Acessibilidade / Reportar erro

Applying the Chicago hyetograph for intense rainfall equations of the LnLn type

Aplicação do hietograma de Chicago para equações de chuvas intensas do tipo LnLn

ABSTRACT

The Chicago Method is one of the most common methods to determine design rainfall hyetographs for urban drainage infrastructures. Among the advantages of the method is that it is easy to apply and is based on traditional IDF equations. Nevertheless, applications to other IDF equation models presents some limitations. The aim of the present study was to adapt and apply the Chicago hyetograph method with intense rainfall equations of the LnLn type. Equations to estimate rainfall intensity before and after peak duration were presented. In addition, equations to obtain accumulated rainfall before and after peak rainfall volumes were adapted. With this information, we were able to obtain rainfall blocks for each interval of the hyetograph. The method was applied to determine the hyetograph based on the intense rainfall equation for the town of Piracicaba, São Paulo, Brazil. The equations presented here can be implemented on electronic spreadsheets or in programming routines, hence allowing Engineering professionals to apply the most adequate methods to local data.

Keywords:
Design rainfall; Urban drainage; Intense rainfall

RESUMO

O método de Chicago é um dos métodos mais utilizados na determinação do hietograma da chuva de projeto para obra de drenagem urbana. Entre as vantagens do método está a facilidade de aplicação e ser baseado nas equações IDF tradicionais. No entanto, a aplicação para outros modelos de equação IDF apresenta limitação. Este trabalho teve como objetivo adaptar e aplicar o hietograma do método Chicago com as equações de chuvas intensas do tipo LnLn. Foram apresentadas as equações para estimativa das intensidades de chuva para duração anterior e posterior ao pico. Também foram adaptadas as equações para a obtenção das laminas acumuladas ou volumes da chuva anterior e posterior ao pico. Com essas informações pode-se obter os blocos de chuva de cada intervalo do hietograma. O método foi aplicado para a determinação do hietograma com base na equação de chuvas intensas da cidade de Piracicaba-SP. As equações aqui apresentadas podem ser podem ser implementadas em planilhas eletrônicas ou rotinas de programação permitindo aos profissionais de Engenharia aplicação de métodos mais adequados aos dados locais.

Palavras-chave:
Chuva de projeto; Drenagem urbana; Chuvas intensas

INTRODUCTION

In several civil and rural engineering projects, such as urban and agrarian drainage, installation must be assessed according to estimated maximum flows. In most cases, there is no flow data that is measured in loco, hence the need to estimate the flow or flood volume by using a model that transforms rainfall into flow (Bemfica et al., 2000Bemfica, D. C., Goldenfum, J. A., & da Silveira, A. L. L. (2000). Análise da aplicabilidade de padrões de chuva de projeto a Porto Alegre. Revista Brasileira de Recursos Hídricos, 5(4), 5-16.).

When applying hydrological models, design rainfall must be defined taking into account the relation between height, intensity and duration distribution, which is the hyetograph. The temporal distribution of rainfall volumes will influence the infiltrated volume and the form of the direct surface runoff hydrograph resulting from excess rain. There are several assessment methods for temporal distribution, such as Alternating Block methods (Chow et al., 1988Chow, V., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.), the Triangular Method (Griffiths & Pearson, 1993Griffiths, G. A., & Pearson, C. P. (1993). Distribution of high intensity rainfalls in metropolitan Christchurch, New Zealand. Journal of Hydrology, 31, 5-22.), the Chicago Method (Keifer & Chu, 1957Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design. Journal of the Hydraulics Division, 83(4), 1-25. http://doi.org/10.1061/JYCEAJ.0000104.
http://doi.org/10.1061/JYCEAJ.0000104...
), The Sifalda Method (Sifalda, 1973Sifalda, V. (1973). Entwicklung eines Berechnungsregens für die Bemessung von Kanalnetzen. Gwf Wasser/Abwasser, 114, 435-440.), and temporal variation curves (Huff, 1990Huff, F. A. (1990). Time distributions of heavy rainstorms in Illinois (Circular, No. 173). Champaign: Illinois State Water Survey.). Several studies (Cen, 1993Cen, G. P. (1993). A comparison of design storm patterns for calculating the volume of detention ponding. Water Resources Engineering, 2, 30-35.; Canholi, 2005Canholi, A. P. (2005). Drenagem urbana e controle de enchentes (304 p.). São Paulo: Oficina de Textos.; Abreu et al., 2017Abreu, F. G., Angelini Sobrinha, L., & Brandão, J. L. B. (2017). Análise da distribuição temporal das chuvas em eventos hidrológicos extremos. Engenharia Sanitaria e Ambiental, 22(2), 239-250. http://doi.org/10.1590/s1413-41522016146750.
http://doi.org/10.1590/s1413-41522016146...
; Back & Nurnberg, 2022Back, A. J., & Nurnberg, M. (2022). Influência da variação temporal da chuva na estimativa da vazão máxima pelo método hidrograma sintético. In Anais do 51º Congresso Brasileiro de Engenharia Agrícola (9 p.), Pelotas, RS. Jaboticabal: SBEA.) demonstrate that peak flood flows obtained by the different hyetograph models are significantly different.

