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ABSTRACT

In this study, we used neural networks known as self-organizing maps (SOMs) to identify clusters of  spatial synoptic precipitation 
patterns. These clusters were compared with the precipitation regime of  the ten main hydrographic sub-basins in Brazil. Sixty years of  
daily precipitation data obtained from over 389 weather station in Brazil were used as input data for the SOMs, with a number of  six 
clusters being prescribed as the optimal number according to the elbow and silhouette methods. The six precipitation patterns identified 
by the SOMs reflect the typical synoptic conditions associated mainly with the cold frontal systems (CF), South American Monsoon 
System (SAMS) and Inter-tropical Convergence Zone (ITCZ). In conclusion, SOMs perform well using interpolated precipitation data 
as the input data to identify synoptic precipitation patterns, which could be used to monitor the spatial distribution of  precipitation, 
which affects the hydrographic basins in Brazil and hence hydropower plant performance.
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RESUMO

Neste estudo, utilizamos uma técnica de redes neurais conhecida como Mapa Auto Organizável (SOM, em inglês), para identificar e 
agrupar padrões espaço-temporal de precipitação. Esses grupos foram comparados com o regime de precipitação de dez principais sub-
bacias hidrográficas do Brasil. Sessenta anos de dados de precipitação diária foram obtidos de uma rede de 389 estações meteorológicas 
no Brasil onde foram utilizados como entrada de dados para o SOM, com um número de seis grupos pré-definidos através dos métodos 
de Elbow e Silhoette. Os seis padrões espaço-temporal de precipitação foram identificados pelo SOM o qual conseguiu identificar 
condições sinóticas típicas como o Sistema de Frentes Frias (FF) Sistema de Monção da América do Sul (SMAS) e a Zona de Convergência 
Intertropical (ZCIT). Assim, concluímos que o SOM teve um bom desempenho utilizando dados interpolados de precipitação para 
identificar padrões espaço-temporal de precipitação, sendo que essa técnica de SOM pode ser promissora para monitorar os padrões 
espaço-temporal de precipitação que causam consideráveis impactos nas bacias hidrográficas e usinas hidroelétricas no Brasil.

Palavras chave: Mapa auto organizável; Regime de precipitação; Padrões Espaço-Temporal.
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INTRODUCTION

Water resources play a key role in the electrical power sector 
in Brazil, since hydropower plants account for 62.5% of  the energy 
generation capacity (Agência Nacional de Energia Elétrica, 2022). 
The Brazilian Independent System Operator (ISO) and Market 
Operator (MO) started to obtain hourly energy dispatch and price 
data in 2020 and 2021, respectively, improving the representation 
of  energy supply and demand (Câmara de Comercialização de 
Energia Elétrica, 2022). In this regard, power generation planning 
and energy prices are sensitive to the amount of  precipitation and 
thus a good understanding of  spatial and temporal precipitation 
distribution in hydrographic basins is required. Hence, precipitation 
is one of  the most important variables in the energy sector in 
Brazil, which is usually monitored by satellites, radar, rain gauges 
and numerical atmospheric models (Centro de Previsão de Tempo 
e Estudos Climáticos, 2022). Efficient precipitation forecasting is 
also important to market players, aiding planning and decision-
making in the energy spot market. However, all data from weather 
monitoring networks need to be processed and analyzed using 
several approaches, including numerical map models, satellite 
images and synoptic charts. In this way, it is possible to identify 
the spatial and temporal precipitation patterns and associate 
them with the weather systems. Several studies on the spatial and 
temporal precipitation regimes over South America (SA) have been 
investigated from interdecadal to inter-annual climate variability, 
such as Pacific Decadal Oscillation (PDO) (Oliveira-Júnior et al., 
2018; Prado et al., 2021), El Nino and the South America Oscillation 
(ENSO) (Cavalcanti et al., 2009), as well as intra-annual variability, 
for instance, the Madden-Julian Oscillation (MJO) (Grimm, 2019). 
Multivariate statistical techniques, e.g., principal component analysis 
(PCA), are commonly used in climatology to identify patterns in 
atmospheric processes (Cavalcanti et al.,2009; Grimm, 2011), but 
they are not practical for identifying short-term weather patterns, 
as they are statistical tools used for climate analysis. Objective 
analysis is used to automatically identify meteorological systems, 
such as cold fronts (Lagerquist et al., 2020), the Inter-tropical 
convergence zone (ITCZ) (Hohenegger & Jakob, 2020) and the 
South Atlantic Convergence Zone (SACZ) (Zilli & Carvalho, 2021). 
However, this approach is limited to identifying a specific weather 
system in a strict domain, which is dependent on thresholds that 
may not be valid for all cases (Grotjahn et al., 2016). In addition, 
a combination of  objective analysis processes would be necessary 
since the hydrographic basins are located within different climate 
precipitation regimes in SA (Reboita et al., 2010). Methods based 
on unsupervised neural networks have been used as an alternative 
approach to identify the multi-dimensional patterns, based on 
cluster algorithms (Xu & Tian, 2015), such as self-organizing 
maps (Kohonen, 2013), the Ward method (Ward, 1963) and 
K-means (Lloyd, 1982). Cluster analysis has been applied in 
meteorological studies to classify regions with similar climate 
conditions (Netzel & Stepinski, 2016) and identify weather patterns 
from two-dimensional maps of  surface air pressure (Sheridan & 
Lee, 2011), sea surface temperature (Johnson, 2013), precipitation 
(Santos et al., 2019) and geopotential height (Liu et al., 2016). 
In Brazil, studies involving clustering-based procedures are usually 
related to improving our general understanding of  the weather 
and climate conditions (Anunciação et al., 2014; Lyra et al., 2014; 

