ABSTRACT
The objective of this study was to verify the repeatability of the expression of forage characters in intraspecific hybrids of Paspalum notatum Flügge to aid early selection. Across five harvests, plant height, tiller population density, leaf dry matter, stem dry matter, inflorescence dry matter, total dry matter, and growth habit were quantified for five parents, 189 hybrids, and a commercially available cultivar as a control (n = 195). Analysis of variance, principal components analysis, and structural analysis methods were used to determine the repeatability coefficients. The repeatability coefficients () for all evaluated characteristics generated by the different methods were between 0.05 (ANOVA II) and 0.95 (PCACov). For most of the characteristics studied, repeatability coefficients and determination coefficients were considered high. The repeatability coefficients estimates obtained for the eight characteristics evaluated with the ANOVA I and II methods were almost always lower than those obtained by PCA and structural analysis methods. Based on the covariance matrix, the principal component method generated higher estimates than those produced by ANOVA or structural analysis. Assuming a minimum 80% reliability to verify the relative superiority of the hybrids across all assessed traits, the five harvests proved adequate for selecting the optimal plant materials to advance to the next phase of the breeding program. However, reliable early selection for leaf dry matter, leaf:stem ratio, and total dry matter required a minimum of two harvests. The genetic parameters (h2 and CVg) showed a favorable scenario for direct selection to increase forage production.
Keywords:
analysis of variance; breeding; early selection; heritability; principal components; structural analysis
1. Introduction
Grasslands provide critical ecosystem services for humanity (Sollenberger et al., 2019Sollenberger, L. E.; Kohmann, M. M.; Dubeux Jr, J. C. B. and Silveira, M. L. 2019. Grassland management affects delivery of regulating and supporting ecosystem services. Crop Science 59:441-459. https://doi.org/10.2135/cropsci2018.09.0594
https://doi.org/10.2135/cropsci2018.09.0...
). In Brazil, pastures occupy 156 million hectares across six previously defined biomes (Projeto MapBiomas, 2021Projeto MapBiomas. 2021. Mapeamento anual de cobertura e uso da terra do Brasil - Coleção 6. Available at: <https://mapbiomas-br-site.s3.amazonaws.com/Fact_Sheet_PASTAGEM_13.10.2021_ok_ALTA.pdf.>. Accessed on: Dec. 09, 2022.
https://mapbiomas-br-site.s3.amazonaws.c...
). These pastures support a national herd of ~224 million cattle (IBGE, 2019IBGE - Instituto Brasileiro de Geografia e Estatística. 2019. Censo agropecuário 2017: Resultados definitivos. IBGE, Rio de Janeiro.) and places Brazil as the world's second-largest beef producer, after the United States (Jank et al., 2014Jank, L.; Barrios, S. C.; Valle, C. B.; Simeão, R. M. and Alves, G. F. 2014. The value of improved pastures to Brazilian beef production. Crop & Pasture Science 65:1132-1137.). Pastoral farming systems in Brazil are heavily reliant on native forage species for productive stability and conservation of natural resources. Their use can reduce costs and risks associated with livestock production, which increases long-term system sustainability (Gasparetto et al., 2021Gasparetto, B. F.; Radunz, L. L.; Lopes, R. R.; Franke, L. B. and Martinelli, J. A. 2021. Fungi associated with Paspalum guenoarum seeds: their impact on physiology and control. Ciência Rural 51:e20200497. https://doi.org/10.1590/0103-8478cr20200497
https://doi.org/10.1590/0103-8478cr20200...
).
The genus Paspalum comprises several native species with important forage characteristics for animal production. They exhibit adaptability to the range of different ecosystems where they are present as a pasture component (Novo et al., 2016Novo, P. E.; Valls, J. F. M.; Galdeano, F.; Honfi, A. I.; Espinoza, F. and Quarin, C. L. 2016. Interspecific hybrids between Paspalum plicatulum and P. oteroi: a key tool for forage breeding. Scientia Agricola 73:356-362. https://doi.org/10.1590/0103-9016-2015-0218
https://doi.org/10.1590/0103-9016-2015-0...
), which means there is high potential for genetic improvement (Motta et al., 2017Motta, E. A. M.; Dall'Agnol, M.; Pereira, E. A.; Machado, J. M. and Simioni, C. 2017. Valor forrageiro de híbridos interespecíficos superiores de Paspalum. Revista Ciência Agronômica 48:191-198.). The center of genetic diversity is located in the tropical region of South America (Chase, 1929Chase, A. 1929. The North American species of Paspalum. Contributions from the United States National Herbarium 28:1-310.; Valls, 1987Valls, J. F. M. 1987. Recursos genéticos de espécies de Paspalum no Brasil. p.3-13. In: Anais do Encontro Internacional sobre Melhoramento Genético de Paspalum. Instituto de Zootecnia, Nova Odessa.). The genus is native to the southern grasslands, is most abundant in Brazil (Rio Grande do Sul), Uruguay, and Argentina, and has previously been recognized for its high yield and forage quality (Steiner et al., 2022Steiner, M. G.; Weiler, R. L.; Brunes, A. P.; Mills, A.; Dall'Agnol, M.; Nabinger, C., Motta, E. A. M.; Silveira, D. C.; Sampaio, R. and Tessis, G. 2022. Characterization and genetic diversity in Paspalum notatum Flügge accessions: Morphological and geographical distance. Revista Brasileira de Zootecnia 51:e20220015. https://doi.org/10.37496/rbz5120220015
https://doi.org/10.37496/rbz5120220015...