The Chicago Hyetograph, or Chicago Method, was proposed by Keifer & Chu (1957)Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design. Journal of the Hydraulics Division, 83(4), 1-25. http://doi.org/10.1061/JYCEAJ.0000104.
http://doi.org/10.1061/JYCEAJ.0000104...
to estimate design rainfall for urban drainage of up to 3 hours (Chen et al., 2023Chen, J., Li, Y., & Zhang, C. (2023). The effect of design rainfall patterns on urban flooding based on the Chicago Method. International Journal of Environmental Research and Public Health, 20(5), 4245. http://doi.org/10.3390/ijerph20054245.
http://doi.org/10.3390/ijerph20054245...
). Several studies indicate that the Chicago Method was the simplest and most efficient (Balbastre-Soldevila et al., 2019Balbastre-Soldevila, R., García-Bartual, R., & Andrés-Doménech, I. (2019). A comparison of design storms for urban drainage system applications. Water, 11(4), 757. http://doi.org/10.3390/w11040757.
http://doi.org/10.3390/w11040757...
; Yang et al., 2022Yang, J., Xiang, Y., Xu, X., & Sun, J. (2022). Design hyetograph for short-duration rainstorm in Jiangsu. Atmosphere, 13(6), 899. http://doi.org/10.3390/atmos13060899.
http://doi.org/10.3390/atmos13060899...
) and was widely used and recommended for urban drainage (Su et al., 2019Su, X. L., Xie, D., Liu, L., Liang, C. R., Liu, Z., Lan, Q., & Ren, L. (2019). Study on design rainstorm profile in Liuzhou city based on Pilgrim & Cordery Method. Journal of Geoscience and Environment Protection, 7(3), 136-144. http://doi.org/10.4236/gep.2019.73007.
http://doi.org/10.4236/gep.2019.73007...
; Liao et al., 2021Liao, D., Zhang, Q., Wang, Y., Zhu, H., & Sun, J. (2021). Study of four rainstorm design methods in Chongqing. Frontiers in Environmental Science, 9, 639931. http://doi.org/10.3389/fenvs.2021.639931.
http://doi.org/10.3389/fenvs.2021.639931...
).

Among the advantages of the Chicago Method is that it is easy to apply and demands a low number of parameters, such as rainfall duration and the intense rainfall equation. Added to that, the inclusion of the delay factor allows one to alter the hyetograph format. Familiarity of usage and the straightforwardness with which the IDF equations are obtained have facilitated acceptance of the Chicago Method in Engineering, where it is one of the most used methods (Krvavica & Rubinić, 2020Krvavica, N., & Rubinić, J. (2020). Evaluation of design storms and critical rainfall durations for flood prediction in partially urbanized catchments. Water, 2020(12), 2044. http://doi.org/10.3390/w12072044.
http://doi.org/10.3390/w12072044...
; Wittmanová et al., 2021Wittmanová, R., Marko, I., Sutus, M., & Stanko, S. (2021). A comparison of design storms for urban drainage system applications. IOP Conference Series: Materials Science and Engineering, 1209, 012028. http://doi.org/10.1088/1757-899X/1209/1/012028.
http://doi.org/10.1088/1757-899X/1209/1/...
).

