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ABSTRACT

Accuracy in river flows forecasts is crucial for Hydrology, but is challenged by fluviometric data quality. This study investigates 
the impact of  different missing data imputation methods on the Seasonal Autoregressive Integrated Moving Average (SARIMA) 
model performance. SARIMA (1,1,1)(0,1,1)12 was selected using semi-automated criteria, such as lowest AIC, significant parameters 
(p-value < 0.05) and residuals adequacy. This model was then compared with reconstructed series using different imputation methods 
such as Mean (AM), Median (M), Spline and Stinemann Interpolations, Regional Weighting (RW), Multiple Linear Regression (MLR), 
Multiple Imputation (MI) and Maximum Likelihood (ML). The data were analyzed considering scenarios of  5, 20 and 40% missing 
data, following random and block patterns, using data from the Doce River, in Southeast Brazil. Results obtained by the performance 
indicators and, their respective relative differences, indicated that, univariate (AM and M) and multivariate (PW and RLM) methods 
limited the model’s performance, while univariate Spline and Stine and multivariate IM and ML methods didn’t present significant 
limitations, except Spline for the block pattern. It is concluded that, future predictions accuracy depends, not only on a well-trained 
and validated model, but also on the appropriate use of  missing data imputation methods.

Keywords: Missing data imputation methodologies; Forecast; SARIMA.

RESUMO

A precisão nas previsões de vazão dos rios é crucial para a Hidrologia, mas é desafiada pela qualidade dos dados fluviométricos. Este 
estudo investiga o impacto de diferentes métodos de imputação de dados faltantes no desempenho do modelo Autoregressivo Integrado 
de Médias Móveis Sazonal (SARIMA). O modelo SARIMA (1,1,1)(0,1,1)12 foi selecionado usando critérios semi-automatizados, 
como menor AIC, parâmetros significativos (p-valor < 0,05) e adequação dos resíduos. Este modelo foi então comparado com séries 
reconstruídas usando diferentes métodos de imputação, como Média (AM), Mediana (M), Interpolações Spline e Stinemann, Ponderação 
Regional (RW), Regressão Linear Múltipla (MLR), Imputação Múltipla (MI) e Máxima Verossimilhança (ML). Os dados foram analisados 
considerando cenários de 5, 20 e 40% de dados faltantes, seguindo padrões aleatórios e de blocos, utilizando dados do Rio Doce, 
no Sudeste do Brasil. Os resultados obtidos pelos indicadores de desempenho e suas respectivas diferenças relativas, indicaram que, 
métodos univariados (AM e M) e multivariados (PW e RLM) limitaram o desempenho do modelo, enquanto os métodos univariados 
Spline e Stine e multivariados IM e ML não apresentaram limitações significativas, exceto Spline para o padrão de blocos. Conclui-se 
que a precisão das previsões futuras depende, não apenas de um modelo bem treinado e validado, mas também, do uso adequado de 
métodos de imputação de dados faltantes.

Palavras-chave: Metodologias de imputação de dados faltantes; Previsão; SARIMA.
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INTRODUCTION

Although flow forecasting constitutes a relevant focus of  
interest for Hydrology, its conduct presents substantial challenges, 
mainly the increase in its quality. Successful forecasts not only 
make it possible to contribute to important sectors of  water 
planning, such as human supply (Liu  et  al., 2021), control of  
floods and droughts (Ahmad et al., 2022), reservoirs operation for 
water storage and/or hydroelectric power generation, irrigation 
(Aghelpour et al., 2021) and industry (Schäfer et al., 2016), but 
they also anticipate water use conflicts and are fundamental to 
mitigating the impacts of  climate change (Musa, 2013).

Among applied forecasting methodologies, physical, 
conceptual and data-based methods stand out (Apaydin et  al., 
2021). While the first two require complex variables that are 
difficult to appropriate, data-based methods offer direct analyzes 
of  the variable of  interest, being advantageous in this sense 
(Khodakhah et al., 2022).

The attributes highlighted by Fu et al. (2019) such as the 
ability to establish a quantitative interaction between inputs and 
outputs, fast modeling speed and high prediction accuracy, are 
essential factors that drive the choice of  data-driven methods. 
For this reason, in recent years, techniques such as artificial 
intelligence, deep learning, machine learning and time series have 
been widely adopted in forecasting hydrological variables.

Time series methodology, developed in the 1970s by 
statisticians Box and Jenkins, which consolidated the class of  
ARMA (Autoregressive and Moving Average) models, allowed the 
establishment of  several generic models. Seasonal Autoregressive 
Integrated Moving Average (SARIMA) model stands out in this 
class, as it considers seasonality, an intrinsic characteristic of  flow 
time series (Abudu et al., 2010; Bayer et al., 2012).

Essentially, time series methodologies efficiency depends 
on the serial correlation structure. In this way, data quality plays a 
crucial role in the successful application of  these methodologies. 
In contrast, the incidence of  missing data in flow time series imposes 
limitations on the autocorrelation function, leading to questions 
about viability and performance of  forecast models, generating 
uncertainty in results and decision making (Giustarini et al., 2016; 
Dembélé et al., 2019).

The main causes of  missing data in flow time series are the 
hydrometrist absence, failures in the instruments of  data collection, 
loss of  annotations, and monitoring termination or interruptions 
(Gao et al., 2018; Bleidorn et al., 2022). Therefore, there has been 
a growing interest in recent years in the missing data treatment, 
including through different imputations approaches (Hamzah et al., 
2020). Examples include the works of  Tencaliec et al. (2015), that 
used dynamic regression to impute missing data from the Durance 
River, France; Dembélé et al. (2019), that applied direct sampling 
with different hydroclimatic settings to fill gaps in flow data from 
the Volta River, West Africa; Semiromi & Koch (2019), that 
used singular spectrum analysis and multichannel to reconstruct 
groundwater levels in the Ardabil Plain, Iran; Arriagada  et  al. 
(2021), that utilized a machine learning algorithm to fill missing 
data on daily flows in several Chile watersheds; Hamzah et al. 
(2022), that used equations of  multiple chained imputations (IM) 
to fill missing data of  Langat River, Malaysia.

In order to preserve the analysis quality in studies with 
time series, different authors previously used methodologies to 
impute missing data. For example, in the study by Pinto et al. 
(2015), was used the maximum likelihood methodology through 
the EM (Expectation-Maximization) algorithm to reconstruct 
the monthly mean flows series from Doce River, Brazil, before 
adjust the SARIMA (1,1,1)(1,1,2)12 model. Bleidorn et al. (2019) 
utilized the average of  the closest neighbors to perform the 
missing data imputation in the time series from Jucu River, Brazil, 
and, subsequently, the SARIMA (1,0,0)(5,1,0)12 model was fitted. 
Duarte et al. (2019) imputed missing data of  the monthly mean 
flows series of  Manuel Alves da Natividade River, Brazil, using the 
Kalman filter, and after model adjustment analysis, the SARIMA 
(1,0,1)(1,1,4)12 was the one that presented the best performance. 
Salame  et  al. (2019) utilized the IM to fill the missing values 
of  flows and precipitation in the Araguaia Watershed, Brazil 
and, afterwards, compare the performance of  Box and Jenkins 
approach and artificial neural networks for forecasts of  the studied 
variables. Phan & Nguyen (2020) used linear imputation and/or 
moving average to fill the missing data of  a monitoring station 
of  the Red River, China, with posterior adjustment of  ARIMA 
models. Retike et al. (2022) performed data reconstruction from 
the Latvian national groundwater level database. After that, the 
authors adjusted ARMA and ARIMA models to observed and 
reconstructed data and, evaluated, how the AIC values behaved, 
since their lowest values indicate the best fit of  the models to the 
data. Using 605 series, the adjusted models evaluation showed, 
for most series, that the AIC values were significantly improved 
for the reconstructed series.