). In Argentina, the region with the greatest diversity of species is Mesopotamia (Morrone et al., 2012Morrone, O.; Aagesen, L.; Scataglini, M. A.; Salariato, D. L.; Denham, S. S.; Chemisquy, M. A.; Sede, S. M.; Giussani, L. M.; Kellogg, E. A. and Zuloaga, F. O. 2012. Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics 28:333-356. https://doi.org/10.1111/j.1096-0031.2011.00384.x
https://doi.org/10.1111/j.1096-0031.2011...
).
A major objective of forage plant breeding programs in southern Brazil is to obtain hybrids adapted to diverse edaphoclimatic conditions, which have superior biomass production compared with cultivars already on the market (Saraiva et al., 2021Saraiva, K. M.; Dall'Agnol, M.; Da Motta, E. A. M.; Pereira, E. A.; De Souza, C. H. L.; Simioni, C.; Weiler, R. L.; Kopp, M. M.; Schneider-Canny, R. and Barbosa, M. R. 2021. Hybrids of Paspalum plicatulum × P. guenoarum: selection for forage yield and cold tolerance in a subtropical environment. Tropical Grasslands-Forrajes Tropicales 9:138-143. https://doi.org/10.17138/tgft(9)138-143
https://doi.org/10.17138/tgft(9)138-143...
). There is considerable commercial and academic interest in improvement of different Paspalum species to increase the productivity of native pastures and extend their use as improved cultivated pastures (Steiner et al., 2022Steiner, M. G.; Weiler, R. L.; Brunes, A. P.; Mills, A.; Dall'Agnol, M.; Nabinger, C., Motta, E. A. M.; Silveira, D. C.; Sampaio, R. and Tessis, G. 2022. Characterization and genetic diversity in Paspalum notatum Flügge accessions: Morphological and geographical distance. Revista Brasileira de Zootecnia 51:e20220015. https://doi.org/10.37496/rbz5120220015
https://doi.org/10.37496/rbz5120220015...
).
The significant time and resource requirements involved in obtaining consistent data within breeding programs, considering the extensive number of genotypes and characters studied (Jank et al., 2014Jank, L.; Barrios, S. C.; Valle, C. B.; Simeão, R. M. and Alves, G. F. 2014. The value of improved pastures to Brazilian beef production. Crop & Pasture Science 65:1132-1137.), requires the determination of the minimum number of measurements for the selection of superior genotypes (Rodrigues et al., 2020Rodrigues, E. V.; Daher, R. F.; Gravina, G. A.; Viana, A. P.; Araújo, M. S. B.; Oliveira, M. L. F.; Vivas, M.; Menezes, B. R. S. and Pereira, A. V. 2020. Repeatability estimates and minimum number of evaluations for selection of elephant-grass genotypes for herbage production. Bioscience Journal 36:30-41.). This is a major issue faced by forage breeding programs, which need to determine the number of measurements necessary to accurately estimate the differences between genotypes (Toebe et al., 2020Toebe, M.; Cargnelutti Filho, A.; Mello, A. C.; Souza, R. R.; Soares, F. S.; Silva, L. S. and Segatto, A. 2020. Plot size and replications number for triticale experiments. Ciência Rural 50:e20200222. https://doi.org/10.1590/0103-8478cr20200222
https://doi.org/10.1590/0103-8478cr20200...
). This is generally determined through repeatability analysis, which aims to predict the genotypic value of a genotype over time with predefined determination coefficients (Chaves et al., 2018Chaves, G. G.; Cargnelutti Filho, A.; Carini, F.; Kleinpaul, J. A.; Neu, I. M. M. and Procedi, A. 2018. Tamanho de parcela e número de repetições para avaliação de caracteres vegetativos em centeio. Revista Brasileira de Ciências Agrárias 13:1-11.). The repeatability analysis reduces time, costs, and labor within the experimental period to optimize the process of launching new cultivars into the market (Torres et al., 2015Torres, F. E.; do Valle, C. B.; Lempp, B.; Teodoro, P. E.; Santos, A. and da Silva Junior, C. A. 2015. Minimum number of measurements for accurate evaluation of qualitative traits in Urochloa brizantha. Journal of Agronomy 14:180-184. https://doi.org/10.3923/ja.2015.180.184
https://doi.org/10.3923/ja.2015.180.184...
; Rodrigues et al., 2020Rodrigues, E. V.; Daher, R. F.; Gravina, G. A.; Viana, A. P.; Araújo, M. S. B.; Oliveira, M. L. F.; Vivas, M.; Menezes, B. R. S. and Pereira, A. V. 2020. Repeatability estimates and minimum number of evaluations for selection of elephant-grass genotypes for herbage production. Bioscience Journal 36:30-41.).
The objective was to estimate the repeatability coefficients of forage characteristics in intraspecific hybrids of P. notatum Flügge using different methods.
