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ABSTRACT

Although intrinsic, uncertainty for hydrological model estimation is not always reported. The aim of  this study is to evaluate the 
use of  satellite-based evapotranspiration on SWAT model calibration, regarding uncertainty and model performance in streamflow 
simulation. The SWAT model was calibrated in a monthly step and validated in monthly (streamflow and evapotranspiration) and 
daily steps (streamflow only). The validation and calibration period covers the years from 2006 to 2009 and the study area is the upper 
Negro river basin, situated in Santa Catarina and Paraná. SWAT-CUP was used to calibrate and validate the model, using SUFI-2 with 
KGE (Kling-Gupta Efficiency) as objective function. Different calibration strategies were evaluated, considering single-variable and 
multi‑variable calibration, using streamflow and evapotranspiration. Compared to conventional single-variable calibration (streamflow 
only), multi-variable calibration (streamflow and evapotranspiration, simultaneously) produce better streamflow performance, especially 
for low flow periods and daily step validation. Despite that, no evidence of  reduction of  streamflow prediction uncertainty was 
observed. SWAT model calibration using solely evapotranspiration still requires further studies.
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RESUMO

Apesar de intrínseca, a incerteza das estimativas de modelos hidrológicos nem sempre é apresentada nos estudos relacionados. O presente 
trabalho procura avaliar o uso de evapotranspiração proveniente de sensoriamento remoto na calibração do modelo SWAT, em relação 
às incertezas e desempenho da simulação de vazão. O modelo SWAT foi calibrado em escala mensal e validado em escala mensal 
(vazão e evapotranspiração) e diária (somente vazão). O período de calibração e validação compreende os anos entre 2006 e 2009 e a 
área de estudo é a bacia hidrográfica do alto rio Negro, localizada nos estados de Santa Catarina e Paraná. As calibrações e validações 
foram realizadas no SWAT-CUP, pelo SUFI-2, utilizando como função objetivo o índice KGE (Kling-Gupta Efficiency). Diferentes 
estratégias de calibração foram avaliadas, considerando o uso individual e simultâneo (multi-variável) da vazão e evapotranspiração. 
Comparada com a calibração convencional (somente com dados de vazão), a calibração multi-variável (evapotranspiração + vazão) 
apresentou melhor desempenho da simulação de vazão, especialmente para baixas vazões e para validação em escala diária. Entretanto, 
a calibração multi-variável não foi capaz de evidenciar diminuição nas incertezas envolvidas nas estimativas de vazão. A calibração do 
modelo SWAT utilizando somente dados de evapotranspiração ainda depende da realização de mais estudos.

Palavras-chave: Incertezas; METRIC; SUFI-2; Kling-Gupta Efficiency (KGE).
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INTRODUCTION

Hydrological models are widely used to support water resource 
management, planning and decision making (DAGGUPATI et al., 
2015a). Hydrological models are approximations of  the real system, 
and therefore, unable to consider all processes and variables, causing 
model uncertainty to be present in its predictions (BEVEN, 2012; 
MORADKHANI; SOROOSHIAN, 2009).

Besides model uncertainty, the parameters, data input 
and scale simplifications are also uncertainty sources (ABBOTT; 
REFSGAARD, 1996; BEVEN, 2012). Wagener and Gupta (2005) 
emphasize the need to propagate and clearly relate the model 
uncertainties, associating an appropriate degree of  confidence 
for the model estimates. A model calibration procedure attempts 
to reduce uncertainty from model parameters estimation and 
interpolation, obtaining the best parameterization for the local 
conditions (ABBOTT; REFSGAARD, 1996; ARNOLD et al., 2012).

Inverse modelling – IM – denotes the calibration procedure 
that infers parameter values from model output variable observations 
(ABBASPOUR, 2005). But one model output variable can be 
relatively well simulated by several different parameter values, 
leading to parameter non-uniqueness and equifinality problems 
(ABBASPOUR, 2005; BEVEN; BINLEY, 1992; BEVEN, 1993).

The use of  multi-variable and multi-site calibration in 
hydrologic distributed models can help reduce equifinality problems, 
since less parameter sets can satisfy calibration criteria at all 
sites simultaneously (BEVEN, 2006, 2012; DAGGUPATI et al., 
2015b). However, model calibration is commonly performed 
with watershed outlet streamflow data only. Consequently, part 
of  the processes, specially from the unsaturated zone, can remain 
uncalibrated (WANDERS et al., 2014).

Remotely sensed evapotranspiration (ET) has important 
spatial and temporal resolution and can be used to estimate soil water 
balance related parameters, such as soil moisture (ALLEN et al., 
2007; GITHUI; SELLE; THAYALAKUMARAN, 2012; 
IMMERZEEL; DROOGERS, 2008). Recently, some studies have 
integrated remote sensing data into the calibration of  distributed 
hydrological models (GITHUI; SELLE; THAYALAKUMARAN, 
2012; MUTHUWATTA; BOOIJ; RIENTJES, 2009) obtaining 
streamflow prediction performance improvement (KUNNATH-
POOVAKKA et al., 2016; WANDERS et al., 2014; ZHANG et al., 
2009).