However, dependence on the IDF equation can limit the use of the Chicago method. Although the IDF model equations for intense rainfall are the most commonly used in Brazil and in many other countries (Back & Cadorin, 2021Back, A. J., & Cadorin, S. B. (2021). Heavy rain equations for Brazil. International Journal of Developmental Research, 11, 43332-43337.), there are other intense rainfall equation models, or even other methods, to obtain intense rainfall through daily rainfall disaggregation (Aragão et al., 2013Aragão, R., Santana, G. R., Costa, C. E. F. F., Cruz, M. A. S., Figueiredo, E. E., & Srinivasan, V. (2013). Chuvas intensas para o Estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(3), 243-252. http://doi.org/10.1590/S1415-43662013000300001.
http://doi.org/10.1590/S1415-43662013000...
; Rangel & Hartwig, 2016Rangel, E. M. V., & Hartwig, M. P. (2016). Análises das curvas de intensidade-duração-frequência para a cidade de Pelotas através de uma função de desagregação. Revista Thema, 14(2), 63-77.; Back, 2020Back, A. J., (2020). Alternative model of intense rainfall equation obtained from daily rainfall disaggregation. Revista Brasileira de Recursos Hídricos, 25, e2. http://doi.org/10.1590/2318-0331.252020190031.
http://doi.org/10.1590/2318-0331.2520201...
).

In the state of São Paulo the use of an intense rainfall equation model called LnLn is very common (Magni, 1984Magni, N. L. G. (1984). Estudo pontual de chuvas intensas: proposição e análise de uma metodologia de estudo das relações intensidade duração frequência definidas para um ponto (Dissertação de mestrado). Escola Politécnica, Universidade de São Paulo¸ São Paulo.; Martinez Júnior & Magni, 1999Martinez Júnior, F., & Magni, N. L. G. (1999). Equações de chuvas intensas do Estado de São Paulo. São Paulo: DAEE; EPUSP., 2014Martinez Júnior, F., & Magni, N. L. G. (2014). Precipitações intensas no Estado de São Paulo. São Paulo: DAEE; CTH.: Martins et al., 2017Martins, D., Kruk, N. S., Magni, N. L., & Queiroz, P. I. B. (2017). Comparação de duas metodologias de obtenção de equação de chuvas intensas para a cidade de Caraguatatuba (SP). Revista DAE, 34-49. http://doi.org/10.4322/dae.2016.033.
http://doi.org/10.4322/dae.2016.033...
). The Departamento de Águas e Energia Elétrica (1982)Departamento de Águas e Energia Elétrica – DAEE. Centro Tecnológico de Hidráulica e Recursos Hídricos. (1982). Precipitações intensas no Estado de São Paulo: apresentação prática das relações precipitação x duração x tempo de retorno obtidas para 11 cidades (187 p.). São Paulo: DAEE/CTH.1 1 The DAEE is the Department of Water and Power in the state of São Paulo, Brazil. established that the intense rainfall equations for the state of São Paulo would be the LnLn type. More recently, the Departamento de Águas e Energia Elétrica (2018)Departamento de Águas e Energia Elétrica – DAEE. Centro Tecnológico de Hidráulica e Recursos Hídricos. (2018). Precipitações intensas no estado de São Paulo (270 p.). São Paulo: DAEE/CTH. presented an update of intense rainfall equations for 75 pluviographic stations in the state of São Paulo with the use of the LnLn model.

In locations where only this equation model is available there are some complications in applying the Chicago hydrograph. Therefore, the aim of this study was to adapt and apply the Chicago hydrograph method to the LnLN-type intense rainfall equations.

DEVELOPMENT

Chicago method

The Chicago Method is based on two analytical equations to obtain rainfall intensity. One equation rates duration before the peak and the other rates time after the peak. These equations were deduced from the IDF equation presented by Sherman (1931)Sherman, C. W. (1931). Frequency and intensity of excessive rainfall at Boston-Massachusetts. Transactions of the American Society of Civil Engenners, 95, 951-960., given by:

i m = a t + b n (1)

where im = average maximum rainfall intensity in mm/h; t = rainfall duration in minutes; a, b, n are parameters of the equation determined for each location.

In Brazil, the IDF equation is very common, considering:

a = K T m (2)

where T = return period (years); K and m are coefficients determined for each location.