2. Material and Methods
2.1. Experimental site
The experimental site is located in Eldorado do Sul, Rio Grande do Sul, Brazil (at 30°29'26" S latitude, 51°06'42" W longitude, and 62 m asl altitude). The local climate is classified as Cfa according to the Köppen classification (Moreno, 1961Moreno, J. A. 1961. Clima do Rio Grande do Sul. Secretaria da Agricultura, Porto Alegre.): subtropical with no defined dry season, and the average air temperature of the hottest month (February) exceeds 22 °C. The 40-year (1970-2010) average minimum and maximum annual air temperatures in the region are 14.0 and 24.2 °C, respectively, and the annual average air temperature is 19.6 °C. The 40-year average annual rainfall is 1398 mm. Total monthly rainfall (mm) and mean air temperature (°C) during the experimental period are reported in Figure 1.
Total monthly rainfall (mm; bars) and mean monthly air temperature (°C; lines) during the experimental period.
The soil is classified as an Ultisol (USDA Soil taxonomy; Santos et al., 2006Santos, H. G.; Jacomine, P. K. T.; Anjos, L. H. C.; Oliveira, V. A.; Oliveira, J. B.; Coelho, M. R.; Lumbreras, J. F. and Cunha, T. J. F. (eds.). 2006. Sistema brasileiro de classificação de solos. 2.ed. Embrapa Solos, Rio de Janeiro.). Prior to establishment of the experiment, soil samples (0-0.2 m) were collected. The soil analysis showed: clay = 15%; pH (H2O) = 5.4; SMP pH = 6.3; P (mg dm−3) = 15.6; K (mg dm−3) = 151.4; and organic matter = 2.7%. The protocol for basal and maintenance fertilization for perennial grasses followed the recommendation of the “Comissão de Química e Fertilidade do Solo RS/SC” (CQFS RS/SC, 2004CQFS RS/SC - Comissão de Química e Fertilidade do Solo RS/SC. 2004. Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina. 10.ed. Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul, Porto Alegre.). A total of 160 kg N/ha, in the form of urea (46% N), was distributed across five split applications of 32 kg N/ha at the beginning of each regrowth period.
2.2. Plant material and experimental design
Three tetraploid female sexual genotypes C44X (Quarin et al., 2001Quarin, C. L.; Espinoza, F.; Martinez, E. J.; Pessino, S. C. and Bovo, O. A. 2001. A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sexual Plant Reproduction 13:243-249. https://doi.org/10.1007/s004970100070
https://doi.org/10.1007/s004970100070...
), Q4188, Q4205 (Quarin et al., 2003Quarin, C. L.; Urbani, M. H.; Blount, A. R.; Martinez, E. J.; Hack, C. M.; Burton, G. W. and Quesenberry, K. H. 2003. Registration of Q4188 and Q4205, sexual tetraploid germplasm lines of bahiagrass. Crop Science 43:745-746. https://doi.org/10.2135/cropsci2003.7450
https://doi.org/10.2135/cropsci2003.7450...
) were sourced from the Instituto de Botánica del Nordeste (IBONE), Corrientes, Argentina. They were crossed with two elite male tetraploid germplasm lines (ecotypes Bagual and André da Rocha) native to the state of Rio Grande do Sul (Table 1), Brazil. The crosses were performed using the methodology described by Burton (1948)Burton, G. W. 1948. Artificial fog facilitates Paspalum emasculation. Agronomy Journal 40:281-282. https://doi.org/10.2134/agronj1948.00021962004000030010x
https://doi.org/10.2134/agronj1948.00021...
and later adapted by Weiler et al. (2018)Weiler, R. L.; Dall'Agnol, M.; Simioni, C.; Krycki, K. C.; Pereira, E. A.; Machado, J. M.; Motta, E. A. M. 2018. Intraspecific tetraploid hybrids of Paspalum notatum: agronomic evaluation of segregating progeny. Scientia Agricola 75:36-42. https://doi.org/10.1590/1678-992X-2016-0354
https://doi.org/10.1590/1678-992X-2016-0...
to create hybrid progeny. The reproduction mode was determined based on Weiler et al. (2017)Weiler, R. L.; Dall'Agnol, M.; Simioni, C.; Krycki, K. C.; Dahmer, N. and Guerra, D. 2017. Determination of the mode of reproduction of bahiagrass hybrids using cytoembryological analysis and molecular markers. Revista Brasileira de Zootecnia 46:185-191. https://doi.org/10.1590/S1806-92902017000300002
https://doi.org/10.1590/S1806-9290201700...
. A total of 195 P. notatum Flügge genotypes were evaluated, including 189 hybrids, three female (C44X, Q4188, and Q4205) and two male (André da Rocha and Bagual) cultivars, and the commercially available cultivar ‘Pensacola’.
Female (♀ 4x; n = 3) and male (♂ 4x; n = 2) parents and hybrids (n = 189) of Paspalum notatum Flügge evaluated
Seeds were initially germinated in Germitest paper lined in petri dishes, under controlled temperature and day length (8 h of light at 30 °C and 16 h of darkness at 20 °C) in a germination chamber. Seedlings were transplanted into seedling trays until they had five fully expanded leaves. Seedlings were then transplanted into pots filled with Carolina Soil™, a commercial substrate composed of peat, vermiculite, organic residue, and limestone. When the plants had four or more tillers, the tillers were separated and re-potted into four different pots to obtain four clones to be used as replicates in the field experiment.