Other studies used methodologies to impute missing data 
and, after that, used the approach of  interest in their analyses. 
For example, Gill et al. (2007) observed that groundwater level 
predictions using Neural Networks and Support Vector Machines 
after missing’s imputation with the least squares method were 
close to the observed data performance. Chen  et  al. (2018) 
evaluated the influence of  imputation missing precipitation data 
on the performance of  hydrological nonpoint pollution (H/
NPS) forecasting using the SWAT model in a case study for 
Daning River watershed, Three Gorges Reservoir Region, China. 
The authors concluded that the EMB imputation methodology 
(a combination of  the EM and Bootstrap algorithm) was better 
to the performances of  the other two methods analyzed (data 
augmentation algorithm and meteorological generator).

Although imputation methods application before using 
interest hydrological models has been recurrently observed, a 
significant gap in the literature lies in the assessment of  their 
impact on the SARIMA model specific performance. Therefore, 
this study aims to investigate how different missing data imputation 
approaches influence both the fit and forecasting ability of  the 
SARIMA time series model. This analysis will be carried out, 
using average monthly flow data from the Doce river, Brazil, as 
a case study.

Results obtained in this study have the potential to contribute 
to improving flow forecasts quality. By offering specific insights 
into how different imputation techniques affect SARIMA model 
performance, it will be possible to make more consistent decisions 
in water resources management. Furthermore, this research will 
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contribute to reducing the uncertainty associated with hydrological 
forecasts, providing a more solid basis for strategic and operational 
decision-making.

METHODOLOGY

Study area

Doce River watershed (Figure 1) is located in the Southeast 
Region of  Brazil, situated in the states of  Minas Gerais and 
Espírito Santo, between the parallels 17°45’ and 21°15’ of  south 
latitude and the medians 39°55’ e 43°45’ of  west longitude. 
The Doce River has total extension of  853 km and drainage area 
of  83,465 km2 (Coelho, 2007), of  which 86% belongs to the Minas 
Gerais State and the remainder (14%) to the Espírito Santo State, 
being, therefore, an interstate watershed.

The Doce River Watershed population is estimated in 
3.5 million inhabitants, distributed in 228 municipalities, being 
200 of  Minas Gerais and 28 of  Espírito Santo. The economic 
activity in the watershed is very diversified: (i) in farming, stands out 
traditional crops, coffee culture, sugar cane, beef  and dairy cattle 
breeding, pig farming, among others; (ii) in the agroindustry, it’s 
highlighted the production of  sugar and alcohol; (iii) has the largest 
steelmaking complex of  Latin America, to which are associated 
mining and reforestation companies; (iv) additionally, stand out 
cellulose and dairy industries, commerce and services related to 
industrial complexes, as well as electric power generation, with 
great potential for exploitation (Comitê da Bacia Hidrográfica 
do Rio Doce, 2022).

Data

The monthly average flow time series data cover the period 
from 1987 to 2011, totaling 25 years of  observations (or 300 months), 
obtained through the Hydrological Information System (Brasil, 

2022), of  the National Water Agency and Basic Sanitation (ANA). 
The Colatina station was used to carry out the imputations, and in 
cases of  multivariate imputation methodologies, support stations 
were utilized. The support stations were standardized following 
the same base period (1987 to 2011), and as a prerequisite, the 
correlation between stations was evaluated, mainly for the central 
study object station (Colatina). The selected stations are identified 
in this study as: Fazenda Cachoeira D’Antas (E1), Cachoeira dos 
Óculos Montante (E2), Belo Oriente (E3), Governados Valadares 
(E4), Tumiritinga (E5) and Colatina (E6). Figure 1 shows the station 
spatialization along the watercourse. Information regarding the 
global positioning characteristics and the stations’ drainage area 
and the drainage area are shown in Table 1.

As a precept for multivariate imputation methods, it is 
necessary that the data present homogeneity between them. 
The Pearson correlation coefficient (ρ) between stations can be 
seen in Table 2. The lowest correlation value (0.9373) was found 
between stations E1 and E6, which was expected because they 
are further away from each other. The high values enable the 
multivariate imputation methodologies use and that one station 
can provide reliable information when imputing missing data 
from another.

Imputation of  missing data

Imputation methodologies can be classified in two ways: by 
the imputation amount and the need to use auxiliary series or not. 
When it comes to the imputation type, single imputation is that 
which occurs when missing data are imputed only once). In turn, 
multiple imputation occurs when missings undergoes numerous 
imputations and, followed by inference analysis, the appropriate 
value for imputation is defined. When the imputation method 
only requires the series of  interest in generating information to 
conduct the imputation, the technique is called univariate. In cases 
where support series are necessary to carry out the imputation in 
the series of  interest, it is called a multivariate procedure.

Figure 1. Location of  the Doce River Watershed.
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The imputation methods utilized in this study were grouped 
as follows: (i) single univariate imputation, represented by the 
arithmetic mean (AM), median (M) and interpolations (Spline and 
Stineman) methodologies; (ii) single multivariate imputation, which 
refers to Regional Weighting (RW) and Multiple Linear Regression 
(MLR); and finally, (iii) multiple multivariate imputation, represented 
by the multiple imputation (IM) and maximum likelihood (ML) 
methodologies.

Methods of  single univariate imputation

Understood as basic approaches for imputing failures, 
missing data are replaced by mean or median, attributed using the 
data present (or remaining) in the series of  interest. Equations 
1 and 2 represent, respectively, AM and M.
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In Equation 1, x represents the mean and in Equation 2, ( )m x  
represents the median. In both equations, n is the quantity of  data.

Methods of  single multivariate imputation

The equations for the MLR and RW methodologies, are 
represented, respectively, by Equations 3 and 4.
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In Equation 3, X represents the series dependent of  the 
linear equation; 0β  is the linear coefficient vector; iβ  represents 
the angular coefficients; iY  denotes the independent station; and 
ε  are the residuals of  the model.
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In Equation 4, XN  and iN  denote, respectively, the monthly 
mean flow data for the station with missing data to be imputed 
and the monthly mean flow of  order “ i” of  the neighbor station 
(m3.s-1); iD  denotes the observed values of  order “i” in the neighbor 
stations during the month of  occurrence in the station with the 
data to be imputed (m3.s-1); and n is the number of  neighbor 
stations considered.