Keifer & Chu (1957)Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design. Journal of the Hydraulics Division, 83(4), 1-25. http://doi.org/10.1061/JYCEAJ.0000104.
http://doi.org/10.1061/JYCEAJ.0000104...
presented the equations to determine rainfall intensity in which the asymmetry is defined by the parameter r (0< r < 1), also called rainfall advancement coefficient or peak factor. Hence, for rain with td duration, the peak takes place in time tp = r td. The equations to estimate rainfall intensity in the time before the peak (tb) and the time after the peak (ta) are given by Equations 3 and 4 respectively:

i b = a 1 c t b r + b t b r + b 1 + c (3)
i a = a 1 c t a 1 r + b t a 1 r + b 1 + c (4)

where ib = rainfall intensity before the peak (mm/h)/ ia = rainfall intensity after the peak (mm/h)/ tb = time before the peak (min); ta = time after the peak (min).

Silveira (2016)Silveira, A. L. L. (2016). Cumulative equations for continuous time Chicago hyetograph method. Revista Brasileira de Recursos Hídricos, 21(3), 646-651. http://doi.org/10.1590/2318-0331.011615094.
http://doi.org/10.1590/2318-0331.0116150...
describes the Chicago method and presents applications with the IDF equations. Chicago hyetograph requires the rainfall duration, usually assumed to be the concentration time for the basin, and the position of rainfall peak. The concentration time can be estimated based on empirical formulas considering the basin characteristics such as length and slope. In the literature there are dozens of empirical formulas, some more suitable for urban areas, others for rural areas. Silveira (2005)Silveira, A. L. L. (2005). Desempenho de fórmulas de tempo de concentração em bacias urbanas e rurais. Revista Brasileira de Recursos Hídricos, 1(1), 5-23. http://doi.org/10.21168/rbrh.v10n1.p5-29.
http://doi.org/10.21168/rbrh.v10n1.p5-29...
presented an excellent comparative study on these equations. The position of the peak of the hyetogram can be obtained by calculating the relationship between the time of peak intensity and the duration of the storm of equal duration. There are several studies showing that this value is generally less than 0.5, indicating that the peak intensity occurs in the middle of the storm (Chow et al., 1988Chow, V., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. New York: McGraw-Hill.; Canholi, 2005Canholi, A. P. (2005). Drenagem urbana e controle de enchentes (304 p.). São Paulo: Oficina de Textos.).

LnLn equation

In adapting the method, the format of the equation was considered for estimating the average maximum rainfall intensity in the LnLn model, given by:

I m = A t + B C + D t + E F G + H l n ln ( T T 1 (5)

where Im = average maximum intensity (mm/min); T = rainfall duration (min); T = return period (years); A, B, C, D, E, F, G, H = parameters of the equation adjusted to each location.

Rainfall volume can be calculated by:

V = i m t d (6)

It can also be calculated as the integral of the intensity function, given by:

V = t d 0 t d i d t (7)

Making:

K = G + H ln l n T T 1 (8)

Rainfall volume in time t can be expressed by:

V t = A t + B C + D t + E F K t (9)

Rainfall intensity distribution in relation to time is shown by the blue curve in Figure 1, with maximum intensity (imax) at the beginning of the curve (t = 0) and exponentially decreasing with time according to a function f(t) which so far is unknown.

Figure 1
Representation of intensities for the Chicago Method.

For rainfall duration td, rainfall volume is represented by the area under the curve of t = 0 to t = td. The average rainfall intensity (im) can be estimated by the relation between volume and duration, or:

i m = V t d (10)

The method considers a function of average rainfall intensity Im that is different from instant intensity (it), whose integral with time corresponds to rainfall height of Equation 9. Deriving equation dvt/dt, we have:

I i = A t C t + B C 1 + A t + B C + k D t + E F + D K t F t + E F 1 (11)

This equation presents maximum intensity for t = 0, like the intense rainfall equation. However, when t > 0, one can observe (Figure 1) that instantaneous intensity (Ii) is lower than average intensity (lm), in other words:

I i < I m (12)

Rainfalls with different durations (td), but the same intensity distribution, will produce im values that decrease while td increases.

Hence, we can express this as:

i m = V t d = 1 t d 0 t d f t d t (13)

The average intensity im over time t can be described by an empirical function such as equation:

i = A t + B C + D t + E F K (14)

Combined with Equation 13, the function (ft) can be obtained by differentiation:

f t = d d t A t + B C + D t + E F K t (15)

Which results in:

i m = f t = A t C t + B C 1 + A t + B C + k D t + E F + D K t F t + E F 1 (16)

Considering the delay factor r (0 < r <1), peak time intensity for specific duration td is given by tp = r td.