The field experiment followed a randomized complete block design with four replicates and was established at the experiment station of the Universidade Federal do Rio Grande do Sul on 12/26/2010. Clones were transplanted into the field spacing of 1.0 m within and between rows. Immediately after transplanting, the plants were watered by sprinkler irrigation to facilitate seedling establishment.
2.3. Procedures and traits
The plants were cut to a residual height of 5 cm when they reached an average height of 20 cm. Five harvests were made between sowing and 2012 (1st harvest on 02/22/2011, 2nd harvest on 04/06/2011, 3rd harvest on 11/17/2011, 4th harvest on 01/09/2012, and 5th harvest on 03/16/2012). Measurements included plant height (PH, cm), tiller population density (TPD, tiller plant−1), leaf dry matter (LDM, g plant−1), stem dry matter (SDM, g plant−1), inflorescence dry matter (IDM, g plant−1), total dry matter (TDM, g plant−1), and growth habit (GH).
Non-destructive observations were made before cutting on each date. Plant height was measured from the soil surface to the curvature of the leaves; then, the TPD was quantified by counting all tillers that had expanded leaves. Growth habit was determined by visual observation scale, in which 1 = prostrate and 5 = erect habit.
Samples were separated into morphological components: leaves (leaf blades), stems (stems and sheaths), and inflorescences, then dried in an oven at 60 °C until constant weight. Subsequently, the leaf:stem ratio (LSR) was calculated from LDM and SDM.
2.4. Statistical analysis
Data were subjected to analysis of variance according to the following model:
in which Yijk is the observed value of the i-th genotype in the k-th block and within the j-th environment, μ is the mean for the characteristic, Gi is the fixed effect of the i-th genotype (i= 1, 2, 3, … 195), Bk is the fixed effect (k = 1, 2, 3 and 4) of the k-th block (replicate), Aj is the random effect of the j-th environment, GAij is the random effect of the interaction of the i-th genotype with the j-th environment, and Eijk is the experimental error. Therefore, ; ; ; ; and .
Heritability (h2) was calculated from:
in which is the genotypic variance and is the phenotypic variance.
Three analysis methods were applied to the data to quantify the consistency of the estimates and obtain more precise conclusions about the observed forage characteristics. Firstly, two analysis of variance (ANOVA) models (ANOVA I and ANOVA II) were used to estimate the repeatability coefficients. Then, Principal component analysis (PCA) quantified the matrix of variance and covariance (PCACov) and the intraclass correlation matrix (PCACor). Finally, structural analysis (SA) quantified the variance and covariance matrix (SACov) and correlation matrix (SACor). The ANOVA was obtained through two models:
ANOVA I
in which Yij is the observation referring to the i-th genotype in the j-th harvest, μ is the overall average, gi is the random effect of the i-th genotype under the influence of the permanent environment (i= 1, 2, …, p = 195 genotypes), and εij is the effect of the temporary environment associated with the j-th measurement on the i-th genotype (j = 1, 2, …, ηi). The repeatability coefficient (r) was obtained by:
ANOVA II
in which Yij is the observation referring to the i-th genotype in the j-th harvest, μ is the overall average, gi is the random effect of the i-th genotype under the influence of the environment (i = 1, 2, …, ρ), aj quantifies the fixed effect of the temporary environment on the j-th measurement (j = 1, 2, …, ηi), and εij quantifies experimental error established by temporary effects of the environment on the j-th measurement of the i-th genotype. The repeatability coefficient is calculated by the same equation described above for ANOVA I.
Two PCA models were then applied. The first evaluated the matrix of phenotypic variances and covariances (PCACov) by:
in which λ1 is the largest eigenvalue, associated with the eigenvector, whose elements have the same sign and close magnitude; and η are the number of harvests. The PCACor, consisted of obtaining a correlation matrix between the genotypes in each pair of harvests. In this matrix, the eigenvalues were determined (λ) and the eigenvectors (α) normalized. The eigenvector whose elements have the same sign and close magnitudes quantified the tendency of the genotypes to maintain their relative positions over time. Therefore, the estimator of the repeatability coefficient is the proportion of the eigenvalue associated with this eigenvector, expressed by:
Being j = 1, 2, …, η in which η is the number of harvests and λk is the eigenvalue associated with the eigenvector, whose elements have the same sign and similar magnitude; and λk is influenced by the number of genotype measurements (Rutledge, 1974Rutledge, J. J. 1974. A scaling which removes bias of Abeywardena's estimator of repeatability. Journal of Genetics 61:247-250.). Therefore, r becomes more suitable for calculating the repeatability coefficient, which is obtained by:
in which λ1 = 1 + (λ − 1)ρ in which λ1 is the eigenvalue of r associated with the eigenvector whose elements have the same sign and magnitude; η = number of harvests; η = genotypes (195). Both methods (PCACov and PCACor) were pioneered by Abeywardena (1972)Abeywardena, V. 1972. An application of principal component analysis in genetics. Journal of Genetics 61:27-51. https://doi.org/10.1007/BF02984099
https://doi.org/10.1007/BF02984099...