Imputation methods by interpolation

In this study two advanced approaches of  nonlinear 
interpolation were applied. The first one, called Spline interpolation, 
is applied over a Spline function defined in Equation 5.
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where ( ) ( ) ( ){ }0 2: , , ,  rS P x P x P x→ …   is a sequence of  cubic 
polynomials, and 2l rτ τ τ< <…<  is a sequence of  real numbers 
called knots of  the Spline space.

The second, called Stineman interpolation, utilizes the rational 
interpolation that is intended to provide better results than Spline 

Table 1. Stations selected for the study.

Identification Coordinates (degrees) Zone Drainage Area (km2)Lat. (S) Long. (W)
E1 19°59’39.84” 42°40’27.84” 23 K 10,100
E2 19°46’36.84” 42°28’35.04” 23 K 15,900
E3 19°19’46.92” 42°22’33.96” 23 K 24,200
E4 18°52’59.16” 41°57’02.88” 24 K 40,500
E5 18°58’15.96” 41°38’30.12” 24 K 55,100
E6 19°32’00.00” 40°37’46.92” 24 K 76,400

Note: Lat.: Latitude; Long.: Longitude.

Table 2. Pearson correlations for monthly mean flow variable data between stations.
E1 E2 E3 E4 E5 E6

E1 1
E2 0.9861 1
E3 0.9792 0.9857 1
E4 0.9609 0.9688 0.9893 1
E5 0.9457 0.9535 0.9771 0.9937 1
E6 0.9373 0.9481 0.9702 0.9838 0.9824 1
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interpolation in the case of  sudden changes in slope. The equating 
of  Stineman interpolation is described in the following according 
to the work of  Demirhan & Renwick (2018). Consider jx  and jy  
to be rectangular coordinates of  the j-th point on a curve and let 
´

jy  be the slope of  the curve at the j-th point for 1, , j n= …  and 
1j jx x +<  for  1 , , 1j n= … − . Thereafter, the Stineman interpolation is 

applied to calculate the interpolated value of  y  via Algorithm 1.
Algorithm 1:

1.	 Given x  that satisfies the condition 1j jü +≤ ≤ , calculate 
the inclination of  the line segment that joining two points 

by 
( )
( )
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j j
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j j
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−
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To implement Algorithm 1, one needs to know the values 

of  the slopes 
´

jy . If  these are not initially known, it is necessary 
to apply Algorithm 2 to perform the calculation of  theses slopes. 
For this, let I , J  and K  be any three consecutive points that satisfy 
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Algorithm 2:

1.	 For internal points, the slope is calculated by 
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2.	 For final points, calculate the slope for the final point m 

by 
´ ´

2m jy s y= − , where s is the slope of  the line segment 
that joins the points J  and the final points.

Method of  multiple multivariate imputation

The IM methodology, proposed by Rubin (1987), appeared 
as a more flexible manner and alternative to the maximum 
likelihood methods when there exists a large quantity of  missing 
data (Schafer & Graham, 2002). This technique enables the 
inclusion of  uncertainty of  imputation in the results, which is the 
major limitation associated to the single imputation techniques 
(Nunes et al., 2009). The technique is based on three steps: (i) 
in the first, are generated m sets of  imputed data; (ii) utilizing 
standardized procedures, m analyses are made in the set of  imputed 
data; and, (iii) the results of  the m analyses are combined to obtain 
the necessary inferences to choose the values considered in the 
final imputation.

In the first steps, the imputation techniques have to preserve 
the relation of  the missing and present observations and take into 
account the missing data pattern and the mechanisms of  absence. 
Having realized the m imputations, the step (ii) of  the IM can be 

performed, i.e., the m databases are analyzed by traditional methods 
of  analysis that in this study, is the mean predictive correspondence. 
As an outcome, it is possible to combine the results and utilize the 
rules proposed by Rubin (Rubin, 1987; Nunes et al., 2009). In step 
(iii), from each analysis, the estimates for the interest parameter 
Q are obtained. Let, ˆ

jQ  for  1 , 2,...,j m= , for Q equal to any scalar 
measure, the combined estimate will be the mean of  the individual 
estimates (Nunes et al., 2009), according to Equation 6.

1
1

  ˆ1
mm

j
j

i

Q Q
m =

=

= ∑ 	 (6)

For the combined variance, it is necessary to calculate the 
variance inside the imputations (Equation 7) and the variance 
between the imputed databases (Equation 8).
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Lastly, the total variance, which is the combined variance, 
is given by Equation 9.

1  T 1U B
m

= + + 	 (9)

The main idea of  the ML methodology is estimating the 
parameters that would maximize the probability of  the distribution 
of  the observed data (with or without the presence of  missing 
values), allowing then, estimate the missing data. The likelihood 
function is represented as in Equation 10.

L( | Y) f ( | )Θ = Π ΘiY 	 (10)

where f (Y | )Θ  is a density function that describes the model 
responsible for generating the data, Y are the data and Θ is a set of  
unknown parameters that rules the distribution of  Y, from which 
it is known that ir belongs to θΩ . That is, f (Y | )Θ  is a function of  
the parameter vector Θ ∈ θΩ  given Y, proportional to the density 
function. Establishing the model and the parameter vector Θ, 
f (Y | )Θ  can be used to sample missing values (Allison, 2002).

Due to the impositions associated with the analytical 
process, numerical methods are useful in the parameter estimation 
stage. Consolidating itself  as an efficient alternative, the EM 
algorithm is an iterative procedure that consists in repeating two 
steps: estimation (E) and maximization (M). Consider a dataset 
with observed and missing data, with density function given by 
p( | )Θcy  whereby, ( )l ,Θ cy  represents the log-likelihood function 
of  the complete and observed data. The algorithm suggests that 
initially one finds the expected value of  the logarithm of  the 
likelihood function (step E) and next its maximum (step M), 
according to Equation 11:

( ) ( ) ( )Q( |  E ( , | , )Θ Θ = Θ Θk kc c cl y y 	 (11)
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In the step M, is aimed to find ( )1+Θ k  that maximizes 
( )Q | Θ Θ 

 
k . The process is repeated until convergence is achieved, 

by means of  a stop criterion, such as ( ) ( )1+Θ Θ < εk k , when the 
difference between the estimated values of  the parameters in two 
consecutive iterations is lower than the pre-established.

Mechanisms of  missing data

The mechanisms of  missing data describe the relations 
between lost values and the probability of  absence, informing 
the cause of  missing in the data. Little & Rubin (2002) define 
three general theoretical mechanisms extensively utilized in the 
literature, known as (i) Missing Completely at Random (MCAR), (ii) 
Missing at Random (MAR) and (iii) not Missing at Random (NMAR). 
According to Hamzah et al. (2022), in flow data studies, missing 
data is described as MCAR due to the episode that results in 
failures not being due to influences from external variables. This 
mechanism is called ignorable, and there is, therefore, no need for 
its incorporation in the failure estimation process.