Rainfall distribution in relation to time before the peak (0 < tb < r td) is given by:

i b = A t b r C t b r + B C 1 + A t b r + B C + k D t b r + E F + D K t b r F t b r + E F 1 (17)

Rainfall distribution in relation to time after the peak ta ((1-r)t < ta <td) is given by:

i a = A t a 1 r C t a 1 r + B C 1 + A t a 1 r + B C + k D t a 1 r + E F + D K t a 1 r F t a 1 r + E F 1 (18)

The calculation of the rainfall hyetograph blocks is done by integrating these equation to obtain a curve of accumulated volume. For the sake of convenience, this curve is calculated so volume V is zero in t = tp and is defined in terms of the time elapsed before and after tp. The expressions for volumes before and after tp are given by Equations 19 and 20, respectively:

V a t a = A t a 1 r + B C + D t a 1 r + E F K t a (19)
V b t b = A t b r + B C + D t b r + E F K t b (20)

Adapting the model indicated by Silveira (2016)Silveira, A. L. L. (2016). Cumulative equations for continuous time Chicago hyetograph method. Revista Brasileira de Recursos Hídricos, 21(3), 646-651. http://doi.org/10.1590/2318-0331.011615094.
http://doi.org/10.1590/2318-0331.0116150...
, we can write the equations to obtain the accumulated rainfall heights from the beginning of the hyetograph, where for time before the peak:

P t = r P t o t A ( t p t ) r + B C + D ( t p t ) r + E F K t p t (21)

For time after the peak, the equation is given by:

P t = r P t o t + A ( t t p ) 1 r + B C + D ( t t p ) 1 r + E F K t t p (22)

In which Pt is the accumulated rainfall in time t from the beginning of the hyetograph; PTot is the total rainfall height of the hyetograph.

Applying the method

As an example of application, the hyetograph for the town of Piracicaba, SP will be determined. Design rainfall has a duration of 120 minutes, a return period of 25 years, considering an advancement coefficient of r = 0.333. The hyetograph will be established with 10-minute intervals.

The intense rainfall equation (Departamento de Águas e Energia Elétrica, 2018Departamento de Águas e Energia Elétrica – DAEE. Centro Tecnológico de Hidráulica e Recursos Hídricos. (2018). Precipitações intensas no estado de São Paulo (270 p.). São Paulo: DAEE/CTH.) is given by:

I m = 44.52 t + 30 0.8972 + 23.53 t + 40 0.9506 0.4847 0.6062 l n ln ( T T 1

Thus, we can define:

  • Peak time: tp = td r = 120 x 0.333 =40 min

    K=0.48470.6062lnln25251=1.4542
    Im=44.52120+300.8972+23.53 120+400.9506 1.4542=0.7716mm/h

  • Rainfall height = 0.77156 x 120 = 92. 6 mm.

  • Rainfall intensity: with Equations 17 and 18, the im of Table 1 was obtained.

    Table 1
    Determination of Chicago hyetorgraph for Piracicaba, SP.

  • Rainfall volume before peak (Vb):

    Vb=44.52400.333+300.8972+23.53 800.333+400.95061.454240=30.9 mm

  • Rainfall volume after peak (Va)

    Va=44.52801333+300.8972+23.53 8010.333+400.95061.454280=61.7mm

  • Total volume: (Vb + Va)= 61.7 + 30.9 =92.6 mm

  • Hyetograph blocks: with Equations 19 and 20, we have the accumulated volumes before and after the peak,

  • Hyetrogram blocks: With Equations 21 and 22 we have the rain heights before and after the peak. Thus, for times of 10 minutes, Equation 21 can be applied and determined:

    Pt=0.33 x92.644.524010)0.33+300.8972+23.53 4010)0.33+400.95061.45424010=2.61

  • For the time of 60 min, applying Equation 22 we have:

    Pt=0.33x92.6+44.52604010.33+300.8972+23.53 604010.33+400.95061.45426040=65.53

  • From the difference of the Pt values we obtain the blocks (Table 1) represented in Figure 2.

    Figure 2
    Chicago Hyetograph Method for Piracicaba, SP.