.
Similar to the PCA method, SA can be obtained by covariance matrix (SACov), in which r is calculated, using the eigenvector (α) and the covariance matrix:
The structural analysis based on the correlation matrix (SACor) is determined by:
in which represents the eigenvector with parametric elements associated with the highest eigenvalue of r. The repeatability estimator is the arithmetic mean of the phenotypic correlations between genotypes, considering each part of evaluations and expressed by:
The estimator is equivalent to that obtained by the analysis of variance. The genotypic stabilization of forage characters was evaluated by ANOVA II and PCA methods based on the intraclass correlation matrix for successive measures until all evaluations were performed. Therefore, η−1 analyzes were performed on two consecutive measurements, and η−2 analyzes were performed in three consecutive evaluations until all five measurement dates had been evaluated. All data were analyzed with GENES (Cruz, 2016Cruz, C. D. 2016. Genes Software-extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy 38:547-552. https://doi.org/10.4025/actasciagron.v38i3.32629
https://doi.org/10.4025/actasciagron.v38...
) statistical software.
3. Results
The analysis of variance of the forage variables was statistically significant for all effects tested (genotype, harvest, and their interaction), except PH which showed significant differences for main effects (genotype and harvest) only (Table 2). Experimental (CVe; 38.3 (GH) to 128.4% (TPD)) and genetic (CVg; 18.1 (GH) to 77.9% (SDM)) coefficients of variation were high for all characters evaluated (Table 2). Heritability estimates ranged from 0.33 (LSR) to 0.95 (PH). Characters of interest within the forage plant genetic improvement program, associated with forage quality and production, such as LDM (0.85) and TDM (0.81), also had high heritability values.
Summary of analysis of variance for forage traits in 195 genotypes of Paspalum notatum Flügge for leaf dry matter (LDM), stem dry matter (SDM), leaf:stem ratio (LSR), inflorescence dry matter (IDM), total dry matter (TDM), tiller population density per plant (TPD), plant height (PH), and growth habit (GH)
The presence of significant genotype × harvest interactions for all forage characters, except PH, reinforced the need to estimate the repeatability coefficients for the characters because responses vary over time (Table 3). For TDM, ranged from 0.19 (ANOVA II) to 0.88 (PCACov). With the exception of the ANOVA II method (54%), the coefficient of determination (R²) exceeded 80%, which indicated reliability in identifying P. notatum genotypes with superior TDM (Table 3). The pattern of the PCACov and ANOVA II, which produced the highest and lowest , respectively, was repeated for the other characteristics evaluated in the study. The values obtained for TDM and LDM traits were closely correlated, which indicated that the genotypes evaluated in this experiment performed well for important agronomic traits required for future genetic improvement. The LSR were poor and ranged from 0.03 (ANOVA II) to 0.49 (PCACov), with associated R² from 12 to 83%, respectively. Analysis showed that PCACov, PCACor, and SACov methods almost consistently gave the highest for all characteristics evaluated, while ANOVA I, ANOVA II, and SACor had the lowest values.
Estimates of the repeatability coefficient () and their respective determination coefficients (R2) derived from different analysis methods for leaf dry matter (LDM), stem dry matter (SDM), leaf:stem ratio (LSR), inflorescence dry matter (IDM), total dry matter (TDM), tiller population density per plant (TPD), plant height (PH), and growth habit (GH) measured in 195 genotypes of Paspalum notatum Flügge
The estimated minimum number of harvests needed to select the best hybrids identified by the five analysis methods for TDM, with a precision of 0.85, ranged from 1 (PCACov) to 24 (ANOVA II; Table 4). When the precision level was increased to 0.95, minimum harvest numbers for TDM increased for all methods and ranged from 3 (PCACov) to 79 (ANOVA II). For LDM, an agronomically important trait that provides an indirect measure of forage quality, the estimated number of harvests required for a precision of 0.85 ranged from 1 (PCACov) to 16 (ANOVA II). Increasing the required precision level to 0.95 meant the minimum number of harvests increased to 3 and 54, respectively. Across all traits evaluated, the estimated minimum number of harvests identified by all five analysis methods was the highest for LSR and varied substantially across methods within a specific precision level. For example, the minimum number of harvests ranged from 6 (PCACov) to 198 (ANOVA II) with precision of 0.85 and from 20 (PCACov) to 663 (ANOVA II) with a precision of 0.95.
Minimum number of measurements required by different analysis methods to identify superior hybrids for leaf dry matter (LDM), stem dry matter (SDM), leaf:stem ratio (LSR), inflorescence dry matter (IDM), total dry matter (TDM), tiller population density per plant (TPD), plant height (PH), and growth habit (GH) in 195 hybrids of Paspalum notatum Flügge
Estimated minimum harvest numbers were higher for ANOVA II and I methods when compared with PCACov, PCACor, and SA. The principal components method generated the lowest estimates, especially when based on the variance and covariance matrix (PCACov). Structural analysis (SA) produced values very close to PCACor for most of the characteristics studied.