Brito et al., 2017; Ferreira & Reboita, 2022) and more applications 
focused on the Brazilian energy sector are needed. In this study, 
we used the type of  neural network known as the self-organizing 
map (SOM) to identify precipitation patterns and compare them 
with the precipitation regime in the ten main hydrographic basins 
in Brazil. Firstly, 60 years of  daily precipitation data from the 
Brazilian network was processed and interpolated to sub-basins 
and climatological reference stations. Secondly, two-dimensional 
maps of  interpolated data were grouped using the SOM technique 
applying an optimal number of  six clusters. Lastly, the precipitation 
anomaly for each sub-basins was correlated with the total annual 
number of  events for each cluster.

METHODS

Precipitation data

We processed 60 years of  daily accumulated precipitation 
data from conventional network weather stations from 1961 to 
2020. The database can be found at the Banco Nacional de 
Dados Meteorologicos (BNDMET) of  the Instituto Nacional 
de Meteorologia (INMET) and Departamento de Controle do 
Espaco Aereo (DECEA) (Departamento de Controle do Espaço 
Aéreo, 2020). There is a total of  784 conventional weather stations 
and 633 automatic weather stations in the network, but the data 
available is not constant over the whole period, as seen in Figure 1.

In the year 1961, the conventional network increased from 
around 40 to 300 weather stations (Figure 1). The data available daily 
varied from 108 to 389 in this period, and although there are many 
gaps in this time series, we filled and homogenized using interpolation 
method as described in Section 2.2. The automatic weather stations 
started operating in 2000 and presented many inconsistencies in the data, 
which were not used in this study. There are also several precipitation 
datasets from satellite and reanalysis data that were not considered 
in this work, due to discrepancies between the datasets regarding the 
variation in annual precipitation (Sun et al., 2018; Reis et al., 2020).

Figure 1. Number of  conventional precipitation measurements 
in the BNDMET database from 1961 to 2020 (Departamento de 
Controle do Espaço Aéreo, 2020).
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Interpolation method

The SOM algorithm requires the same number of  lines 
and rows as inputs to cluster the precipitation data, but the 
number of  weather stations available for each day in the network 
is not the same over the 60-year period (Figure 1). Thus, the data 
were spatially extrapolated and then interpolated at 317 selected 
positions, which are the positions of  the convectional stations used 
for normal climates in Brazil, as shown in Figure 2a (black dots). 
There are several spatial interpolation methods in the literature 
and those most commonly used include the deterministic spatial 
interpolation methods and geostatistical approaches (Ly et al., 
2013). In this study, we used the quadratic radial base functions 
(RBF) method (Buhmann, 2003), which has the advantage that 
it fits a surface (spatial precipitation patterns) through the daily 
precipitation data, while minimizing the total curvature of  the 
surface (Wang et al., 2014). It also performed satisfactorily for days 
with reduced data available, through a smoothed extrapolation, and 
when difficulty is encountered when using geostatistical methods 
(Krige, 1951) to extrapolate for data-sparse regions, according to 
Ahrens (2006). Negative values sometimes occur when the data 
are not well distributed and negative values are forced to zero.