Rajib, Merwade and Yu (2016) calibrated the SWAT model 
using streamflow and soil moisture simultaneously, and compared 
it with the conventional calibration (streamflow only). Remotely 
sensed soil moisture and field soil moisture measurements were 
used. The authors normalized the final calibrated parameter 
intervals and reported parameter uncertainty reduction when 
the model was calibrated with both soil moisture and streamflow.

Immerzeel and Droogers (2008) calibrated the SWAT 
model for a 45,678 km2 Indian basin, using remotely sensed 
evapotranspiration only. Monthly estimates of  evapotranspiration 
were derived applying SEBAL to MODIS imagery, and the model 
was compared to available observed streamflow data.

Githui, Selle and Thayalakumaran (2012) also used 
remotely sensed evapotranspiration, together with streamflow 
measurements, to calibrate the SWAT model and estimate aquifer 
recharge for an Australian irrigated basin (irrigation 325 mm ano-1). 

The authors related good performance for the SWAT to simulate 
evapotranspiration, having obtained R2 of  0,87 and low PBIAS 
values. The study was carried out in an area with low rainfall and 
evapotranspiration rates (284 mm year-1 and 290 mm year-1).

Among commonly used hydrological models nowadays, 
SWAT (Soil and Water Assessment Tool) has been extensively applied 
worldwide and in Brazil (ARNOLD  et  al., 2012). In Brazil, 
SWAT model was applied to estimate sediment yield (SANTOS; 
SCUDELARI; RIGHETTO, 2013), best management practices 
(STRAUCH et al., 2013) and hierarchical calibration (BRIGHENTI; 
BONUMÁ; CHAFFE, 2016). Bressiani et al. (2015) identified 
100 studies using the SWAT model between the years of  1999 
and 2015 in Brazil.

SWAT model calibration can be carried out manually or 
with calibration softwares, such as SWAT-CUP (SWAT Calibration 
Uncertainty Procedure). The SWAT-CUP was developed to support 
users on SWAT calibration, and has five different calibrations 
methods: GLUE (Generalized Likelihood Uncertainty Estimation); 
ParaSol (Parameter Solution); MCMC (Markov chain Monte Carlo); 
PSO (Particle Swarm Optimization) e SUFI-2 (Sequential Uncertainty 
FItting) (ABBASPOUR, 2015).

Multi-objective calibration can be defined as the optimization 
problem of  F(θ)={f1(θ),...,fm(θ)} regarding θ, where f1(θ),...,fm(θ) are 
m objective functions, individual and independent from each other, 
to be simultaneously optimized regarding the θ model parameters 
(YAPO; GUPTA; SOROOSHIAN, 1998). These multiple objective 
functions can be measured from different model output variables 
(multi-variable), or from the same variable at different locations 
(multi-site) (GUPTA et al., 2009).

Considering the growing availability and use of  remotely 
sensed products, this study aims to investigate the impact of  the 
multi-variable calibration on the uncertainty and performance of  
the SWAT model streamflow predictions, in a Brazilian rainforest 
basin. The multi-variable calibration aims to reduce the parameter 
non-uniqueness problem, by using remotely sensed evapotranspiration 
and measured streamflow simultaneously. SWAT model calibration 
solely with evapotranspiration was also evaluated, an approach 
which is a novelty in Brazilian basins. Parameter temporal scale 
transfer was explored through daily streamflow validation with 
monthly calibrated parameters.

STUDY AREA

The study area was selected according to evapotranspiration 
data availability. The evapotranspiration estimates are a product 
of  Uda (2016) study, which applied METRIC model to MODIS 
imagery, covering the entire Iguaçu river basin. Due to processing 
limitations and data availability, the modeled area was reduced to 
the upper Negro river basin only. The upper Negro river basin 
is located in the states of  Santa Catarina and Paraná, between 
49°55’15”W and 48°56’55”W longitudes and 25°55’06”S and 
26°42’16”S latitudes, with a 3,453 km2 drainage area (Figure 1). 
Altitude varies from 780 meters, at the basin outlet, until 1,591 meters 
for the highest area. The average altitude is 885 m and 80% of  
the basin area ranges between 780 and 1,215 m.

Economy in this region is strongly based on timber and 
furniture industry, besides agriculture (THOMÉ  et  al., 1999). 