Missing data also can be characterized in patterns 
(McKnight et al., 2007). The main patterns of  missing data are 
discussed by Hamzah et al. (2022) known as (i) general or random 
pattern, (ii) unitary non-response pattern and (iii) monotonous 
pattern. Due to the characteristics of  missing data in flow variables 
being random and, very frequently, with a block pattern, patterns 
i and ii are of  interest in the present study. Once the mechanism 
and pattern of  missing data occurrence were established, artificial 
failures were simulated following the proportions of  5, 20 and 
40% failures. In the block pattern, the following gaps were created:

•	 5%: a block of  12 missing observations;
•	 20%: four blocks of  12 missing observations in each;
•	 40%: eight blocks of  12 missing observations in each.

Considering the perspective of  generating consistent 
results, a total of  one thousand (1000) simulation repetitions 
were replicated for each pattern and percentage of  missing data.

SARIMA model

The Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model is useful because it incorporates the seasonality 
component in its modeling process, a characteristic present in the 
Doce River flow regime (Pinto et al., 2015; Bleidorn et al., 2019). 
Let { }t tZ Z ; t= ∈  be a linear process represented by Equation 12:

( ) ( ) ( ) ( )S d S
t tB B Z B BφΦ ∇ = Θ θ ε 	 (12)

where s is called seasonal period of  the process and ( )2~ WN 0,t εε σ , 
in which t ~ WNε  is white noise ( )WN , defined as a sequence of  
uncorrelated random variables with zero mean and constant 
variance over time (Wei, 2006). The operator ∇d, with ( )  d,D=d  
and d,D non-negative integer numbers that represent, respectively, 
the number of  simple and seasonal differences applied to the 
process tZ , defined according to Equation 13:

( ) ( )1 B 1 B D.d S∇ = − −d 	 (13)

We have that ( ) ( ) ( )1 1 11 z , z 1 z , 1 zφ= = =Φ = −Σ Φ = −Σ Φ Θ = −Σ ΘQS P is P j S ks
i i j j kkz z

( ) ( ) ( )1 1 11 z , z 1 z , 1 zφ= = =Φ = −Σ Φ = −Σ Φ Θ = −Σ ΘQS P is P j S ks
i i j j kkz z  and ( ) q 1

l 1z 1 z=θ = − Σ Θl  are polynomials of  order 
P,  p,  Q,  q  ∈ , respectively, with  z  ∈ , where,  represents the set 
of  complex numbers,  denotes the set of  natural numbers, and 
{ } { } { }i ,  j ,  kφΦ Θ  and { }lθ  are sequences of  real numbers. The process 

tZ  with representation given in (12) is denominated seasonal 
multiplicative ARIMA (SARIMA) of  order ( ) ( )p,d,q P, D,Q s× .

Modeling methodology

The SARIMA model is built on the modeling methodology 
proposed by Box and Jenkins, based on an iterative cycle that 
contains four steps: (i) identification; (ii) estimation; (iii) residual 
adequacy; and, (iv) forecasting. In the first step, resources are used 
to understand the behavior of  the series, such as visual analysis of  
it, of  the correlograms (Autocorrelation Function – ACF and Partial 
Autocorrelation Function – PACF), of  the spectral decomposition 
and the use of  tests for detecting trend and seasonality. In this step, 
adjustment indicators are used, mainly the Akaike Information 
Criterion (AIC) (Akaike, 1974). In the second step, the parameters 
of  the candidate models are estimated by several approaches, 
being recurrent the use of  the maximum likelihood. In the third 
step, it is verified that the model is adequate via residual analysis. 
Having satisfied the above conditions, the model is considered 
in the steps of  adjustment and forecasting.

Semi-automatization of  the model choice

Taking into consideration that the model choice is extremely 
important, the founds in Pinto et al. (2015) and Bleidorn et al. 
(2019) studies allows to infer the presence of  the seasonality 
component and the characteristic of  non-stationarity in the flow 
series for the same time series studied in this research. Hence, to 
bypass the non-linear structures and make the series stationary 
(Box & Jenkins, 1976), it was defined the differencing d and D = 
1, and the data transformation via natural logarithm. Pinto et al. 
(2015) study allows to verified, for the same studied series (E6), a 
behavior of  the correlograms that indicated an autoregressive part 
(AR) of  order 1 and of  moving average (MA) of  order 2. Given 
this information, it was possible to define the initial conditions 
for the semi-automation of  model choice.

The semi-automatization was established to remove the 
subjectivity in the model choice, consequently avoiding the distortion 
of  the effect of  using reconstructed databases on modeling and 
forecasting performance. This formulation consisted of  the 
following steps: (a) all possible combinations resulting from models 
with a maximum of  three parameters in each part of  the model 
(AR and MA of  the ordinal a seasonal parts), and the fixed unit 
differentiation (d and D = 1), considering that this conditioning 
of  at most three parameters of  each model component, follows 
the parsimony principle. The combination of  these configurations 
allowed to generate a total of  254 candidate models. In the next 
step (b) was to order in increasing magnitude the AIC values. 
In the third step (c), the analyzed model parameters necessarily 
should have significance in the level of  99,5% (p-valor < 0,05). 
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Finally, the last step (d), consisted of  the analysis of  normality 
and non-autocorrelation. The chosen model was the one that 
combined the lowest AIC value, significant parameters and normal 
and non-autocorrelated residuals.

Fitting the model to observed data

Initially, the observed series was used to adjust the SARIMA 
model, allowing it to be used as a parameter of  adjustment analysis 
to the reconstructed databases. The data were divided into two 
groups: the first, for adjustment, from January 1987 to December 
2011, resulting in 300 months of  observations, and the second, from 
January to December 2012 to evaluate the forecast accuracy one step 
ahead (12 months). Table 3 presents the AIC and Bayesian (BIC) 
values (Akaike, 1978) and the normality and non-autocorrelation 
tests of  residuals. Tables 4 and 5 present, respectively, the model’s 
adjustment and prediction performance indicators values.

Performance indicators

The model performance in the adjustment and forecasting 
stages for the different imputed datasets, were evaluated using 
the performance indicators Absolute BIAS, Root Mean Squared 
Error (RMSE), Mean Absolut Percentual Error (MAPE), Nash-
Sutcliffe (NSE) (Nash & Sutcliffe, 1970), concordance index ( 2)d ) 
and Pearson correlation coefficient (ρ), presented by the Equations 
14, 15, 16, 17 and 18, respectively.

The Absolute BIAS quantifies the estimates of  underestimation 
and overestimation with respect to the mean observations.

1

1  ( )
N

i i
i

x x
n

=

−∑  	 (14)

The RMSE is the quadratic difference between the forecasted 
or adjusted values and their respective true values. In general, 
lower values indicate better performance.

2

1

1RMSE ( )
N

i i
i

x x
n

=

= −∑ 

	 (15)

The MAPE is a measure of  precision of  adjustment and 
forecasting of  a model. Lower values indicate good performance.

1

1MAPE
n

i i

ii

x x
n x

=

 −
=   

 ∑ 

	 (16)

ρ describes the relation between the variables and the closer it is 
to the extremes (-1 or 1) the stronger the correlation is.
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	 (17)

NSE is used to evaluate the predictive capacity of  the 
hydrological models. The values of  NSE vary between -∞ and 1, 
with values closer to 1 representing good performance.