The RBF interpolation method was also used to estimate the 
spatial average of  daily precipitation in the ten sub-basins. The rain 
gauge network is operated by Agência Nacional de Águas (ANA) 
and the stations are strategically installed to cover the ten main sub-
basins of  the largest hydro-power installations in Brazil. Figure 2b 
shows the rain gauge network, where the dots represent the set of  
rain gauges located in the following sub-basins: Amazonas/Xingu 
(darkgreen), Tocantins (green), Sao Francisco (orange), Paranaíba (yellow 
green), Grande (red), Parana (gold), Tiête (brown), Paranapanema 
(light blue), Iguassu (blue) and Uruguai (dark blue). The Operador 
Nacional do Sistema Elétrico (ONS) uses this network precipitation 
data as input data for the hydrological model (SMAP) to estimate 
the energy price (Operador Nacional do Sistema Elétrico, 2018).

Self-Organizing Map

Self-organizing map (SOM) is considered a special class 
of  artificial neural network, based on unsupervised training using 
only two layers (Kohonen, 2013). They are commonly used to 
identify patterns of  two-dimensional arrays of  maps for a broad 
range of  scientific fields (Oja et al., 2003). SOM allows the clusters 
to be separated and analyzed as a continuous pattern in space. 
Thus, transitions, as well as extreme patterns, can be identified 
rather than only the primary patterns, which is generally the case 
in principal component analysis. However, with SOM, it is difficult 
to define the best number of  clusters (or neurons) and the size of  
the input array, which needs to be predetermined and there are no 
recommendations for this (Grotjahn et al., 2016). In this study, 
the input was the 60 years of  daily interpolated data for 317 fixed 
positions at the locations of  the convectional stations, as described 
above (Figure 2a). The 317 columns contain the precipitation 
values for each position and the rows contain the time series of  
daily precipitation from 1961 to 2020. The optimal number of  
neurons is determined by other methods, as described below.

Number of  cluster

The optimum number of  clusters is determined by the 
elbow method (Thorndike, 1953), where the Euclidian distance 
within each cluster is minimized, and also by the silhouette method 
(Rousseeuw, 1987), which considers the minimum distance within 
the cluster and the maximum distance between the clusters. Both 
methods involve the use of  the non-supervised neural network 
K-means (Lloyd, 1982). Figure 3a shows the elbow curve, where 
the mean squared error within the cluster decreases inversely to the 
number of  clusters. The elbow kink is not clear as the curve varies 
smoothly. The second method complements this analysis by way of  
the silhouette coefficient, where the coefficient decreases with the 

Figure 2. Annual average precipitation and the position of  the conventional stations in Brazil from INMET (Departamento de 
Controle do Espaço Aéreo, 2020)  (a) and ANA/ONS (Operador Nacional do Sistema Elétrico, 2018) rain gauge network with ten 
sub-basins, where most hydropower operations are located (b).
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number of  clusters as the clusters approach each other. Figure 3b 
shows two significant variations in the silhouette coefficient, which 
suggests that a main group of  clusters ranges from 3 to 7 clusters, 
and the second set of  clusters varies from 9 to 18 clusters. This 
work was limited to analyzing only the main group, with six clusters, 
where the self-organizing map was fixed at 3x2 neurons.

RESULTS AND DISCUSSION

Precipitation patterns

The self-organizing map separated 60 years of  daily 
interpolated precipitation data, obtained from 317 stations, into six 
clusters, as described in Section 2. The precipitation of  each cluster 
was averaged only for the stations with non-zero precipitation, 
where the synoptic precipitation patterns can be viewed on the six 
maps in Figure 4a and the respective seasonal regimes in Figure 4b.