In general, forage characteristics evaluated by PCACor had higher genotypic stability values than those produced by the ANOVA II model (Table 5). For LDM, SDM, LSR, IDM, and TDM variables, the highest were obtained when harvests 1 and 2 were correlated, regardless of the method used. The highest for TPD ( = 0.84; R² = 91.5%) and GH ( = 0.67; R² = 80.2%) traits were observed for the correlation of harvests 3 and 4, and for PH using harvests 4 and 5 ( = 0.94; R² = 96.7%). High were observed for most of the characters studied. The exception was the LSR trait, which indicated that it was not stable among the genotypes evaluated.
Repeatability () and determination (R2) coefficients for comparisons of harvest times generated by ANOVA II and PCACor analysis methods to evaluate genotypic stability of leaf dry matter (LDM), stem dry matter (SDM), leaf:stem ratio (LSR), inflorescence dry matter (IDM), total dry matter (TDM), tiller population density per plant (TPD), plant height (PH), and growth habit (GH) in 195 hybrids of Paspalum notatum Flügge
4. Discussion
The basic premise for selection is the presence and knowledge of genetic variability within the population (Nielsen et al., 2014Nielsen, H. B.; Almeida, M.; Juncker, A. S.; Rasmussen, S.; Li, J.; Sunagawa, S.; Plichta, D. R.; Gautier, L.; Pedersen, A. G.; Le Chatelier, E.; Pelletier, E.; Bonde, I.; Nielsen, T.; Manichanh, C.; Arumugam, M.; Batto, J.-M.; dos Santos, M. B. Q.; Blom, N.; Borruel, N.; Burgdorf, K. S.; Boumezbeur, F.; Casellas, F.; Doré, J.; Dworzynski, P.; Guarner, F.; Hansen, T.; Hildebrand, F.; Kaas, R. S.; Kennedy, S.; Kristiansen, K.; Kultima, J. R.; Léonard, P.; Levenez, F.; Lund, O.; Moumen, B.; Le Paslier, D.; Pons, N.; Pedersen, O.; Prifti, E.; Qin, J.; Raes, J.; Sørensen, S.; Tap, J.; Tims, S.; Ussery, D. W.; Yamada, T.; Renault, P.; Sicheritz-Ponten, T.; Bork, P.; Wang, J.; Brunak, S. and Ehrlich, S. D. 2014. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology 32:822-828. https://doi.org/10.1038/nbt.2939
https://doi.org/10.1038/nbt.2939...
; Figueiredo et al., 2019Figueiredo, U. J.; Berchembrock, Y. V.; Valle, C. B.; Barrios, S. C. L.; Quesenberry, K. H.; Muñoz, P. R. and Nunes, J. A. R. 2019. Evaluating early selection in perennial tropical forages. Crop Breeding and Applied Biotechnology 19:291-299. https://doi.org/10.1590/1984-70332019v19n3a41
https://doi.org/10.1590/1984-70332019v19...
; Sant'Anna et al., 2021Sant'Anna, I. C.; Gouvêa, L. R. L.; Martins, M. A.; Scaloppi Junior, E. J.; de Freitas, R. S. and Goncalves, P. S. 2021. Genetic diversity associated with natural rubber quality in elite genotypes of the rubber tree. Scientific Reports 11:1081. https://doi.org/10.1038/s41598-020-80110-w
https://doi.org/10.1038/s41598-020-80110...
; Steiner et al., 2022Steiner, M. G.; Weiler, R. L.; Brunes, A. P.; Mills, A.; Dall'Agnol, M.; Nabinger, C., Motta, E. A. M.; Silveira, D. C.; Sampaio, R. and Tessis, G. 2022. Characterization and genetic diversity in Paspalum notatum Flügge accessions: Morphological and geographical distance. Revista Brasileira de Zootecnia 51:e20220015. https://doi.org/10.37496/rbz5120220015
https://doi.org/10.37496/rbz5120220015...
). The findings of the present study indicated that genetic variability existed among the hybrids evaluated, which allows genetic gain via direct selection in all traits quantified (Table 2).
The experimental (CVe) and genetic (CVg) variation coefficients were higher than those found by other authors who have previously evaluated forage characteristics (Machado et al., 2021Machado, J. M.; Motta, E. A. M.; Barbosa, M. R.; Weiler, R. L.; Simioni, C.; Silveira, D. C.; Mills, A.; Pereira, E. A. and Dall'Agnol, M. 2021. Multivariate analysis reveals genetic diversity in Paspalum notatum Flügge. Revista Brasileira de Zootecnia 50:e20200252. https://doi.org/10.37496/rbz5020200252
https://doi.org/10.37496/rbz5020200252...
; Silveira et al., 2022Silveira, D. C.; Machado, J. M.; Motta, E. A. M.; Barbosa, M. R.; Simioni, C.; Weiler, R. L.; Mills, A.; Sampaio, R.; Brunes, A. P. and Dall'Agnol, M. 2022. Genetic parameters, prediction of gains and intraspecific hybrid selection of Paspalum notatum Flügge for forage using REML/BLUP. Agronomy 12:1654. https://doi.org/10.3390/agronomy12071654
https://doi.org/10.3390/agronomy12071654...
