Estudos de simulação foram conduzidos com o objetivo de verificar a influência da informação a priori nas avaliações genéticas dos animais. Foi simulado um genoma de 3.000 centimorgans, considerando-se uma única característica quantitativa, determinada por 800 locos, com dois alelos por loco, na qual a herdabilidade variou de 0,40 a 0,60. Foram simulados 1.500 machos e 1.500 fêmeas, que formaram a população-base. A partir da população-base, foram formados três tamanhos de populações: POP1 (100 animais), POP2 (300 animais) e POP3 (1.600 animais). Foram empregados três níveis de informação a priori: priors não-informativos (PNI), priors pouco informativos (PPI) e priors informativos (PI). Foram avaliadas também as conseqüências de se incluir nas análises valores de priors superestimados (com 50% de erro), considerados pouco informativos e informativos. Para verificação da influência de diferentes níveis de informação na avaliação genética, foram utilizadas a Porcentagem de Erro em relação ao valor verdadeiro dos componentes de variância, a Correlação de Spearman e o Quadrado Médio do Erro entre os valores genéticos reais e os preditos. As populações POP1 e POP2 apresentaram maiores porcentagens de erro e foram mais sensíveis às informações a priori. Maiores níveis de informação conduziram a melhores estimativas das variâncias, sendo que os QME apresentaram-se menores com o aumento do nível de informação, principalmente para as populações pequenas. Entretanto, as Correlações de Spearman permaneceram sempre inferiores a 0,70 para POP1 e POP2, indicando grandes alterações nas classificações dos animais. Conclui-se que existe uma perda ao se trabalhar com conjuntos de dados pequenos, mesmo quando informações a priori adicionais estão disponíveis.
análise Bayesiana; componentes de variância; informação a priori; parâmetros genéticos; simulação