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ABSTRACT - The objective of this study was to evaluate fermentation losses and the nutritional value of silage of 
Brachiaria brizantha cv BRS Piatã ensiled with different levels of crude glycerin. The experiment followed a 4 × 2 completely 
randomized factorial design with four doses of crude glycerin (0, 100, 200, and 300 g kg−1 of DM silage) and two cutting 
ages (45 and 60 days) with four replicates per treatment (silos). The parameters of dry matter losses, effluents losses, gas
losses, pH, microbial population, and nutritional value of the silage were evaluated. There was no difference in pH among 
the tested doses of crude glycerin. However, reductions in dry matter and gas losses were observed as a function of crude 
glycerin doses. Bacterial populations of lactic acid and facultative mesophilic anaerobes also increased as a function of crude 
glycerin inclusion. Crude glycerin increased ether extract levels and reduced neutral detergent fiber and acid detergent fiber
concentrations (dilution effect), improving chemical composition of the silage. Crude glycerin can be used in the ensiling of 
Piatã grass and the dose of 300 g kg−1 of DM yields the best results.
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Introduction

Biodiesel production generates significant amounts
of crude glycerin as byproduct. For every ton of biodiesel 
produced, 100 kg of crude glycerin are generated, 
configuring a yield of 10% (ANP, 2015). In Brazil, the
production of crude glycerin in 2014 was approximately 
460,000 tons, greater than the current demand of 40,000 
tons (ANP, 2015). Crude glycerin surplus from biodiesel 
industries represents a hazard risk due to its pollutant 
content (considerable levels of glycerol and residual 
lipids). For this reason, alternative usage for this byproduct 
must be evaluated to reach equilibrium between demand 
and production ensuring sustainable usage.

Crude glycerin has the potential to be used as an additive 
to enhance silage fermentation because it has glycerol in its 
composition. This is a rich source of energy for anaerobic 
microorganisms (Santos et al., 2014; Carvalho et al., 2017), 
which can favor microbial growth and improve the quality 
of fermentation and forage conservation. 

The inclusion of crude glycerin in the process of ensiling 
has been focused on sugar cane. This has been associated to 
better fermentation, lower production of ethanol, lower dry 
matter (DM) losses, and silage with superior nutritional 
value (Santos et al., 2014; Carvalho et al., 2017). The 
inclusion of crude glycerin has not been tested in the ensiling 
of grass. In this case, lower levels of soluble carbohydrates 
and dry matter found in grass seems to be the major 
limitation point. This is relevant regarding tropical grasses 
such as Brachiaria brizantha (Mendieta-Araica et al., 2010). 
Grass may present high buffering capacity, which inhibits 
fermentation. In addition, several types of yeast that support 
fermentation in sugarcane silages are not present in grass. 
These factors may restrain acidification, limit the quality of
silage, and configure bottlenecks towards the use of crude
glycerin as an alternative to reduce fermentation loss and 
improve the nutritional value of grass silage.

The addition of low-cost sources of soluble 
carbohydrates may tackle some limitation points. The 
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challenge would be to make ensiling of grass feasible by 
increasing the growth rates of lactic acid bacteria, dropping 
silage pH, and enhancing fermentation (Keady and Kiely, 
1998; McDonald and Henderson, 1962; Nishino et al., 2012; 
Chen et al., 2016). If possible, this would configure
alternative usage of a potentially pollutant byproduct from 
biofuel production. 

In this sense, aiming to support livestock production, 
this study was designed to verify if the inclusion of crude 
glycerin could improve fermentation and the nutritional 
value of silages prepared with Brachiaria brizantha cv 
Piatã.

Material and Methods

The research was conducted in Dourados, MS, Brazil 
(22°13'18"S latitude and 54°48'23"W longitude). The 
climate, according to the Köppen, is Cwa mesothermal 
humid, with average annual rainfall ranging from 1,250 to 
1,500 mm and temperatures between 20 and 24 °C.

The experiment followed a 4 × 2 completely randomized 
factorial design with four doses of crude glycerin (0, 100, 
200, and 300 g kg−1 of DM silage) and two cutting ages 
(45 and 60 days), with four replicates per treatment (silos). 
Experimental silos were built with PVC tubes of 50 cm in 
height and 15 cm in diameter. The silos were sealed at the 
bottom end with a cap and held approximately 5 kg of grass.

The crude glycerin used in this study was sampled from 
a biodiesel industry and presented the following chemical 

composition: 960.00 g kg−1 of dry matter, 64.01 g kg−1 of 
ash, 618.70 g kg−1 of glycerol, 61.00 g kg−1 of methanol, 
and 18.03 g kg−1 of ether extract.

