3.588326
2Q50-400 2.787747 3.530 0.293 3.804585
3Q50-400 0.213556 0.843 0.634 1.354016
4Q50-400 0.054689 0.776 0.864 0.960277
1Q10% 0.118290 1.137 0.032 0.082248
1Q50% 0.233444 1.069 0.087 3.588326
1Q90% 0.000000 0.207 0.085 7.375398

Meaning of  the acronyms: iQPt = point curve (Pt) ith quartile (iQ), iQa-b = areal (a-b, range a to b in mi2) curve ith quartile (iQ), iQj% = median areal probability 
(j) ith quartile (iQ), j=10, 50 or 90% probability.

Figure 5. Fitting the Huff´s point median curves of  dimensionless 
precipitation from 1st to 4th quartile.
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EXAMPLES

Example 1: Calculating the cumulative time distribution 
curve with a 60-minute time step for a 250 mm rainfall in 24 hours, 
utilizing the proposed analytical equations for 24-hour SCS I curve:

Solution:
The necessary parameters come from Table 1:
b´= 0.001466
n = 0.608
γ = 0.410

With the given parameters, the two equations for calculating 
the dimensionless cumulated rainfall height using Equations 10 and 
11 are as follows :
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It should be remembered that Pt´ represents the cumulative 
dimensionless rainfall height and t´ represents the cumulative 
dimensionless duration. Table 3 presents the results, where the 
fourth column displays the disaggregated precipitation values (in 
mm), denoted as Pcalc = Pt´ * Ptot (where Ptot = 250 mm). For the 
sake of  comparison, the sixth column showcases the discrepancy 
between the calculated precipitation at each duration and the values 
from the original tables of  the 24-hour SCS Type I distribution 
(fifth column). This comparison demonstrates a strong agreement 
between the calculated values and the original data.

Example 2: Calculating the cumulative time distribution 
curve using 10-minute time steps for a 120 mm rainfall over 
100 minutes, using analytical equations of  the first quartile point 
median Huff  curve (1QPt parameters from Table 2):

Solution:
The necessary parameters come from Table 2:
b´= 0.000116

Figure 7. Fitting the Huff ’s median areal curves of  dimensionless 
precipitation from the 1st to the 4th quartile in the range 50 to 400 mi2.

Figure 8. Fitting the Huff ’s median areal curves of  dimensionless 
precipitation from the 1st quartile 10%, 50% and 90% probabilities.

Figure 6. Fitting the Huff ’s median areal curves of  dimensionless 
precipitation from the 1st to the 4th quartile in the range 10 to 50 mi2.
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n = 0.651
γ = 0.048
Using these parameters, we can formulate the two equations 

for calculating the dimensionless rainfall height by combining 
Equations 10 and 11:
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Table 4 presents the outcomes, where the fourth column 
displays the values of  accumulated precipitation over the time 
intervals, denoted as Pcalc = Pt´*Ptot (where Ptot = 120 mm). 
For purposes of  comparison, the fifth column exhibits the 

Table 3. Solution of  Example 1.
t (min) t´ Pt´ P calc (mm) P SCS I (mm) Error (%)

60 0.042 0.017 4.2 4.4 -4.5
120 0.083 0.035 8.8 8.8 0.0
180 0.125 0.054 13.7 13.5 1.5
240 0.167 0.076 19.0 19.0 0.0
300 0.208 0.100 25.0 25.0 0.0
360 0.250 0.125 31.7 31.3 1.3
420 0.292 0.156 39.7 39.0 1.8
480 0.333 0.194 49.6 48.5 2.3
540 0.375 0.254 63.8 63.5 0.5
600 0.417 0.515 126.1 128.8 -2.1
660 0.458 0.623 157.3 155.8 1.0
720 0.500 0.684 172.7 171.0 1.0
780 0.542 0.732 184.2 183.0 0.7
840 0.583 0.770 193.6 192.5 0.6
900 0.625 0.802 201.6 200.5 0.5
960 0.667 0.832 208.8 208.0 0.4
1020 0.708 0.860 215.3 215.0 0.1
1080 0.750 0.886 221.3 221.5 -0.1
1140 0.792 0.910 226.8 227.5 -0.3
1200 0.833 0.932 232.0 233.0 -0.4
1260 0.875 0.952 236.8 238.0 -0.5
1320 0.917 0.970 241.4 242.5 -0.5
1380 0.958 0.986 245.8 246.5 -0.3
1440 1.000 1.000 250.0 250.0 0.0

Table 4. Solution of  Example 2.
t (min) t´ Pt´ P calc (mm) P Huff  (mm) Error (%)

10 0.100 0.330 47.1 39.6 19.0

20 0.200 0.600 66.0 72.0 -8.4

30 0.300 0.660 77.6 79.2 -2.0

40 0.400 0.750 86.5 90.0 -3.9

50 0.500 0.820 93.8 98.4 -4.6

60 0.600 0.860 100.2 103.2 -2.9

70 0.700 0.900 105.9 108.0 -2.0

80 0.800 0.940 111.0 112.8 -1.6

90 0.900 0.970 115.7 116.4 -0.6

100 1.000 1.000 120.0 120.0 0.0
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corresponding precipitation values using Huff ’s point median 
curve table for the first quartile (Huff, 1990). The final column 
in Table  4 illustrates the discrepancy between the calculated 
cumulative precipitation at each duration and the actual values, 
demonstrating the robust agreement achieved through the utilization 
of  Equations 10 and 11.