RBRH, Porto Alegre, v. 22, e35, 2017

Franco and Bonumá

According to Köppen classification, region climate is Cfb: humid 
temperate climate with average temperature below 18 °C for the 
coldest month and below 22 °C for the hottest month, constantly 
humid and with no significant precipitation difference between 
seasons (THOMÉ et al., 1999). The river basin is located in the 
Atlantic forest, originally covered with Mixed Ombrophylus 
Forest (Araucaria Forest) and average annual rainfall of  1,522 mm 
(FRANCO et al., 2015).

INPUT DATA AND SWAT MODEL

The SWAT is an hydraulic-hydrologic model, with physically 
based equations for basin water cycle. The SWAT model was 
developed to predict the impact of  land use and management, and 
agricultural chemicals, on water and sediment yield (NEITSCH et al., 
2011). The spatial discretization is variable and can be user adjusted. 

The default mode is semi-distributed, using HRUs (Hydrologic 
Response Units) as simulation units.

Daily precipitation and streamflow data were obtained from 
the National Water Agency (ANA) online database (ANA, 2016). 
Meteorological data were obtained from EPAGRI (Santa Catarina 
State Agricultural Research and Rural Extension Agency) and 
INMET (National Meteorology Institute), for the Rio Negrinho 
station. SWAT meteorological input data includes maximum and 
minimum temperature, solar radiation, wind speed and relative 
humidity. Data interval comprehends the years from 2004 to 2009, 
covering model warm-up, calibration and validation. Stations are 
summarized on Table 1.

Digital Elevation Model (DEM) was obtained from the 
online EMBRAPA database (EMBRAPA, 2016a) with 90 m 
spatial resolution. The DEM is a result of  SRTM (Shuttle Radar 
Topography Mission) data processing (MIRANDA, 2005). 
The  minimum contribution area for stream generation was 
established in 30 km2 and 66 subbasins were generated on SWAT, 
according to the basin topography.

The soil type map was build up from the Brazil 
(SANTOS et al., 2011), Santa Catarina (FASOLO et al., 2004) 
and Paraná (SANTOS et al., 2009) soil type maps. The soil type 
maps were downloaded from the online EMBRAPA database 
(EMBRAPA, 2016b). Information regarding profile samples for 
each soil type were collected from the EMBRAPA soils database 
(EMBRAPA, 2016c), which gathers soil profiles information for 
the entire Brazilian territory. The main soil types are Cambissolos 
(70.2%), Nitossolos (11.5%), Argissolos Vermelho-Amarelo (5.9%), 
Neossolos (5.4%), Latossolos (3.5%), Organossolos (0.4%) and Gleissolos 
(0.6%), and rocky outcrops in upstream (headwaters) areas.

Land use and land cover

The land use and land cover database were produced 
from Landsat 8 imagery, with 30 m spatial resolution. Two scenes 
(220‑078  e 221-078) from the year 2014 (26/08/2014 and 
07/12/2014) covered the entire basin area. The maps were 
produced on Spring 5.2.6, using region growing segmentation 
followed by supervised classification. Image segmentation methods 
group adjacent pixels to “seed” pixels which aggregate pixels and 
regions according to some heterogeneity criteria (MENESES; 
ALMEIDA, 2012). Land use classes were: water, reforestation, 

Table 1. Rainfall (P), streamflow (F) and meteorological (M) stations.

Code Name Available data from Latitude Longitude Altitude 
(m) Responsable Type

2549003 Rio da Várzea dos Lima 1/9/1940 -26.0 -49.4 810 ANA P
2649006 Rio Negro 1/12/1922 -26.1 -49.8 770 ANA P
2649017 Doutor Pedrinho 1/12/1953 -26.7 -49.5 250 ANA P
2649018 Fragosos 1/05/1967 -26.2 -49.4 790 ANA P
2649054 Moema 1/07/1976 -26.5 -49.8 950 ANA P
2649055 Corredeira 1/07/1976 -26.4 -49.6 750 ANA P
2649056 Itaiópolis 1/07/1976 -26.3 -49.9 990 ANA P
2649057 Campo Alegre 1/07/1976 -26.2 -49.3 870 ANA P
2649058 Barra do Prata 1/11/1977 -26.7 -49.8 450 ANA P
65100000 Rio Negro 1/05/1930 -26.1 -49.8 766 COPEL F

86945 Rio Negrinho 1/06/1990 -26.2 -49.6 857 EPAGRI/INMET M

Figure 1. Location of  the upper Negro river basin, rainfall and 
streamflow gauges and meteorologic stations.
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native forest, agriculture, exposed soil, urban area and pasture. 
Exposed soil was later reclassified as also agriculture. Land use 
and land cover were resampled to 90 m, in order to be compatible 
with the DEM resolution.