2
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	 (18)

2  d  reflects the concordance between adjustment/forecasting of  
the model with the observed data, with the desired value of  1 
indicating perfect concordance.
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	 (19)

where: n represents the number of  observations in the phase 
of  adjustment or forecast; x indicates the observed values; y the 
adjusted or forecasted values; x  is the mean of  the observations and 

Table 3. Statistical tests of  normality and correlation of  residuals from the model adjusted to observed data.

Model Adjustment quality p-valor
AIC BIC S-W J-B L-B B-P

(1,1,1)(0,1,1)12 171.4758 186.1137 2.803 x 10-06 0.0001 0.2880 0.3192

Table 4. Quality-of-fit measurements of  selected models.
Quality Measures

BIAS RSME MAPE NSE 2d ρ
41.9764 21.0488 206.2328 0.6129 0.8599 0.9090

Table 5. Forecast quality measures of  selected models.

h
Quality Measures

BIAS RSME MAPE NSE 2d ρ
12 -39.4258 167.1951 331.9439 0.4867 0.7673 0.9020
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y the estimated values in the phase of  adjustment or forecasting 
of  the models.

Computational resources

Electronic spreadsheets were used for organizing the 
data and the software R (R Development Core Team, 2021) 
was utilized to simulate missing data and its reconstructions, 
adjustment of  the Box and Jenkins methodology using 
the SARIMA model and the analysis of  its performance. 
The imputeTS package was used to carry out the imputations 
using the Stineman and Spline methodologies and the mice and 
mtsdi packages to carry out the imputations using the IM and 
ML methodologies, respectively.

RESULTS AND DISCUSSION

Descriptive analysis of  data

For an initial understanding of  the time series under study, 
some descriptive measures are presented in Table 6. The monthly 
mean flow was of  805.09 m3.s-1 with standard deviation of  
578.48 m3.s-1 and coefficient of  variation of  71.85%. The high 
values of  the standard deviation and coefficient of  variation 
indicate that the mean has little representativeness, associated 
to the seasonal characteristic of  the series, as confirmed by the 
works of  Pinto et al. (2015) and Bleidorn et al. (2019) for the 
same series under study. The series has asymmetry of  1.82 and 
kurtosis of  3.59, indicating that the distribution is not normal 
and has heavier tails. The seasonality property of  the studied 
series can be visualized in Figures 2 and 3, with a well-defined 
interannual variability pattern with periods of  greater flows 
magnitude (November to April) followed by periods of  smaller 
flows magnitude (May to October).

Effect of  the imputation methodologies in the 
quality of  adjustment and forecasting

Tables 7 and 8 show the values of  the performance indicators 
of  adjustment of  the model to the imputed series with random 
and in block pattern of  missing data, respectively. In general, it is 
possible to verify that, while the percentages of  imputed failures 
increase, the model presents loss of  quality, with emphasis on the 

high values of  the indicators BIAS, RMSE, MAPE to lows of  the 
NSE, 2d  and ρ for the adjustment of  the reconstructed series by 
RW, MLR, M and AM methodologies in both patterns of  missing 
data. For the block pattern, Spline and Stine techniques also 
limited the model performance. However, it is possible to verify 
that, even under a critical scenario of  failures imputation (40%), 
in both patterns of  missing data, the IM and ML methodologies 
are efficient to the point that there are no significant changes in 
the model quality indicators, with low values of  BIAS, RMSE, 
MAPE and high of  NSE, 2d  and ρ.

Tables 9 and 10 show the performance indicators in the 
forecasting step of  the model, considering the missing data 
imputations with random and in block pattern, respectively. 
Due to the loss of  quality in the adjust step, it was expected 
that the model’s performance would be compromised in the 
forecasting stage for the series reconstructed by RW, MLR, 
M and AM in both failure patterns and by Stine and Spline 
methodologies for the pattern in block. Just like in the adjustment 
step, it is possible to verify low values of  the performance 
indicators BIAS, RMSE, MAPE and high NSE, d2 and ρ, for 
the forecast performance of  the model fitted to the series 
reconstructed by the Stine and Spline methodologies for the 
random loss pattern and for IM and ML methodologies for 
both missing data patterns.

Relative difference of  the quality of  adjustment and 
forecasting

To facilitate the understanding of  the behavior of  the 
quality measures, it is shown in Tables  11  and  12 the relative 
difference of  fit performance measures and in Tables 13 and 14, 

Table 6. Descriptive measures of  Doce River flow.
Descriptive measures Value

Minimum value (m3.s-1) 194.20
Maximum value (m3.s-1) 3,469.91

Mean (m3.s-1) 805.09
Median (m3.s-1) 582.33

Coefficient of  variation (%) 71.85
Standard deviation (m3.s-1) 578.48

Asymmetry 1.82
Kurtosis 3.59

Figure 2. Graphic of  the mean flow time series of  Doce River.

Figure 3. Graphical analysis of  seasonality of  monthly mean 
flows time series of  Doce River.
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Table 7. Quality measures of  adjustment for the imputed data with random pattern.

Method Failures
Quality Measures

BIAS RMSE MAPE NSE d ρ
AM 5% 52.7438 21.2943 207.2785 0.6038 0.8485 0.9090

20% 81.7548 22.7130 219.8330 0.5492 0.7979 0.9092
40% 111.3557 25.5101 252.2228 0.4314 0.6892 0.9094

M 5% 57.6646 21.3616 207.2529 0.6013 0.8468 0.9092
20% 101.3630 23.1657 219.6816 0.5311 0.7867 0.9091
40% 149.0176 26.5386 253.5870 0.3846 0.6588 0.9092

RW 5% 55.2947 21.1764 206.0494 0.6081 0.8559 0.9089
20% 226.4204 26.0459 262.4324 0.4072 0.7433 0.9062
40% 552.6584 42.9540 552.6584 -0.6120 0.3112 0.9019

MLR 5% 59.2678 21.2450 206.3229 0.6056 0.8540 0.9087
20% 236.4774 26.5094 268.8146 0.3860 0.7315 0.9049
40% 559.7321 43.4211 559.7321 -0.6472 0.2968 0.9004

Spline 5% 40.4013 20.7365 203.1147 0.6243 0.8656 0.9138
20% 38.9052 19.8956 195.3544 0.6541 0.8779 0.9228
40% 41.3428 19.4982 189.7887 0.6678 0.8848 0.9285

Stine 5% 42.3592 20.8275 203.6450 0.6210 0.8631 0.9133
20% 46.1429 20.2043 197.0007 0.6433 0.8701 0.9218
40% 50.8173 19.8482 193.8725 0.6558 0.8757 0.9262

IM 5% 42.0289 21.0353 206.4785 0.6134 0.8599 0.9088
20% 42.3063 21.0244 207.3706 0.6138 0.8596 0.9075
40% 42.5619 21.0404 209.1222 0.6132 0.8587 0.9050

ML 5% 42.0544 21.0425 206.4270 0.6131 0.8598 0.9087
20% 42.3904 21.0512 207.2645 0.6128 0.8591 0.9073
40% 42.3017 21.0827 208.9582 0.6116 0.8581 0.9047

Table 8. Quality measures of  adjustment for the imputed data with in block pattern.