Example 3: Calculating a cumulative design hyetograph 
from a Sherman-Type IDF.

Solution:
As an illustrative instance, the following Intensity-Duration-

Frequency (IDF) relationship is employed, with a total duration 
of  90 minutes, a return period of  50 years and a time step of  
10 minutes. The parameter γ is set to 0.35.
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To obtain the equations we then have:
b´ =b/tTOT = 30/90=0.3333
n = 0.75
γ = 0.35
Equations 10 and 11 then become:
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Recalling that Pt´ = Pt/PTOT. With the provided data, the 
aforementioned IDF yields a value of  PTOT = 64.29 mm.

Table 5 shows the results of  applying the equations.
The same example, addressed differently but yielding the 

same results, was presented in Silveira’s work (2016).
Example 4: Fitting cumulative rainfall equations for a 

Euler Type II hyetograph.
Solution:
Table 6 shows in third column a five-minute cumulative 

hyetograph presented in DWA (DWA Rules and Standards, 
2006). In fourth column, the same hyetograph is presented in a 
dimensionless form.

Equations 10 and 11 that fit this Euler type II hyetograph 
had the following parameters:

b´ = 0
n = 0.721
γ = 0.221
Equations 10 and 11 then become:
Before Peak

( )
,

,

0.721,

0.221
0.221

1
0.221

t

t
P

t

−
= −

 
 −
 
 

	 (19)

After Peak

( )
,

,

0.721,

0.221
0.221

0.221
0.779

t

t
P

t

−
= +

 − 
 
 

	 (20)

Pt’ in in the fifth column shows the good results provided 
by the fitted universal equations.

Table 5. Solution to Example 3.
t  

(min)
t´  

(=t/tTOT)
Pt´  

(=Pt/PTOT)
Pt (mm) 

(=Pt´*PTOT)
10 0.1111 0.0571 3.67
20 0.2222 0.1425 9.16
30 0.3333 0.3073 19.76
40 0.4444 0.5537 35.59
50 0.5556 0.7025 45.16
60 0.6667 0.8058 51.80
70 0.7778 0.8842 56.85
80 0.8889 0.9473 60.90
90 1.0000 1.0000 64.29

Table 6. Solution to Example 4.
t  

(min)
t´  

(=t/tTOT)
Pt Euler II  

(mm)
Pt´ Euler II  

(=Pt Euler II/PTOT) Pt´calc

5 0.1111 1.9 0.114 0.039
10 0.2222 5.3 0.319 0.319
15 0.3333 11.4 0.687 0.667
20 0.4444 12.8 0.771 0.772
25 0.5556 13.8 0.831 0.840
30 0.6667 14.7 0.886 0.891
35 0.7778 15.3 0.922 0.933
40 0.8889 16.0 0.964 0.969
45 1.0000 16.6 1.000 1.000
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CONCLUSION

The equations here called universal, due to their versatility 
in fitting dimensionless accumulated precipitation curves, 
demonstrated excellent performance in the adjustment of  the 
traditional SCS Type I, IA, II and III curves, as well as the historic 
Huff  curves for Illinois (median curves have been adjusted). 
In addition to these methods, other adjustment possibilities 
have been shown.

The advantage of  the presented analytical equations lies 
in their simplicity of  use within spreadsheets, along with the 
capability to generate dimensionless accumulated precipitation 
curves for any dimensionless time interval ranging from zero to 
one. As a result, in cases where fitting is applied to SCS Type I, 
IA, II and III curves, as well as Huff  curves, these equations 
can effectively replace existing tables. This substitution not 
only minimizes interpolation requirements for various time 
subdivision scenarios but also ensures minimal error introduction.

The suggested equations demonstrated remarkable adaptability 
in fitting cumulative rainfall curves, allowing them to be utilized for 
representing pre-existing curves in specific locations, established 
by any method (like Euler type II, for example).

Furthermore, the universal curves introduced here can 
be employed without modifications to construct cumulative 
hyetographs of  varying durations. given a Sherman-type IDF, 
the return period, and the peak position (in cases where the peak 
position is absent, it can be assumed that γ = 0.5).

The potential of  these universal equations is illustrated 
through four solved numerical examples.
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