Native forest still covers most of  the basin area (49.7%), 
especially on the basin headwater and riparian forests. Agriculture is 
the dominant activity, occupying 26.9% of  the basin area, followed 
by reforestation (17.7%). Reforestation is mostly of  Pinus elliotti, 
which supplies local cellulose industry. Urban area and pasture 
cover approximately 5% of  the basin area, each. Table 2 sumarizes 
areas and percentuals for each land use and land cover for the 
upper Negro river basin.

Evapotranspiration

Potential evapotranspiration (PET) can be directly informed 
to SWAT, or calculated from meteorological data. The SWAT 
model provides three methods for PET estimates: Hargreaves, 
Priestley‑Taylor and Penman-Monteith (NEITSCH et al., 2011). 
For the present study, PET was estimated with Penman-Monteith 
method.

The actual evapotranspiration is then estimated from the 
available water capacity and water canopy storage. First, water 
stored on the vegetation canopy is evaporated. If  potential 
evapotranspiration is higher than the canopy stored volume, the 
remaining evaporative demand is distributed between plants and 
soil. The plants transpiration demand is supplied according to the 
soil available water (NEITSCH et al., 2011).

In the present study, monthly actual evapotranspiration 
estimates from METRIC application to MODIS imagery, from Uda 
(2016), were used for model calibration and validation. The author 
produced estimates of  monthly actual evapotranspiration for the 
years 2006, 2007 and 2009, with 250 m spatial resolution, for the 
entire Iguaçu river basin. The average pixel value for each subbasin 
was used for model calibration and validation.

Evapotranspiration estimates from SEBAL and METRIC 
present good confidence for monthly scale. Typical accuracy for 
single-day events and scales of  the order of  100 ha is +/-15% 
(BASTIAANSSEN et al., 2005). Also according to Bastiaanssen et al. 
(2005), typical SEBAL accuracy for one day is 85%, reaching 95% 
on seasonal scale and an average value of  96% for annual scale on 
large basins. The SUFI-2 calibration algorithm allows the user to 
inform the percentual measurement error for the observed data 
used for calibration. For the present study, the value of  10%, 
suggested by Abbaspour (2015), for typical streamflow measurement 
conditions, was used for streamflow and evapotranspiration.

CALIBRATION AND VALIDATION

Model validation is the procedure in which the calibrated 
model is executed and evaluated for a different time interval or 
subbasin. The objective is to compare the model estimates with 
observed data that were not used on the calibration process, and 
demonstrate that the model is able to make sufficiently accurate 
estimates (ARNOLD et al., 2012).

Presented by Klemeš (1986), the split-sample test is a 
model calibration and validation approach that consists on equally 
splitting the available data, when the record is sufficiently long 
to represent different climate conditions. Further discussions on 
record data length for calibration and validation can be found 
on Her and Chaubey (2015). When the available record is not 
sufficient for the 50/50 split, it must be split in two different 
ways, for example, 70/30 and 30/70, such that the calibration 
interval is sufficiently long.

The SWAT model was calibrated on monthly time step 
and validated on monthly time step (for evapotranspiration and 
streamflow) and daily time step (streamflow only), using SUFI-2. 
Among the calibration techniques available in SWAT-CUP, SUFI‑2 
is the one that needs the smallest number of  runs to achieve good 
prediction uncertainty ranges with reasonable coverage of  data 
points (YANG et al., 2008).

The SUFI-2 operates with successive iterations, with the 
same number of  simulations each. For each iteration, the calibrated 
parameters values interval (Range_Par) are reduced, always centered 
on the parameter set that produced the best objective function 
value (Best_Par) (ABBASPOUR, 2015). The iteration number 
and the number of  simulations for each iteration are user defined. 
The objective function used to define the best parameter values 
set (Best_Par) is also defined by the user.

In SUFI-2, the uncertainty is expressed as an uniform 
probability distribution. The uncertainty is indicated by the interval of  
95% probability (95PPU), calculated for the 2.5 and 97.5 percentiles 
for the accumulated probability distribution of  the output variable 
of  interest. This uncertainty is presented as an “envelop” of  
solutions generated by the parameter value interval used.

To quantify the adjust of  the parameter values interval, 
two statistical indicators are used: the p-factor and the r-factor. 
The p-factor indicates the percentage of  observed data bracket 
by the 95PPU envelope. The r-factor is the uncertainty indicator 
and it is calculated as the ratio of  the average distance between 
the 2.5 and 97.5 percentiles and the standard deviation of  the 
measured data. The r-factor represents the thickness of  the 
envelope of  solutions (95PPU) (ABBASPOUR; JOHNSON; 
VAN GENUCHTEN, 2004).

A sensitivity analysis were carried out to reduce the number 
of  calibrated parameters. From the sensitivity analysis, 11 parameters 
were selected to further calibration. The calibrated parameters and 
initial intervals are summarized on Table 3.