The first (C1) and second (C2) clusters reveal the spatial-
temporal precipitation patterns associated with cold fronts that 
occur in the southern region of  Brazil (Rodrigues et al., 2004). 
Although the first and second clusters are spatially similar, they 
differ from their seasonal regimes. Cluster C1 occurs mostly from 
spring to summer and is associated with mesoscale convective 
complexes (MMC) and instability lines (IL) developed ahead of  the 
cold fronts (Figure 4b). The second cluster is related to the cold 
fronts that often occurs in the winter to early spring season and is 
associated with polar jets (PJ) and extra-tropical cyclones. These 
results are in agreement with reports in the literature that could 
fronts can cause precipitation when passing through the south of  
Brazil (C2) or induce instability lines that cause strong precipitation 
even when the cold fronts is at a distance (C1) (Reboita et al., 2010). 
The average number of  C1 frontal systems occurring weekly in the 
south of  Brazil is in agreement with Britto & Saraiva (2001) and 
Rodrigues et al. (2004). The cluster C3, seen in Figure 4a, is the 
non-precipitation condition that covers almost the whole of  Brazil, 
characterized by the dry season from April to October (Figure 4b), 
and is the prevailing condition, with an annual average occurrence 
of  113 events during the 60-year period (Figure 5a). A few areas of  

precipitation can be observed along the northeast coast, caused by 
local sea breezes and trade winds (convergence zone), north Amazon 
and the south of  Rio Grande do Sul state, caused by cold fronts in 
winter. One outlier of  C3 was observed in 2009 with only 76 events 
during moderate El Niño conditions. The prevailing precipitation 
condition in summer, from October to March, is represented by 
cluster C4, which is associated with the South American Monsoon 
System (SAMS) that covers a large area of  precipitation in central 
Brazil, with a transversal area oriented from northwest to southeast 
(shown in Figure 4a), as described by Carvalho et al. (2004). This 
area matches Region 5 of  the adapted Climate Atlas of  South 
America, for which the major meteorological systems that impact 
the precipitation regime in this area are described by Reboita et al. 
(2010). This is the pattern with the second most frequent precipitation 
events, with an annual average of  89 events per year (Figure 5a). 
Two outliers were observed in 1963 with only 63 events and in 
1983 during moderate and strong El Nino conditions, respectively. 
Cluster C5, with the lowest annual occurrence (34 events per year), 
shows a major area of  precipitation located in the southwest part 
of  the Amazon region that occurs mostly in October, November 
and March. The absence of  the cold fronts (possibly caused by 
blocking) in the south of  Brazil and the absence of  ITCZ in the 
north indicate that the precipitation is only associated with local 
convection caused by radiative heating in the Amazon region. 
The last precipitation pattern, represented by cluster C6, is clearly 
associated with the ITCZ (Carvalho & Oyama, 2013), where the 
center of  the area of  precipitation is located in the northeast part 
of  the north region of  Brazil (Figure 4a). This cluster is frequently 
present from March to May and has the highest number of  events 
in April, with an average of  14 events per year (Figures 4b and 5b). 
There are no outliers but there is a high variability, with a standard 
deviation of  ±12 days per year.

Sub-basin correlation

The annual spatial and seasonal average precipitation data 
for each sub-basin are shown in Figures 6a and 6b, respectively, 
where similar annual median precipitation ranges of  1397 to 

Figure 3. Elbow method: Within-Cluster-Sum-of-Squares (WCSS) (a) and silhouette coefficient (b).
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Figure 6. Annual average precipitation for each of  the ten main sub-basins in Brazil (a) and the seasonal precipitation (b).

Figure 4. Average precipitation of  each cluster (a) and the number of  occurrences by year vs. month (b).

Figure 5. Annual number of  occurrences of  each cluster (a) and monthly average number of  occurrences of  each cluster (b).
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1825 mm/year can be observed. Iguassu and Uruguai present 
the strongest annual variability, where the difference between the 
upper and lower quartile reaches 379 mm and 492 mm respectively. 
Tietê has the lowest annual variability, with 192 mm, but there is 
a significant number of  outliers (7 events).