CONCLUSIONS

With the equations presented here, it is possible to determine the Chicago hyetograph method for locations using IDF equations of the LnLn type. These equations can be implemented in electronic spreadsheets or in programming routines hence allowing Engineering professionals to apply the most adequate methods to local data.

  • 1
    The DAEE is the Department of Water and Power in the state of São Paulo, Brazil.

REFERENCES

  • Abreu, F. G., Angelini Sobrinha, L., & Brandão, J. L. B. (2017). Análise da distribuição temporal das chuvas em eventos hidrológicos extremos. Engenharia Sanitaria e Ambiental, 22(2), 239-250. http://doi.org/10.1590/s1413-41522016146750
    » http://doi.org/10.1590/s1413-41522016146750
  • Aragão, R., Santana, G. R., Costa, C. E. F. F., Cruz, M. A. S., Figueiredo, E. E., & Srinivasan, V. (2013). Chuvas intensas para o Estado de Sergipe com base em dados desagregados de chuva diária. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(3), 243-252. http://doi.org/10.1590/S1415-43662013000300001
    » http://doi.org/10.1590/S1415-43662013000300001
  • Back, A. J., (2020). Alternative model of intense rainfall equation obtained from daily rainfall disaggregation. Revista Brasileira de Recursos Hídricos, 25, e2. http://doi.org/10.1590/2318-0331.252020190031
    » http://doi.org/10.1590/2318-0331.252020190031
  • Back, A. J., & Cadorin, S. B. (2021). Heavy rain equations for Brazil. International Journal of Developmental Research, 11, 43332-43337.
  • Back, A. J., & Nurnberg, M. (2022). Influência da variação temporal da chuva na estimativa da vazão máxima pelo método hidrograma sintético. In Anais do 51º Congresso Brasileiro de Engenharia Agrícola (9 p.), Pelotas, RS. Jaboticabal: SBEA.
  • Balbastre-Soldevila, R., García-Bartual, R., & Andrés-Doménech, I. (2019). A comparison of design storms for urban drainage system applications. Water, 11(4), 757. http://doi.org/10.3390/w11040757
    » http://doi.org/10.3390/w11040757
  • Bemfica, D. C., Goldenfum, J. A., & da Silveira, A. L. L. (2000). Análise da aplicabilidade de padrões de chuva de projeto a Porto Alegre. Revista Brasileira de Recursos Hídricos, 5(4), 5-16.
  • Canholi, A. P. (2005). Drenagem urbana e controle de enchentes (304 p.). São Paulo: Oficina de Textos.
  • Cen, G. P. (1993). A comparison of design storm patterns for calculating the volume of detention ponding. Water Resources Engineering, 2, 30-35.
  • Chen, J., Li, Y., & Zhang, C. (2023). The effect of design rainfall patterns on urban flooding based on the Chicago Method. International Journal of Environmental Research and Public Health, 20(5), 4245. http://doi.org/10.3390/ijerph20054245
    » http://doi.org/10.3390/ijerph20054245
  • Chow, V., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology New York: McGraw-Hill.
  • Departamento de Águas e Energia Elétrica – DAEE. Centro Tecnológico de Hidráulica e Recursos Hídricos. (1982). Precipitações intensas no Estado de São Paulo: apresentação prática das relações precipitação x duração x tempo de retorno obtidas para 11 cidades (187 p.). São Paulo: DAEE/CTH.
  • Departamento de Águas e Energia Elétrica – DAEE. Centro Tecnológico de Hidráulica e Recursos Hídricos. (2018). Precipitações intensas no estado de São Paulo (270 p.). São Paulo: DAEE/CTH.
  • Griffiths, G. A., & Pearson, C. P. (1993). Distribution of high intensity rainfalls in metropolitan Christchurch, New Zealand. Journal of Hydrology, 31, 5-22.
  • Huff, F. A. (1990). Time distributions of heavy rainstorms in Illinois (Circular, No. 173). Champaign: Illinois State Water Survey.
  • Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design. Journal of the Hydraulics Division, 83(4), 1-25. http://doi.org/10.1061/JYCEAJ.0000104