Several statistical performance indicators for streamflow 
simulation exist. The most commonly reported for SWAT 
streamflow calibration and validation are the coefficient of  
determination (R2, Equation 1), the Nash-Sutcliffe coefficient 
(NS, Equation 2) and the percent bias (PBIAS, Equation 3). 
The R2 varies from 0 to 1, NS varies between -∞ and 1, and 1 is 
the optimal value for both. For PBIAS, the value of  zero indicates 

Table 2. Land use and land cover for the upper Negro river basin.

Class Area SWAT
Km2 % code

Water 14.2 0.4 WATR
Urban 96.8 2.8 URHD

Reforestation 610.0 17.7 PINE
Native Forest 1,713.8 49.7 FRST
Agriculture 926.5 26.9 AGRL

Pasture 87.4 2.5 PAST
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absence of  sub- and super- estimate tendency (ARNOLD et al., 
2012; GREEN; VANGRIENSVEN, 2008). These indicators are 
calculated according to:
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where, n is the number of  observations for the simulated period, 
Oi and Si are the observed and simulated values for each time 
step i, O and S  are the observed and simulated average values 
(GREEN; VANGRIENSVEN, 2008).

According to Abbaspour, Johnson and Van Genuchten 
(2004) a model is to be considered satisfactory calibrated by SUFI‑2 
when R2 is higher than 0.80. Abbaspour (2015) suggests values 
of  p-factor above 0.70 and r-factor below 1.50, for acceptable 
streamflow calibration. Moriasi  et  al. (2007) defines NSE>0.5 
and PBIAS<+/-25% as satisfactory values, while NSE>0.75 
and PBIAS < +/-10% are considered very good for streamflow 
calibration of  hydrological models.

The objective function used for model calibration influences 
the calibration result and final calibrated model performance. 
Gupta et al. (2009) presented the KGE function (Kling-Gupta 
Efficiency), based on the decomposition of  NS and mean squared 
error (MSE). The KGE can be decomposed in three terms, which 
represent the correlation, bias and relative variability between 
observed and simulated values. The optimal point is computed 
for a three-dimensional pareto surface, in terms of  minimum 
Euclidian Distance from the ideal point, according to:

1KGE ED= −  	 (4)

with,

( ) ( ) ( )2 2 21 1 1ED r β α= − + − + −  	 (5)

S
O

α =  	 (6)

s

o

sβ
s

=  	 (7)

where, ED is the Euclidian distance from the ideal point, r is the 
coefficient of  linear correlation between observed and simulated 
values and os  and ss  the standard deviation of  observed and 
simulated values. Similar to NS, KGE values range from -∞ to 1, 
and the optimal value is 1. In case of  multiple observed variables, 
the objective function is defined as:

.j j
j

objective function w KGE= ∑  	 (8)

where, jw  is the weight of  the variable j.
The KGE was used as objective function to allow the 

simultaneously use of  evapotranspiration and streamflow on 
calibration, and to enable comparison between different strategies. 
For iterations in which the streamflow and evapotranspiration 
were used simultaneously, the weight ( jw ) of  0.5 was attributed 
to the outlet streamflow and 0.5/66 to the evapotranspiration of  
each one of  the 66 subbasins.

SWAT model was calibrated and validated using data for 
the time interval from 2006 to 2009. According to the Split-Sample 
Test, proposed by Klemeš (1986), the time interval was split 
unequally, such that the calibration period was sufficiently long, 
and the remaining data was used for model validation. Therefore, 
the 4 year interval was split in 3 years for calibration and 1 year 
for validation, having two years of  monthly evapotranspiration 
estimates for model calibration and one year for the model validation.

Because the SUFI-2 operates with successive independent 
iterations, the objective function can be distinct for each iteration for 
the same calibration. Different calibration strategies were evaluated. 
The strategies consist of  two iterations, with 500 simulations each, 
except for the S3’ strategy, which refers to the result of  only one 
iteration. Strategy S1 is the conventional calibration, using outlet 
streamflow data only, on both iterations. Calibration using solely 
evapotranspiration data was carried out in two successive iterations. 
Results for the first iteration are indicated on strategy S3’, while 
the S3 strategy refers to the second iteration. The multi-variable 
calibration, strategy S2, was carried out using only evapotranspiration 
data on the first iteration and streamflow and evapotranspiration, 
simultaneously, for the second iteration.

Figure 2 illustrates the calibration sequence of  each strategy, 
according to the variable considered in the objective function 
of  each iteration. All calibration strategies were compared to 
each other and with the initial performance of  the uncalibrated 
model (S0). The uncalibrated model refers to the use of  default 
parameters, indicated by the model developers on SWAT manual 
(NEITSCH et al., 2011).

Evapotranspiration was analyzed only on monthly scale due 
to the data availability, and streamflow was validated on monthly 
and daily time steps. Streamflow validation for the daily time step 
was performed for the entire data interval (from 2006 to 2009), 
using the monthly calibrated parameters. For the monthly time 
step, the model was validated according the Split Sample Test, 
with data that was not used on calibration.