The area planted with Piatã grass was formed five
years prior to the research and was fertilized with 100 kg ha−1 
of nitrogen (urea) 30 days before the beginning of the 
experiment. On May 25th, 2014 (beginning of the dry 
season), the grass was evenly cut at a height of 10 cm above 
the ground. After standardization, the area was divided into 
three parts and the grass from each segment was cut as 
grass reached the specific ages defined in the experiment. A 
clearing saw was used to cut the grass at a height of 15 cm 
above the ground and the collected material was ground to 
obtain a particle size of 1.5 cm.

Grass samples and different doses of crude glycerin 
were mixed in plastic bags to establish the experimental 
treatments (silos). The material for ensiling was manually 
compacted with a wood rod and the average density was 
566 kg/m3 of fresh matter. After filling, the silos were sealed
with plastic sheets and duct tape, weighed, and stored in the 
laboratory. All components of the silo, as well as the forage 
material, were weighed to determine the fermentation 
losses. After 80 days of fermentation, the silo contents 
were weighed again to determine the gas, effluent, and dry
matter losses according to Ping et al. (2016).

Samples of approximately 300 g of forage from 
each treatment were collected prior to and after ensiling. 
Subsequently, these samples were dried at 55 °C for 72 h 
to determine the dry matter content. After pre-drying, the 

Parameter Cutting age
(days)

Dose (g kg−1 of DM)

0 100 200 300

Buffering capacity (meq HCl.100 g−1 of DM) 45 6.81 6.74 6.48 6.59
 60 5.55 5.66 5.80 5.76

Dry matter (g kg−1) 45 251.20 267.90 279.70 291.90
 60 329.50 338.30 350.40 370.40

Ash (g kg−1 of DM) 45 82.70 78.20 74.30 64.30
 60 86.30 78.90 76.00 71.60

Crude protein (g kg−1 of DM) 45 128.70 111.40 101.90 82.10
 60 80.60 86.50 73.30 79.90

Ether extract (g kg−1 of DM) 45 46.00 50.60 60.70 78.90
 60 34.00 37.40 44.90 58.30

Neutral detergent fiber (g kg−1 of DM) 45 621.70 553.00 523.50 504.20
 60 641.80 604.20 548.30 571.50

Acid detergent fiber (g kg−1 of DM) 45 292.90 289.30 274.90 253.80
 60 325.90 315.30 292.60 284.60

Non-fibrous carbohydrates (g kg−1 of DM) 45 160.80 246.80 279.60 340.50
 60 142.00 177.10 230.10 241.10

In vitro dry matter digestibility (g kg−1 of DM) 45 797.20 854.30 862.10 893.40
 60 762.10 832.30 826.60 844.30

DM - dry matter.

Table 1 - Chemical composition of Piatã grass with different doses of crude glycerin and two cutting ages
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samples were ground in a Willey mill with 1-mm sieve for 
further laboratory analysis (Table 1). The concentrations of 
DM, crude protein (CP), ash, and ether extract (EE) were 
determined according to the AOAC (1990). The in vitro dry 
matter digestibility (IVDMD) was evaluated according to 
the method described by Tilley and Terry (1963). Neutral 
detergent fiber (NDF) and acid detergent fiber (ADF) were
determined according to Mertens (2002).

Non-fibrous carbohydrates (NFC) were calculated 
by the following equation: NFC = 100 − (NDF + CP 
+ EE + Ash) proposed by Sniffen et al. (1992). The 
total digestible nutrient (TDN) values were estimated 
according to Cappelle et al. (2001). Measurements of 
aqueous extract and pH of the material prior to and after 
ensiling were carried out as proposed by Kung Junior et al. 
(1984). The buffering capacity was determined in forage 
samples according to the protocol described by Playne and 
McDonald (1966).

For microbiological analysis, samples of 25 g were 
collected from each silo and placed in flasks with 225 mL
of sterile 1% peptone water and stirred for 10 min. From 
the extract obtained, decimal dilutions of 10:1 to 10:7 were 
prepared to assess the microorganism populations. The 
number of facultative anaerobic mesophilic bacteria was 
determined on plates with nutrient agar and incubated 
at 35 °C. The lactic acid bacteria were numbered on 
plates with MRS culture medium (Difco) added with 
0.4% nystatin (to prevent fungi growth) and incubated in 
anaerobic jars (AnaeroGen, Oxoid Ltd.) at 35 °C. Dichloran 
Glycerol (DG18) agar was used for mold count and the 
YEPD medium was used for yeast count. The plates were 
incubated at 28 °C for five to seven days for fungi count 
and 48 h for yeast count (Bravo-Martins et al., 2006).

The results were subjected to analysis of variance, 
considering the ages of the plants and crude glycerin doses 
as sources of variation. Orthogonal contrasts were used to 
assess the linear and quadratic effects of the levels of crude 
glycerin. Values observed between different plant ages were 
compared by the F test. All data analyses were performed 
using the software R (2014).