The Tocantins, Sao Francisco, Paranaíba, Grande and Tietê 
sub-basins have a high season variability, with the rainy season 
in summer and dry season in winter, influenced by the seasonal 
regime of  cluster C4 (Figure 5b). The Amazonas/Xingu sub-basin, 
which has a sensitive runoff  to land use and cover (Cruz et al., 
2022), has also a high season variability, but it is mostly affected 
by the cluster C6 associated with the ITCZ. The highest monthly 
average precipitation occurs in March/April and the lowest 

in August/September in agreement with Santos et al. (2019). 
The sub-basins located in the south are affected by clusters C1 and 
C2 (Figure 5b), where the Paraná and Paranapanema sub-basins 
have a moderate seasonal variability, and Iguassu and Uruguai 
have almost the same monthly average precipitation throughout 
the year. The impact of  the cluster on the annual precipitation 
of  each sub-basin is analyzed through the correlation between 
the variation of  the number of  occurrences of  each cluster and 
the annual precipitation anomaly (Figure 7).

Clusters C1 and C2 associated with the cold fronts have 
a positive correlation with the sub-basins located in the south of  
Brazil. The correlations of  C1, associated with the frontal system 
with summer instabilities, show the strongest relationship with 

Figure 7. Correlation between the variation of  cluster occurrence vs. annual precipitation anomaly of  each sub-basin: Amazonas/
Xingu (AM), Tocantins (TO), São Francisco (SF), Paranaíba (PB), Grande (GR), Tiete (TI), Paraná (PR), Paranapanema (PM), Iguaçu 
(IG) , Uruguai (UR).
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sub-basins of  Paraná, Paranapanema, Iguassu and Uruguai, as 
shown in Table 1.

Cluster C2, associated with the cold fronts in winter and 
spring, has a satisfactory correlation with the sub-basins of  Iguassu 
(0.46) and Uruguai (0.60). The sub-basins located above the southeast 
region of  Brazil show low correlations, except cluster C2, which has 
with a negative correlation of  -0.54 with Tocantins. Cluster C3, which 
represents dry conditions, displays moderated negative correlations 
with all sub-basins (varying from -0.34 to -0.53). In contrast to C1 and 
C2, cluster C4 has a better correlation with the sub-basins in the 
southeast and central regions of  Brazil, which are influenced by the 
South American Monsoon System. Table 1 shows strong positive 
correlations for Tocantins, Sao Francisco, Paranaíba and Grande and 
Tietê, and low correlations for the sub-basins located in the south. 
Clusters C5 and C6 (ITCZ) are associated with precipitation in the 
north region of  Brazil and have very low impact on the precipitation 
anomaly in most of  the sub-basins in this study, except for cluster 
C6 with positive correlation of  0.57 for the Amazonas/Xingu 
sub-basin, and the Paranapanema, Iguassu and Uruguai sub-basins, 
where a substantial negative correlation is observed.

CONCLUSION

The non-supervised neural network SOM was able to cluster 
six synoptic precipitation patterns in Brazil. The clusters are consistent 
with the main synoptic precipitation features associated with frontal 
systems (C1 and C2), dry seasonal conditions (C3), South American 
Monsoon System (C4), Bolivian High with convection in the Amazon 
region through radiative heating (C5) and the Inter-Tropical Convergence 
Zone (C6). The sub-basins in the south of  Brazil present a strong 
correlation with clusters C1 and C2 associated with frontal systems, 
whereas the sub-basins above the southeast region have a strong 
correlation with cluster C4, associated with the South American 
Monsoon System. The breakdown of  two clusters associated with 
frontal systems aids an understanding of  the strong correlation 
between prefrontal instabilities in the summer (C1) and the annual 
precipitation anomaly in sub-basins in the south of  Brazil. The negative 
correlations between cluster C2 and the Amazonas/Xingu/Tocantins 
sub-basins and between cluster C6 and the Paranapanema/Iguassu/
Uruguai sub-basins shows the complexity of  the weather behavior 
in Brazil. The variability of  the annual precipitation in hydrological 
basins with spatial precipitation patterns in the north region can 
impact sub-basins in the south and vice-versa.

This study demonstrates how the non-supervised neural 
network algorithm known as the self-organizing map can aid the 
identification of  synoptic precipitation patterns, and provide 
new look to analyze the climatology of  precipitation based on 
machine learning instead of  traditional statistics methods of  
monthly averages. For water resource applications, these machine 
learning tools can collaborate to yield new ways to monitor and 
predict the spatial distribution of  precipitation, as we display 
here by investigating the impacts of  the hydrographic basins 
in Brazil and consequently the performance of  hydroelectric 
installations.
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