Method Failures
Quality Measures

BIAS RMSE MAPE NSE 2d ρ
AM 5% 43.4514 21.4090 213.7368 0.5995 0.8522 0.8946

20% 95.3017 24.8093 235.6318 0.4622 0.7720 0.8686
40% 70.2809 27.7276 287.0185 0.3282 0.7331 0.7029

M 5% 48.7386 21.5094 213.5885 0.5957 0.8508 0.8974
20% 113.4883 25.5766 241.4153 0.4284 0.7575 0.8613
40% 116.3269 28.9237 291.8409 0.2690 0.7169 0.7096

RW 5% 54.4271 21.8005 213.4348 0.5847 0.8501 0.9041
20% 186.6006 30.1628 303.7369 0.2051 0.7115 0.6380
40% 324.8904 39.9292 456.2904 -0.3929 0.6162 0.4323

RLM 5% 62.2207 22.4828 223.2875 0.5583 0.8451 0.8820
20% 166.6538 32.2723 328.2497 0.0900 0.6997 0.5325
40% 326.9094 40.0867 454.5443 -0.4039 0.6142 0.3920

Method Failures
Quality Measures

BIAS RMSE MAPE NSE 2d ρ
Spline 5% 47.7851 25.0570 256.5995 0.4514 0.8323 0.8203

20% 54.9519 26.4562 262.3972 0.3884 0.7882 0.8053
40% -210.7843 63.7762 567.0233 -2.5536 0.5045 0.5130

Stine 5% 61.4936 22.5159 220.9544 0.5570 0.8413 0.8783
20% 85.0125 27.4814 271.9021 0.3401 0.7631 0.7652
40% 56.0532 29.2919 311.1370 0.2503 0.7337 0.6592

IM 5% 47.2351 21.1062 206.9831 0.6107 0.8579 0.9069
20% 46.2231 21.4987 210.5306 0.5961 0.8525 0.9052
40% 34.1526 21.8219 217.7988 0.5839 0.8512 0.8990

ML 5% 45.6403 21.0768 207.1394 0.6118 0.8593 0.9068
20% 42.8350 21.2958 209.5853 0.6037 0.8575 0.9070
40% 43.6186 21.8176 214.5231 0.5841 0.8492 0.9008
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Table 9. Quality measures of  forecasting for imputed data with random pattern.

Method Failures
Quality Measures

BIAS RMSE MAPE NSE 2d ρ
AM 5% -21.2196 170.1698 331.9334 0.4683 0.7434 0.9020

20% 51.3489 181.3630 313.7535 0.3961 0.6546 0.9020
40% 102.4067 196.0498 326.8236 0.2943 0.5259 0.9020

M 5% -4.4286 171.2643 322.1710 0.4615 0.7359 0.9020
20% 64.9792 181.2698 306.1544 0.3967 0.6540 0.9020
40% 149.9682 200.6252 314.7488 0.2610 0.4978 0.9020

RW 5% -37.9093 167.9537 337.7092 0.4821 0.7635 0.9020
20% 197.3628 188.5563 311.2692 0.3472 0.6354 0.8951
40% 569.7914 267.5029 569.7914 -0.3137 0.2562 0.9020

Method Failures
Quality Measures

BIAS RMSE MAPE NSE 2d ρ
MLR 5% -21.9195 167.7733 325.2059 0.4832 0.7604 0.9020

20% 213.1987 191.8399 312.9804 0.3243 0.6166 0.9020
40% 593.8795 272.0437 593.8795 -0.3587 0.2472 0.9230

Spline 5% -106.5841 177.2372 386.3699 0.4232 0.7468 0.8811
20% -93.3112 173.2579 386.1265 0.4488 0.7494 0.9230
40% -79.0259 185.0240 406.6258 0.3715 0.6786 0.9160

Stine 5% -95.0408 175.4720 374.5865 0.4347 0.7511 0.9020
20% -65.6582 172.2744 368.1666 0.4551 0.7440 0.9230
40% -34.3310 181.4035 377.5423 0.3958 0.6839 0.9370

IM 5% -40.9106 167.0590 335.0690 0.4876 0.7677 0.9020
20% -70.8730 176.2720 362.1946 0.4295 0.7397 0.8811
40% -14.5344 168.3016 323.3994 0.4799 0.7555 0.9020

ML 5% -47.5680 167.7267 341.4603 0.4835 0.7664 0.9020
20% -25.9219 168.3118 329.1422 0.4799 0.7591 0.9020
40% -7.3699 168.0394 317.0583 0.4815 0.7555 0.9020

Table 10. Quality measures of  forecasting for imputed data with in block pattern.

Method Failures
Quality Measures

BIAS RMSE MAPE NSE 2d ρ
AM 5% -45.7355 168.5402 344.4893 0.4784 0.7581 0.9020

20% 127.9092 191.6874 302.3053 0.3254 0.6004 0.8811
40% -314.3138 196.4584 563.2575 0.2914 0.7243 0.8671

M 5% -11.8006 169.8179 323.9684 0.4705 0.7446 0.9020
20% 177.6978 196.4043 309.4514 0.2918 0.5707 0.8741
40% -349.8510 208.5124 605.4242 0.2017 0.6976 0.8251

RW 5% -27.1742 168.9876 329.6567 0.4757 0.7567 0.9020
20% 613.2388 277.9278 613.2388 -0.4181 0.2208 0.9090
40% -495.4309 273.7219 841.6166 -0.3755 0.0000 0.9020

MLR 5% -84.9160 168.6021 366.3130 0.4781 0.7715 0.9020
20% 696.6152 301.1155 696.6152 -0.6646 0.1096 0.8391
40% -128.9501 197.0022 481.6821 0.2874 0.6043 0.6293

Spline 5% -236.5789 183.1726 479.4728 0.3840 0.7659 0.9020
20% 412.3080 238.9207 424.2963 -0.0479 0.3616 0.8531
40% -667.3864 285.5110 859.0869 -0.4965 0.6384 0.7832

Stine 5% -101.0516 177.7436 387.0325 0.4199 0.7385 0.8811
20% 533.1416 259.6469 533.1416 -0.2376 0.2940 0.8531
40% -271.4511 193.0208 543.8541 0.3160 0.7283 0.8671

IM 5% -30.6386 166.5110 328.2590 0.4909 0.7654 0.9020
20% 3.9594 175.3916 322.7458 0.4352 0.7209 0.9020
40% -12.8244 181.1161 342.9227 0.3977 0.7054 0.8811

ML 5% -48.6574 166.2311 338.8334 0.4926 0.7719 0.9020
20% 23.5632 170.2113 309.1330 0.4681 0.7431 0.9020
40% 14.5180 177.4495 320.5190 0.4219 0.7133 0.8811
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Table 11. Relative difference in the quality of  adjustment of  the model to the observed and imputed data with random pattern.