Table 3. Calibrated parameters and initial range.
Parameter Minimum Maximum

CN2 (relative)* -0.25 0.25
SOL_AWC (relative)* -0.25 0.25
SOL_K (relative)* -0.25 0.25
ALPHA_BF 0 1
GW_DELAY 0 500
GWQMN 0 5000
LAT_TTIME 1 180
CH_K1 1 300
CH_N1 0.01 0.5
RCHRG_DP 0 1
SURLAG 1 24
*The existing parameter value is multiplied by (1+ a given value). Parameter 
definitions and further details can be found in Neitsch et al. (2011).
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Although used sometimes, the best parameter set, found 
during calibration with SUFI-2, should not be used nor propagated 
for model validation. Abbaspour, Johnson and van Genuchten 
(2004) point out that calibration with SUFI-2 algorithm aims to 
find an optimum interval of  values for each calibrated parameter 
(Range_Par), and not to establish a best value for each calibrated 
parameter (Best_Par). The calibrated parameter intervals (Range_Par) 
must be able to simulate the output variable of  interest with 
acceptable uncertainty. Model validation, therefore, must be 
carried out propagating the final calibrated parameter intervals 
(Range_Par), obtained from the last iteration of  the calibration 
process. With the purpose of  exemplifying possible problems 
from an inadequate approach, the correct model validation, that 
is, validation using the parameter values interval (Range_Par), will 
be compared to the use of  the best parameter values (Best_Par).

RESULTS AND DISCUSSION

Initial model performance

Uncalibrated model performance (S0) for streamflow simulation, 
on monthly time step, can be considered acceptable only for the 
2009 year (KGE=0.67, NSE=0.74 and PBIAS=-3.7%). Monthly 
evapotranspiration simulation also exhibits its best performance 

for the 2009 year, with KGE=0.60, PBIAS=33.6% and R2=0.81. 
Daily uncalibrated model performance is unsatisfactory for all 
periods, emphasizing the need for model calibration. Streamflow 
and evapotranspiration statistical performance indicators for the 
uncalibrated model (S0) are summarized on Table 4.

Calibration and validation strategies

Daily time step model validation results are presented on 
Table 5, and monthly time step calibration and validation results are 
on Table 6. The S3’ calibration strategy exhibits model performance 
superior to the uncalibrated model (S0) for the evapotranspiration 
and streamflow simulation, in calibration and validation periods. 
The S3’ strategy reached satisfactory performance for daily 
streamflow, with p-factor between 0.69 and 0.71, and r-factor from 
1.00 to 1.08. For S3’, monthly streamflow also reaches satisfactory 
performance on calibration(validation) of  2007-2009(2009) with 
a p-factor of  0.81(0.75) and r-factor of  1.15(0.95).

Despite S3’s unacceptable p and r factors, monthly and daily 
evapotranspiration and streamflow performance are superior to 
the uncalibrated model (S0). Still, monthly hydrographs show the 
S3 tendency to “flatten” the flow peaks (Figure 3 and Figure 4). 
Compared to S3’, the S3 streamflow simulation performance 
is worst. Calibrated parameters comprehend several hydraulic 

Table 4. Performance indicators for the uncalibrated model (S0).
Time 

interval Variable Monthly time step Daily time step
R2 NS PBIAS KGE R2 NS PBIAS KGE

2006-2008
Q 0.68 0.32 -40.0 0.55 0.14 -4.52 -58.2 -0.66
ET 0.52 40.9 0.43

2007-2009
Q 0.67 0.04 -43.9 0.47 0.01 -3.03 -18.8 -0.24
ET 0.61 43.5 0.44

2006
Q 0.76 -8.40 -67.1 -1.29 0.17 -24.31 -66.1 -3.25
ET 0.37 44.7 0.29

2009
Q 0.78 0.74 -3.7 0.67 0.01 -0.76 43.4 0
ET 0.81 33.6 0.60

Q=Streamflow; ET=Evapotranspiration; R2=coefficient of  determination; NS= Nash-Sutcliffe coefficient; PBIAS=percent bias; KGE=Kling-Gupta Efficience; 
Satisfactory p and r factor values are indicated in bold.