) or seed production traits (Lopes et al., 2017Lopes, R. R.; Souza, C. H. L.; Pereira, E. A.; Gasparetto, B. F.; Dall'Agnol, M. and Franke, L. B. 2017. Genetic variability of the components of seed yield in interspecific hybrids of Paspalum. Revista Brasileira de Zootecnia 46:296-302. https://doi.org/10.1590/S1806-92902017000400004
https://doi.org/10.1590/S1806-9290201700...
; Lopes et al., 2019Lopes, R. R.; Franke, L. B.; Souza, C. H. L.; Bertoncelli, P.; Graminho, L. A.; Ávila, M. R.; Pereira, E. A. and Motta, E. A. M. 2019. Genetic assessment of seed yield-related traits in superior hybrids of Paspalum plicatulum × Paspalum guenoarum. Revista Brasileira de Zootecnia 48:e20190075. https://doi.org/10.1590/rbz4820190075
https://doi.org/10.1590/rbz4820190075...
) of P. notatum hybrids. The current experiment found that CVe was always greater than CVg (Table 2), which showed that the environmental effect dominated results rather than genetic effects. This result is contradictory to previous studies because with greater experimental precision the greatest expressions of genotypic variability were not expressed (Shimoya et al., 2002Shimoya, A.; Pereira, A. V.; Ferreira, R. P.; Cruz, C. D. and Carneiro, P. C. S. 2002. Repetibilidade de características forrageiras do capim-elefante. Scientia Agricola 59:227-234. https://doi.org/10.1590/S0103-90162002000200004
https://doi.org/10.1590/S0103-9016200200...
). The tendency of a greater CVe compared with CVg was not observed by Lopes et al. (2019)Lopes, R. R.; Franke, L. B.; Souza, C. H. L.; Bertoncelli, P.; Graminho, L. A.; Ávila, M. R.; Pereira, E. A. and Motta, E. A. M. 2019. Genetic assessment of seed yield-related traits in superior hybrids of Paspalum plicatulum × Paspalum guenoarum. Revista Brasileira de Zootecnia 48:e20190075. https://doi.org/10.1590/rbz4820190075
https://doi.org/10.1590/rbz4820190075...
. Precision (CVe) and repeatability () are influenced by management decisions, experimental design, and/or biotic and abiotic factors (Johnson and Frey, 1967Johnson, G. R and Frey, K. J. 1967. Heritabilities of quantitative attributes of oats (Avena sp.) at varying levels of environmental stress. Crop Science 7:43-46. https://doi.org/10.2135/cropsci1967.0011183X000700010016x
https://doi.org/10.2135/cropsci1967.0011...
; Vela-Cardenas and Frey, 1972Vela-Cardenas, M. and Frey, K. J. 1972. Optimum environment for maximizing heritability and genetic gain from selection. Iowa State Journal of Science 46:381-394.; Neyhart et al., 2022Neyhart, J. L.; Gutierrez, L. and Smith, K. P. 2022. Optimizing the choice of test locations for multitrait genotypic evaluation. Crop Science 62:192-202. https://doi.org/10.1002/csc2.20657
https://doi.org/10.1002/csc2.20657...
). Furthermore, early selection in perennial plants can be affected by numerous factors, such as slow establishment, which would lead to high coefficients of experimental variation. Additionally, the seedlings were very young when transplanted, which may have led to an increase in the coefficients of variation. Conversely, high CVe values can mean greater phenotypic variation (Wang et al., 2022Wang, X.; Yan, M.; Wang, X.; Wu, Z.; Zhou, J.; Wang, C.; Chen, R.; Qin, X.; Yang, H.; Wei, H. and Gu, W. 2022. The phenotypic diversity of Schisandra sphenanthera fruit and SVR model for phenotype forecasting. Industrial Crops and Products 186:115162. https://doi.org/10.1016/j.indcrop.2022.115162
https://doi.org/10.1016/j.indcrop.2022.1...
). At the same time, CVg provides information about the magnitude of the variability present within the population. This allows comparison of the levels of genetic variability present among different genotypes, environments, and traits (Ferrão et al., 2008Ferrão, R. G.; Cruz, C. D.; Ferreira, A.; Cecon, P. R.; Ferrão, M. A. G.; Fonseca, A. F. A.; Carneiro, P. C. S. and Silva, M. F. 2008. Parâmetros genéticos em café Conilon. Pesquisa Agropecuária Brasileira 43:61-69. https://doi.org/10.1590/S0100-204X2008000100009
https://doi.org/10.1590/S0100-204X200800...
). The current experiment confirmed that genetic variability studies within breeding programs must quantify both CVe and CVg during analysis (Cortes et al., 2019Cortes, D. F. M.; Santa-Catarina, R.; Vettorazzi, J. C. F.; Ramos, H. C. C.; Viana, A. P. and Pereira, M. G. 2019. Development of superior lines of papaya from the Formosa group using the pedigree method and REML/Blup procedure. Bragantia 78:350-360. https://doi.org/10.1590/1678-4499.20180253
https://doi.org/10.1590/1678-4499.201802...