Method Quality Measures IM MLAM M RW MLR Spline Stine
5%

BIAS 25.65 37.37 31.73 41.19 -3.75 0.91 0.13 0.19
RMSE 1.17 1.49 0.61 0.93 -1.48 -1.05 -0.06 -0.03
MAPE 0.51 0.49 -0.09 0.04 -1.51 -1.25 0.12 0.09
NSE -1.48 -1.89 -0.78 -1.19 1.86 1.32 0.08 0.03
d -1.33 -1.52 -0.47 -0.69 0.66 0.37 0.00 -0.01
ρ 0.00 0.02 -0.01 -0.03 0.53 0.47 -0.02 -0.03

20%
BIAS 94.76 141.48 439.40 463.36 -7.32 9.93 0.79 0.99
RMSE 7.91 10.06 23.74 25.94 -5.48 -4.01 -0.12 0.01
MAPE 6.59 6.52 27.25 30.35 -5.27 -4.48 0.55 0.50
NSE -10.39 -13.35 -33.56 -37.02 6.72 4.96 0.15 -0.02

2d -7.21 -8.51 -13.56 -14.93 2.09 1.19 -0.03 -0.09
ρ 0.02 0.01 -0.31 -0.45 1.52 1.41 -0.17 -0.19

40%
BIAS 165.28 255.00 1216.59 1233.45 -1.51 21.06 1.39 0.77
RMSE 21.20 26.08 104.07 106.29 -7.37 -5.70 -0.04 0.16
MAPE 22.30 22.96 167.98 171.41 -7.97 -5.99 1.40 1.32
NSE -29.61 -37.25 -199.85 -205.60 8.96 7.00 0.05 -0.21

2d -19.85 -23.39 -63.81 -65.48 2.90 1.84 -0.14 -0.21
ρ 0.04 0.02 -0.78 -0.95 2.15 1.89 -0.44 -0.47

Table 12. Relative difference in the quality of  adjustment of  the model to the observed and imputed data with in block pattern.

Method
Quality Measures

IM ML
AM M RW MLR Spline Stine

5%
BIAS 3.51 16.11 29.66 48.23 13.84 46.50 12.53 8.73
RMSE 1.71 2.19 3.57 6.81 19.04 6.97 0.27 0.13
MAPE 3.64 3.57 3.49 8.27 24.42 7.14 0.36 0.44
NSE -2.19 -2.81 -4.60 -8.91 -26.35 -9.12 -0.36 -0.18

2d -0.90 -1.06 -1.14 -1.72 -3.21 -2.16 -0.23 -0.07

ρ -1.58 -1.28 -0.54 -2.97 -9.76 -3.38 -0.23 -0.24

Method
Quality Measures

IM ML
AM M RW MLR Spline Stine

20%
BIAS 127.04 170.36 344.54 297.02 30.91 102.52 10.12 2.05
RMSE 17.87 21.51 43.30 53.32 25.69 30.56 2.14 1.17
MAPE 14.26 17.06 47.28 59.16 27.23 31.84 2.08 1.63
NSE -24.59 -30.10 -66.54 -85.32 -36.63 -44.51 -2.74 -1.50

2d -10.22 -11.91 -17.26 -18.63 -8.34 -11.26 -0.86 -0.28

ρ -4.44 -5.25 -29.81 -41.42 -11.41 -15.82 -0.42 -0.22
40%

BIAS 67.43 177.12 673.98 678.79 -602.15 33.54 -18.64 3.91
RMSE 31.73 37.41 89.70 90.45 202.99 39.16 3.67 3.65
MAPE 39.17 41.51 121.25 120.40 174.94 50.87 5.61 4.02
NSE -46.45 -56.11 -164.11 -165.90 -516.64 -59.16 -4.73 -4.70

2d -14.75 -16.63 -28.34 -28.57 -41.33 -14.68 -1.01 -1.24

ρ -22.67 -21.94 -52.44 -56.88 -43.56 -27.48 -1.10 -0.90
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Table 13. Relative difference in the quality of  forecasting of  the model to the observed and imputed data with random pattern.

Method
Quality Measures

IM ML
AM M RW MLR Spline Stine

5%
BIAS -46.18 -88.77 -3.85 -44.40 170.34 141.06 3.77 20.65
RMSE 1.78 2.43 0.45 0.35 6.01 4.95 -0.08 0.32
MAPE 0.00 -2.94 1.74 -2.03 16.40 12.85 0.94 2.87
NSE -3.78 -5.18 -0.95 -0.72 -13.05 -10.68 0.18 -0.66

2d -3.11 -4.09 -0.50 -0.90 -2.67 -2.11 0.05 -0.12

ρ 0.00 0.00 0.00 0.00 -2.32 0.00 0.00 0.00
20%

BIAS -230.24 -264.81 -600.59 -640.76 136.68 66.54 79.76 -34.25
RMSE 8.47 8.42 12.78 14.74 3.63 3.04 5.43 0.67
MAPE -5.48 -7.77 -6.23 -5.71 16.32 10.91 9.11 -0.84
NSE -18.62 -18.49 -28.66 -33.37 -7.79 -6.49 -11.75 -1.40

2d -14.69 -14.77 -17.19 -19.64 -2.33 -3.04 -3.60 -1.07

ρ 0.00 0.00 0.00 -0.77 2.33 2.33 -2.32 0.00
40%

BIAS -359.75 -480.38 -1545.22 -1606.32 100.44 -12.92 -63.13 -81.31
RMSE 17.26 19.99 59.99 62.71 10.66 8.50 0.66 0.51
MAPE -1.54 -5.18 71.65 78.91 22.50 13.74 -2.57 -4.48
NSE -39.53 -46.37 -164.45 -173.70 -23.67 -18.68 -1.40 -1.07

2d -31.46 -35.12 -66.61 -67.78 -11.56 -10.87 -1.54 -1.54

ρ 0.00 0.00 2.33 0.00 1.55 3.88 0.00 0.00

Table 14. Relative difference in the quality of  forecasting of  the model to the observed and imputed data with block pattern.

Method
Quality Measures

IM ML
AM M RW MLR Spline Stine

5%
BIAS 16.00 -70.07 -31.08 115.38 500.06 156.31 -22.29 23.42
RMSE 0.80 1.57 1.07 0.84 9.56 6.31 -0.41 -0.58
MAPE 3.78 -2.40 -0.69 10.35 44.44 16.60 -1.11 2.08
NSE -1.71 -3.33 -2.26 -1.77 -21.10 -13.73 0.86 1.21

2d -1.20 -2.96 -1.38 0.55 -0.18 -3.75 -0.25 0.60

ρ 0.00 0.00 0.00 0.00 0.00 -2.32 0.00 0.00
20%

BIAS -424.43 -550.71 -1655.43 -1866.90 -1145.78 -1452.27 -110.04 -159.77
RMSE 14.65 17.47 66.23 80.10 42.90 55.30 4.90 1.80
MAPE -8.93 -6.78 84.74 109.86 27.82 60.61 -2.77 -6.87
NSE -33.14 -40.05 -185.91 -236.55 -109.84 -148.82 -10.58 -3.82

2d -21.75 -25.62 -71.22 -85.72 -52.87 -61.68 -6.05 -3.15

ρ -2.32 -3.09 0.78 -6.97 -5.42 -5.42 0.00 0.00
40%

BIAS 697.23 787.37 1156.62 227.07 1592.77 588.51 -67.47 -136.82
RMSE 17.50 24.71 63.71 17.83 70.77 15.45 8.33 6.13
MAPE 69.68 82.39 153.54 45.11 158.80 63.84 3.31 -3.44
NSE -40.13 -58.56 -177.15 -40.95 -202.01 -35.07 -18.29 -13.31

2d -5.60 -9.08 -100.00 -21.24 -16.80 -5.08 -8.07 -7.04

ρ -3.87 -8.53 -100.00 -30.23 -13.17 -3.87 -2.32 -2.32
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the relative difference for forecasting, considering the performance 
indicators obtained by the reference model (adjusted to observed 
data, see Tables 5 and 6).