Figure 2. Calibration strategies, according the variable considered for the objective function of  each iteration.
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Table 5. Daily streamflow validation for the time interval of  2006 to 2009.
Calibration 

Strategy
Calibration 

period p-factor r-factor R2 NS PBIAS KGE S ss ( O ) ( os )

S1 2006-2008 0.67 0.93 0.21 -0.34 2.7 0.42 59 69

(60) (57)

2007-2009 0.86 1.11 0.57 0.49 -4.1 0.75 63 58

S2 2006-2008 0.96 1.27 0.67 0.65 1.9 0.80 59 53
2007-2009 0.96 1.24 0.66 0.65 1.9 0.80 59 53

S3 2006-2008 0.32 0.70 0.59 0.53 -19.3 0.52 72 35
2007-2009 0.36 0.74 0.59 0.54 -14.7 0.52 69 35

S3’ 2006-2008 0.69 1.08 0.69 0.67 -12.7 0.77 68 52
2007-2009 0.71 1.00 0.70 0.67 -13.0 0.78 68 53

R2=coefficient of  determination; NS= Nash-Sutcliffe coefficient; PBIAS=percent bias; KGE=Kling-Gupta Efficience; S  e O  = average simulated and measured 
streamflow. ss e so = simulated and measured standard deviation. Satisfactory p and r factor values are indicated in bold.

Table 6. Uncertainty and performance indicators for all strategies. Monthly simulation.
Calibration 

Strategy
Calibration 

Period
(Validation 

Period) Variable p-factor r-factor R2 NS PBIAS KGE

S1

2007-2009 (2006) Q 0.94(0.75) 1.27(3.42) 0.78(0.75) 0.78(0.66) -2.9(-8.9) 0.84(0.84)
ET 0.01(0.01) 0.24(0.29) 0.58(0.36) 46.4(47.1) 0.40(0.26)

Average 0.62(0.55)
2006-2008 (2009) Q 0.89(0.92) 1.08(0.75) 0.76(0.58) 0.73(0.58) 0.1(0) 0.87(0.63)

ET 0.01(0.02) 0.24(0.23) 0.48(0.77) 46.5(39.4) 0.35(0.52)
Average 0.61(0.57)

S2

2007-2009 (2006) Q 1(1) 1.60(4.83) 0.79(0.88) 0.78(0.80) -2.3(-9.1) 0.89(0.87)
ET 0.02(0.04) 0.11(0.12) 0.63(0.39) 41.3(40.6) 0.48(0.34)

Average 0.68(0.61)
2006-2008 (2009) Q 1(1) 1.77(1.15) 0.76(0.89) 0.76(0.82) 5.6(-14.0) 0.83(0.80)

ET 0.02(0.03) 0.11(0.11) 0.51(0.81) 41.9(34.5) 0.41(0.59)
Average 0.62(0.69)

S3’

2007-2009 (2006) Q 0.81(0.50) 1.15(4.63) 0.85(0.84) 0.84(0.64) 1.5(-7.7) 0.83(0.67)
ET 0.02(0.04) 0.17(0.19) 0.63(0.39) 40.3(41.4) 0.49(0.33)

Average 0.66(0.50)
2006-2008 (2009) Q 0.69(0.75) 1.36(0.95) 0.80(0.93) 0.73(0.90) -13.9(-11.9) 0.82(0.87)

ET 0.02(0.03) 0.18(0.17) 0.50(0.80) 43.1(35.9) 0.40(0.57)
Average 0.61(0.72)

S3

2007-2009 (2006) Q 0.42(0.33) 0.86(3.68) 0.65(0.52) 0.45(-4.10) -27.8(-73.3) 0.53(0.21)
ET 0.02(0.04) 0.13(0.15) 0.65(0.40) 37.6(38.6) 0.53(0.37)

Average 0.53(0.29)
2006-2008 (2009) Q 0.31(0.25) 0.96(0.68) 0.63(0.80) 0.56(0.74) -17.3(-8.9) 0.60(0.65)

ET 0.02(0.03) 0.14(0.13) 0.51(0.82) 41.3(33.0) 0.42(0.61)
Average 0.51(0.63)

Q=Streamflow; ET=Evapotranspiration; R2=coefficient of  determination; NS= Nash-Sutcliffe coefficient; PBIAS=percent bias; KGE=Kling-Gupta Efficience; 
Satisfactory p and r factor values are indicated in bold.

Figure 3. Monthly streamflow calibration (2006-2008) and validation (2009) for strategies S3’ and S3.

Figure 4. Monthly streamflow calibration (2007-2009) and validation (2006) for strategies S3’ and S3.
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channel routing parameters (for example, CH_K1 and CH_N1). 
Calibrating these hydraulic parameters with evapotranspiration 
data only can cause depreciation on the streamflow simulation 
performance, observed from S3’ to S3.

Objective function (KGE) exhibits the highest values 
for streamflow alone, and also for the evapotranspiration 
and streamflow average, on S2 strategy. But, compared to the 
conventional calibration (S1) for monthly streamflow, S2’s higher 
p and r factors indicate higher uncertainty.