Results 

Dry matter loss was significantly reduced with the
inclusion of crude glycerin, 231.03 g kg−1 of ensiled DM 
in the treatment with 0 g kg−1 of DM and 72.64 g kg−1 
of ensiled DM in the treatment with 300 g kg−1 of DM 
(Table 2).

Effluent losses of 34.63 g kg−1 of ensiled DM were 
observed in the treatment with no glycerin inclusion 

against 10.36 g kg−1 of ensiled DM for the treatment 
with the highest inclusion level (Table 2). No effluent
production was observed in the silage prepared with the 
60-day-old grass. With the exception of DM loss (P>0.05), 
the age of the grass significantly influenced fermentation
(P<0.05). Significant increase of the population of lactic
acid and facultative anaerobic mesophilic bacteria was 
observed with the addition of glycerin to the ensiling of 
Piatã grass (Table 2). Bacterial populations of lactic acid 
and facultative mesophilic anaerobes were counted at 6.87 
and 6.60 log cfu/g with no glycerin addition and 7.26 and 
7.38 log cfu/g with inclusion of 300 g kg−1 DM of crude 
glycerin, respectively.

Populations of molds (P<0.01) and yeasts (P<0.05) also 
showed significant differences as a function of the levels
of crude glycerin, especially in the two highest inclusion 
levels (Table 2). The average population of molds and yeast 
was 2.32 and 2.83 log cfu.g−1 for the silage added with 
300 g kg−1 of DM of crude glycerin, respectively.

In terms of the nutritional value of silage, reductions 
were observed in the concentrations of NDF and ADF 
(P<0.01) with increasing levels of crude glycerin (Table 3). 
Moreover, the inclusion of higher levels of crude glycerin 
was related to higher concentration of IVDMD [769.68 
(0 g kg−1 of DM of crude glycerin); 841.55 (300 g kg−1 
of DM of crude glycerin)] and TDN [777.46 (0 g kg−1 of 
DM of crude glycerin); 853.64 (300 g kg−1 of DM of crude 
glycerin)] (P<0.01).

Discussion

The age of the grass used for ensiling was associated 
to different amounts of gas loss, lower with silos prepared 
with mature grass (Table 2). Likewise, this was reported 
by Dias et al. (2014), assigning lower gas losses to 
greater amounts of dry matter present in the silage of 
mature sugarcane. Younger grass may present excessive 
moisture, which inhibits effective fermentation (Collins 
and Owens, 2003). In silages, poor fermentation becomes 
problematic when moisture levels exceed 70% and soluble 
carbohydrates are scarce (less than 50g kg−1 DM) (Collins 
and Owens, 2003).

In this study, all levels of crude glycerin inclusion were 
associated to notable reduction of DM losses, from 231.03 
to 72.64 g kg−1 of ensiled DM (Table 2). This is probably 
related to more efficient fermentation during ensiling. Most
likely, the inclusion of crude glycerin itself would not explain 
such a distinguished decrease (68.86% of DM), considering 
that the maximum level added to the silos was 300 g kg−1 of 
DM (30%). Using 100 g of glycerin kg−1 of DM, the level 
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of DM losses was 22.39% (from 231.03 to 144.34 g kg−1 
DM). These values are consistent with the results reported 
by Carvalho et al. (2017), comparing different levels of 
inclusion in sugarcane silage. These authors reported 
reductions of 20.28% of DM losses by adding Lactobacillus 
hilgardii and 80 g kg−1 DM of glycerin. 

The decrease of gas losses was also observed with 
increasing levels of crude glycerin inclusion. Gas losses 
decreased on average by 78% when comparing the lowest 
with the highest level of crude glycerin inclusion. Gas losses 
are related to the type of fermentation during ensiling, 
which tends to decrease when homofermentative bacteria 
predominate. In this case, the bacterial metabolism of 
soluble carbohydrates leads to the production of lactic acid, 
important to drop silage pH. In contrast, heterofermentative 
inoculants are related to the production of alcohol, and 
acetic and butyric acids, associated to greater gas losses 
during ensiling (Viana et al., 2013). 

The supposition of more efficient fermentation
associated to increasing levels of crude glycerin inclusion 
may be addressed to the fact that Lactobacillus strains break 
down glycerol as a source of energy (Garai-Ibabe et al., 
2008; Pasteris and Strasser de Saad, 2009). In the present 
study, the most expressive number of microorganisms was 
addressed to lactic acid bacteria. This type of bacteria is 
usually related to the decrease of DM losses due to greater 
acidification during ensiling (Goeser et al., 2015).