It is generally inferred that, in the adjustment stage, the 
quality measures Bias, RMSE and MAPE increase as the proportions 
of  imputed failures were increased. For the model adjusted to 
the series reconstructed by Spline and Stine methodologies 
with the random pattern of  missing data was observed that 
the quality of  the performance measures increase when the 
proportions of  imputed failures were higher. Considerable 
quality losses in tuning performance can be attributed to the 
univariate (AM and M) and multivariate (PW and RLM) single 
imputation methods. To exemplify, the model adjustment to 
the series imputed by MLR and RW methodologies showed 
higher losses of  quality, evidenced by the high values of  the 
indicators Bias, RMSE, MAPE and by the decrease in quality 
of  the indicators NSE, 2d  e ρ.

In the most critical data reconstruction scenario (40%), 
relative differences in the model adjustment stage reached 
values of  up to 1,233.44%, 106.28%, 171.40%, 205.59%, 
65.48% and 0.94% of  the respective indicators Bias, RMSE, 
MAPE, NSE, 2d  and ρ, for the random pattern of  the series 
reconstructed by the MLR methodology and up to 602.14%, 
202.99%, 174.94%, 516.64%, 41.33 and 43.56% for the model 
adjusted to the series reconstructed by the Spline methodology 
under the block missing data pattern. Such findings allows to 
infer that these imputation methodologies do not preserve 
the series characteristics and compromise the SARIMA model 
adjustment performance and, consequently, the forecast 
performance (Table 12).

Studies found that RW, M and AM methodologies tend 
to underestimate the data variance. By their nature, AM and 
M are measures of  central tendency of  the series, being the 
median preferred when the data get farther of  the normal 
distribution. The authors Ben Aissia  et  al. (2017), Gao  et  al. 
(2018) and Kabir et al. (2020) agree that, despite the simplicity 
of  the methods, reconstruct the loss value using a constant does 
not reflect the variation that would probably occur if  the data 
would be observed. It is considered important to evaluate the 
maintenance of  the use of  RW and MLR methodologies, for 
limiting the performance of  the SARIMA model and, mainly 
because these are techniques usually applied to reconstruct 
missing data in hydrological series.

In turn, the reconstructed series by the single univariate 
(Spline and Stine) and multiple multivariate (IM and ML) imputation 
methodologies resulted in a good model fitting performance 
even under critical scenario of  losses (40% - exception to 
Spline applied to the pattern of  missing data in block). Small 
losses of  quality of  the model performance indicators adjusted 
to the series reconstructed by the methodologies Stine, IM 
and ML point up that these approaches preserves the series 
characteristics (Nunes et  al., 2009; Junger & Ponce de Leon, 
2015; Bleidorn et al., 2022).

Just as in the adjustment step, the forecasting quality 
indicators indicate that the series reconstructed by the imputation 
methodologies AM, M, RW, MLR compromises the model 
performance, both for the scenario of  random missing data and 

for the block pattern. The model adjusted to the reconstructed 
series by MLR in the 40% of  random failures scenario resulted 
in relative difference of  1,606.32%, 62.71%, 78.90%, 173.70% e 
67.78% in the performance indicators Bias, RMSE, MAPE, NSE 
and 2d , respectively, and for the reconstructed series by Spline 
with the block pattern of  failures resulted in relative difference 
values of  1,592.76%, 70.76%, 158.80%, 202.01% e 16.79% for 
the same indicators.

In cases of  series reconstruction using the methodologies 
Spline (only to random missing data), Stine, IM and ML, as 
observed in the adjustment phase, minimal quality losses 
occurred. Even under the most critical data loss scenarios, the 
model obtained low relative differences, in both missing data 
patterns, when considering the series reconstructed by the IM 
and ML methodologies.

Figures 4 and 5 show the graphics of  the simulations 
for the missing data proportion of  40% for the random and 
in block patterns, respectively. Figures 6 and 7 display a visual 
comparison of  the adjusted model to the observed (black lines) 
and imputed data (red lines). This comparison shows a good 
performance of  the adjusted model to the reconstructed series 
by the methodologies Spline, Stine, IM and ML considering 
the random missing data pattern and Stine, IM and ML for the 
in-block pattern. The other methodologies, just like suggested 
the performance indicators, resulted in underestimation of  the 
adjustment to the observed series.

Figure 5. Monthly mean flow time series of  station E6, considering 
40% of  in block missing data.

Figure 4. Monthly mean flow time series of  station E6, considering 
40% of  random missing data.
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Figure 6. Observed monthly mean flow time series (black line) and model fitted by the imputed series (red line) at station E6, for 
each imputation methodology, considering 40% of  random missing data. 
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Figure 7. Observed monthly mean flow time series (black line) and model fitted by the imputed series (red line) at station E6, for 
each imputation methodology, considering 40% of  in block missing data.
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CONCLUSIONS

This study aimed to evaluate the effect of  the use of  
different missing data imputation methodologies on the fitting 
and forecasting performance of  the SARIMA time series model, 
considering as a case study the monthly mean flow data of  the 
Doce River in Southeastern Brazil. Different failure proportions 
simulations under random and block pattern were considered.

A semi-automated approach was considered in the model 
choice to avoid any subjectivity in its choice. Therefore, the SARIMA 
(1,1,1)(0,1,1)12 model was adjusted to the observed data and served 
as a quality parameter in the adjustment and forecasting of  the 
series reconstructed by the imputation methodologies. The results 
indicated that, overall, the model loses quality in adjustment and 
forecasting as the percentage of  imputed missing data increases, 
especially in the use of  the model in the series reconstructed by the 
mean, regional weighting and multiple linear regression. Therefore, 
despite being usually used to impute missing data on hydrological 
variables, it is considered that these methodologies considerably 
reduce the quality of  SARIMA time series model. In contrast, it 
was verified that the model quality was maintained when applied to 
the reconstructed series by the Spline (only for the random missing 
data pattern), Stine, Multiple Imputation and Maximum Likelihood 
methodologies. These methods, even under extreme conditions 
of  data loss (40%), allowed to preserve the series characteristics.

Whereas data quality is crucial for successful employment 
of  the SARIMA model, the finding results highlight that the 
quality of  flow forecasts can be improved when the missing 
data processing is carried out using appropriate processing 
methodologies. The search for increased reliability of  the results 
is useful in engineering projects, risk management, allocation of  
multiple uses and water between watersheds and in hydroelectric 
power generation. Now, it is known that the stage of  processing 
missing data with appropriate methodologies must be anticipated 
before the use of  the SARIMA model.
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