    » http://doi.org/10.1061/JYCEAJ.0000104
  • Krvavica, N., & Rubinić, J. (2020). Evaluation of design storms and critical rainfall durations for flood prediction in partially urbanized catchments. Water, 2020(12), 2044. http://doi.org/10.3390/w12072044
    » http://doi.org/10.3390/w12072044
  • Liao, D., Zhang, Q., Wang, Y., Zhu, H., & Sun, J. (2021). Study of four rainstorm design methods in Chongqing. Frontiers in Environmental Science, 9, 639931. http://doi.org/10.3389/fenvs.2021.639931
    » http://doi.org/10.3389/fenvs.2021.639931
  • Magni, N. L. G. (1984). Estudo pontual de chuvas intensas: proposição e análise de uma metodologia de estudo das relações intensidade duração frequência definidas para um ponto (Dissertação de mestrado). Escola Politécnica, Universidade de São Paulo¸ São Paulo.
  • Martinez Júnior, F., & Magni, N. L. G. (1999). Equações de chuvas intensas do Estado de São Paulo São Paulo: DAEE; EPUSP.
  • Martinez Júnior, F., & Magni, N. L. G. (2014). Precipitações intensas no Estado de São Paulo. São Paulo: DAEE; CTH.
  • Martins, D., Kruk, N. S., Magni, N. L., & Queiroz, P. I. B. (2017). Comparação de duas metodologias de obtenção de equação de chuvas intensas para a cidade de Caraguatatuba (SP). Revista DAE, 34-49. http://doi.org/10.4322/dae.2016.033
    » http://doi.org/10.4322/dae.2016.033
  • Rangel, E. M. V., & Hartwig, M. P. (2016). Análises das curvas de intensidade-duração-frequência para a cidade de Pelotas através de uma função de desagregação. Revista Thema, 14(2), 63-77.
  • Sherman, C. W. (1931). Frequency and intensity of excessive rainfall at Boston-Massachusetts. Transactions of the American Society of Civil Engenners, 95, 951-960.
  • Sifalda, V. (1973). Entwicklung eines Berechnungsregens für die Bemessung von Kanalnetzen. Gwf Wasser/Abwasser, 114, 435-440.
  • Silveira, A. L. L. (2005). Desempenho de fórmulas de tempo de concentração em bacias urbanas e rurais. Revista Brasileira de Recursos Hídricos, 1(1), 5-23. http://doi.org/10.21168/rbrh.v10n1.p5-29
    » http://doi.org/10.21168/rbrh.v10n1.p5-29
  • Silveira, A. L. L. (2016). Cumulative equations for continuous time Chicago hyetograph method. Revista Brasileira de Recursos Hídricos, 21(3), 646-651. http://doi.org/10.1590/2318-0331.011615094
    » http://doi.org/10.1590/2318-0331.011615094
  • Su, X. L., Xie, D., Liu, L., Liang, C. R., Liu, Z., Lan, Q., & Ren, L. (2019). Study on design rainstorm profile in Liuzhou city based on Pilgrim & Cordery Method. Journal of Geoscience and Environment Protection, 7(3), 136-144. http://doi.org/10.4236/gep.2019.73007
    » http://doi.org/10.4236/gep.2019.73007
  • Wittmanová, R., Marko, I., Sutus, M., & Stanko, S. (2021). A comparison of design storms for urban drainage system applications. IOP Conference Series: Materials Science and Engineering, 1209, 012028. http://doi.org/10.1088/1757-899X/1209/1/012028
    » http://doi.org/10.1088/1757-899X/1209/1/012028
  • Yang, J., Xiang, Y., Xu, X., & Sun, J. (2022). Design hyetograph for short-duration rainstorm in Jiangsu. Atmosphere, 13(6), 899. http://doi.org/10.3390/atmos13060899
    » http://doi.org/10.3390/atmos13060899

Edited by

Editor-in-Chief: Adilson Pinheiro
Associated Editor: Carlos Henrique Ribeiro Lima

Publication Dates

  • Publication in this collection
    02 Sept 2024
  • Date of issue
    2024

History

  • Received
    04 Mar 2024
  • Reviewed
    27 Apr 2024
  • Accepted
    27 Apr 2024
Associação Brasileira de Recursos Hídricos Av. Bento Gonçalves, 9500, CEP: 91501-970, Tel: (51) 3493 2233, Fax: (51) 3308 6652 - Porto Alegre - RS - Brazil
E-mail: rbrh@abrh.org.br