For the calibration with data from the interval of  2006 to 2008, 
S2 was the only strategy able to satisfactory validate the daily 
streamflow. Figure 5 shows the daily streamflow validation for 
the interval of  July to December of  2009, calibrated by S1 and 
S2, with monthly data from 2006 to 2008. Calibration results 
with monthly data from 2007 to 2009 indicate satisfactory daily 
streamflow validation by all strategies, except for S3, and the best 
results are also shown by S2. Daily streamflow validation for July 
to December of  2006, calibrated by S1 and S2 strategies, with 
monthly data from 2007 to 2009, is shown in Figure 6. The superior 
performance of  S2 strategy over conventional calibration, on daily 
time step validation, may reflect its ability to reduce the parameter 
non-uniqueness problem, by defining parameter values that are 
more physically meaningful. Daily time step validation results 
are on Table 5.

Monthly streamflow validation for the year of  2006 shows 
high p and r factors for all strategies. According to Uda (2016), 
2006 was a very dry year on the study area. This can be noticed 
on the precipitation and streamflow behavior during the year of  
2006, on Figure 7. Monthly streamflow standard deviation for 
the year of  2006 is low, therefore, r-factor reaches high values for 
this particular year. The p-factor is acceptable (above 0.70) for 
the monthly streamflow validation of  the 2006 year by strategies 
S1 and S2, and for the 2009 year by all strategies, except for S3.

Brighenti, Bonumá and Chaffe (2016) applied SWAT model 
to simulate the water cycle for the Negrinho river basin, which 
is a subbasin for the present study area. The authors calibrated 
and validated SWAT model on monthly and daily time steps and 
also reported difficulties to validate the year of  2006. For the 

mentioned study, SWAT was also calibrated and validated with 
SUFI-2, still, no p and r factors were reported.

The r-factor for the analyzed strategies indicate no uncertainty 
reduction on multi-variable calibration. In order to look for the best 
possible evapotranspiration simulation, values outside the initial 
range (+/- 0.25) for the relative parameters (CN2, SOL_AWC, 
SOL_K) were accepted on the second iteration. This extrapolation 
outside the initial ranges can be the cause for the increase on 
r-factor values for multi-variable calibration strategies. A more 
deepened analysis of  parameters and respective calibrated intervals, 
similar to the normalization carried out by Rajib, Merwade and 
Yu (2016), may lead to more information about the uncertainties 
related to each calibration strategy.

The evapotranspiration simulation performance is 
unsatisfactory for all strategies, both on calibration and validation 
periods. High PBIAS values for evapotranspiration on all periods 
and strategies may suggest that the model is unable to satisfactory 
simulate the actual evapotranspiration for the study area. Rajib, 
Merwade and Yu (2016) also reported low performance for the 
soil moisture simulation by SWAT model, even when measured 
soil moisture data were used to calibrate the model.

Best_Par versus Range_Par

The SUFI-2 calibration process indicates the best parameter 
set (Best_Par) and the calibrated interval values (Range_Par) for 
each parameter, in each iteration. The best parameter set values, 
when used to validate the model, have led to unsatisfactory model 
performance for several time intervals. Figure  8 and Figure  9 
compare the results obtained using the best parameter set values 
(Best_Par) versus the parameter interval values (Range_Par), for 
monthly and daily streamflow.

It must be emphasized that according to Abbaspour, 
Johnson and Van Genuchten (2004) SUFI-2 should not be used to 
define a single set of  parameter values, but to define an adequate 
interval value for each calibrated parameter.

Figure 5. Daily streamflow from 01 July to 31 December of  2009, calibrated with monthly data from 2006 to 2008.

Figure 6. Daily streamflow from 01 July to 31 December of  2006, calibrated with monthly data from 2007 to 2009.
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CONCLUSIONS

The present study analyzed different calibration strategies, 
including the conventional calibration using streamflow data only, 
and multi-variable calibration with evapotranspiration data. The 
results led to the following conclusions:

•	 Multi-variable calibration (evapotranspiration + streamflow) 
did not presented uncertainty reduction (r-factor) on 
streamflow model prediction. A more deepened analysis 
of  parameters and respective calibrated intervals may 
lead to more information about the uncertainties of  each 
calibrated strategy;

•	 Multi-variable calibration (evapotranspiration + streamflow) 
streamflow performance was superior to the other strategies 
for monthly and daily time steps;

•	 After the first iteration of  the calibration using solely 
evapotranspiration (S3’ strategy), model performance was 
satisfactory. But after the second iteration (S3 strategy) model 
performance was unsatisfactory, with worse streamflow 
simulation performance compared to S3’. Model calibration 
using only evapotranspiration still requires more studies.

Further studies regarding the use of  different remote 
sensing products, such as soil moisture, are encouraged. The use of  
multiple streamflow stations for model calibration and validation 
are also suggested. Uncertainty analysis regarding model parameters 
and other output variables are also promising alternatives for the 
deepened understanding of  uncertainty.
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