The increase in the growth rates of lactic acid bacteria 
were not associated to the final pH in any silage (P>0.05).
The final pH of the silage is usually related to the quality
of fermentation, but does not necessarily explain the 
speed in which pH drops, neither the type of fermentation 
(microorganism populations), nor the nutritional value of 
the silage. Still, the dry matter and gas losses observed 
in the present study are suggestive of rapid decline of pH 
during fermentation as a result of the inclusion of crude 
glycerin. This was also discussed by Goeser et al. (2015) 
and reported by Santos et al. (2014), testing the effect of 
the inclusion of crude glycerin and microbial additives to 
sugarcane silage. In addition, these authors observed an 
increment in the energy density of sugarcane silage.

Microorganisms such as yeast and molds use glycerol 
as a source of energy (Taccari et al., 2012). Thus, the 
inclusion of crude glycerin was expected to increase the 
population of these types of microorganisms in the silage. 
These are undesired microorganisms, related to hygienic and 
nutritional aspects of the silage (Bravo-Martins et al., 2006). 
However, the population of yeast and molds increased in 
a level (Table 2) considered irrelevant to configure any
depreciation in the quality of the silages (Cogan et al., 2016). 

All silages were considered to show good quality in terms 
of microbiology.

The nutritional value of the silages was in accordance 
with the expectations. Greater amounts of NDF (510.10 g kg−1 
of DM) (P<0.01) were related to more mature grass (60 days 
at cutting), probably due to greater proportions of cell wall. 
The composition of crude glycerin, i.e., mainly non-fibrous 
carbohydrates, reduced the proportions of NDF and ADF 
with increasing levels of crude glycerin, which is related to 
the dilution effect (Table 3). Martins et al. (2014) observed 
reductions by 25.3 and 24.7% of NDF when 450 g kg−1 of 
DM of glycerin was added to silage produced with corn and 
sunflower, respectively.

Likewise, the linear reduction (P<0.01) in CP 
concentration, related to glycerin inclusion, may be also 
related to a dilution effect (Table 3). Similar results were 
reported by Gomes et al. (2015), who observed a reduction 
by 37.56% in the CP concentration of sugarcane silages 
added with 150 g kg−1 of fresh matter glycerin compared 
with control silages. This is often reported because additives 
used to promote fermentation are rich in energy and present 
low protein content.

The association of crude glycerin inclusion and 
superior amounts of EE, IVDMD, and TDN (Table 3) is 
probably due to the composition of the additive used for 
ensiling. The byproduct sampled from biodiesel production 
consisted of low-purity glycerin (high levels of residual 
lipids originated from vegetable oils). This is relevant to 
livestock production because high amounts of EE in the 
diet, usually above 70 g kg−1 of DM, may reduce intake as 
a consequence of poor microbiological degradation of fiber
in the rumen (Doreau and Ferlay, 1995; Gudla et al., 2012; 
Buccioni et al., 2012; Manso et al., 2016). However, the 
EE concentration observed in the silages was considered as 
within suitable intervals for intake (Table 3).

A disadvantage of using silages prepared with tropical 
grasses is associated to low energy concentration (TDN) 
for animal feed. Dietary energy in grass silage may be 
considerably low compared with corn or sorghum silages 
(Carvalho et al., 2016), which may be compensated by 
offering greater proportions of concentrate to ensure weight 
gain in animal production systems. However, this may 
configure considerable increases in the production costs. 

An average increase by 2.5 g TDN kg−1 of DM was 
observed for each inclusion of 10 g kg−1 of DM crude 
glycerin in the silage, reaching a maximum of 853.64 g 
of TDN kg−1 of DM. The increased nutritional value of 
the silage was probably related to the energetic value of 
the crude glycerin, which enabled lactic acid bacteria to 
grow and optimize fermentation. It is noteworthy that 
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energetic additives, such as molasses and pure glycerol, 
would probably enable superior results. However, low-
cost additives seem to be the key to make the inclusion 
of additives and the ensiling of grass feasible. In contrast, 
low-price additives may present little amount of glycerol, 
which could result in poor fermentation.

Currently, there is little information regarding intake 
(acceptability) of silages containing crude glycerin. 
Therefore, consistent contribution towards livestock 
performance is incipient. However, the results reported 
in this study are convincing that the inclusion of crude 
glycerin may alleviate fermentative losses and generate 
grass silage with superior nutritional value. Overall, the 
results are potential contributions to support sustainable 
livestock production within tropical regions and scenarios 
of biodiesel production.

Conclusions

The use of crude glycerin in the ensiling of Piatã grass 
is recommended to increase the population of lactic acid 
bacteria, reduce fermentation losses, and improve the 
nutritional value of silage. Overall, the dose of 300 g kg−1 

of dry matter crude glycerin (in relation to the ensiled dry 
matter) yields the best results. 
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