). Populations that exhibit high CVg indicate potential for improvement via genetic gains in the breeding program (Zanata et al., 2010Zanata, M.; Freitas, M. L. M.; Silva, M. T.; Morais, E.; Zanatto, A. C. S. and Sebbenn, A. M. 2010. Parâmetros genéticos e ganhos na seleção em teste de progênies de polinização aberta de Eucalyptus pellita, Batatais–SP. Revista do Instituto Florestal 22:233-242.). The main advantage of utilizing the coefficient of variation in trait analysis is to enable the quantification and weighting of the proportion of variation within a population, which exists due to genetic and environmental factors (Kampa et al., 2020Kampa, M. B.; Homczinski, I.; Roque, R. H.; Figueiredo Filho, A.; Peres, F. S. B. and Tambarussi, E. V. 2020. Variabilidade genética em progênies de Campomanesia xanthocarpa Mart. ex O. Berg em viveiro. Scientia Forestalis 48:e2935. https://doi.org/10.18671/scifor.v48n125.10
https://doi.org/10.18671/scifor.v48n125....
). This parameter, along with the h², provides the basis for decision-making to increase forage production within the current P. notatum Flügge breeding program.
Heritability values quantify how much of the total observed variation was caused by genotypic factors (Ferreira et al., 2020Ferreira, F. M.; Carvalho Rocha, J. R. A. S.; Alves, R. S.; Elizeu, A. M.; Benites, F. R. G.; de Resende, M. D. V.; Souza Sobrinho, F. and Bhering, L. L. 2020. Estimates of repeatability coefficients and optimum number of measures for genetic selection of Cynodon spp. Euphytica 216:70. https://doi.org/10.1007/s10681-020-02605-x
https://doi.org/10.1007/s10681-020-02605...
). Resende (2015)Resende, M. D. V. 2015. Genética quantitativa e de populações. Suprema, Viçosa, MG. 463p. classified h² into three classes; low (h² < 0.15), moderate (0.15 < h² < 0.50), and high (h² > 0.50). Accordingly, the h² parameter generated in the analysis of this experiment (Table 2) was high for most forage traits evaluated. The exception was LSR, which is greatly influenced by environmental conditions over time. Higher h² values allow the identification of superior hybrids within the population studied. Selection of these hybrids in the next stage of the breeding program could improve forage gains obtained in subsequently selected progeny (Majidi et al., 2009Majidi, M. M.; Mirlohi, A. and Amini, F. 2009. Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica 167:323-331. https://doi.org/10.1007/s10681-009-9887-6
https://doi.org/10.1007/s10681-009-9887-...
).
The high number of genotypes and characters studied within breeding programs (Jank et al., 2014Jank, L.; Barrios, S. C.; Valle, C. B.; Simeão, R. M. and Alves, G. F. 2014. The value of improved pastures to Brazilian beef production. Crop & Pasture Science 65:1132-1137.), requires significant time and resources to obtain consistent data and needs an estimate of the minimum number of measurements for selection of superior genotypes (Rodrigues et al., 2020Rodrigues, E. V.; Daher, R. F.; Gravina, G. A.; Viana, A. P.; Araújo, M. S. B.; Oliveira, M. L. F.; Vivas, M.; Menezes, B. R. S. and Pereira, A. V. 2020. Repeatability estimates and minimum number of evaluations for selection of elephant-grass genotypes for herbage production. Bioscience Journal 36:30-41.). Therefore, several studies have been conducted to estimate the repeatability () of characteristics of interest in forage plants including Urochloa spp. (Basso et al., 2009Basso, K. C.; Resende, R. M. S.; Valle, C. B.; Gonçalves, M. C. and Lempp, B. 2009. Avaliação de acessos de Brachiaria brizantha Stapf e estimativas de parâmetros genéticos para caracteres agronômicos. Acta Scientiarum. Agronomy 31:17-22. https://doi.org/10.4025/actasciagron.v31i1.6605
https://doi.org/10.4025/actasciagron.v31...
; Souza Sobrinho et al., 2010Souza Sobrinho, F.; Borges, V.; Lédo, F. J. S. and Kopp, M. M. 2010. Repetibilidade de características agronômicas e número de cortes necessários para seleção de Urochloa ruziziensis. Pesquisa Agropecuária Brasileira 45:579-584. https://doi.org/10.1590/S0100-204X2010000600007
https://doi.org/10.1590/S0100-204X201000...
; Teixeira et al., 2011Teixeira, V. I.; Dubeux Jr, J. C. B.; Mello, A. C. L.; Lira Jr, M. A.; Lira, M. A. and Saraiva, F. M. 2011. Repetibilidade de variáveis produtivas e qualitativas da forragem e da excreta bovina em pastagem de braquiária. Pesquisa Agropecuária Brasileira 46:655-662. https://doi.org/10.1590/S0100-204X2011000600012
https://doi.org/10.1590/S0100-204X201100...
; Martuscello et al., 2013Martuscello, J. A.; Braz, T. G. S.; Jank, L.; Cunha, D. N. F. V.; Souza, M. W. M.; Brito, G. F. and Oliveira, L. P. 2013. Repeatability of agronomic characters in Brachiaria brizantha cultivars. Revista Brasileira de Zootecnia 42:30-35. https://doi.org/10.1590/S1516-35982013000100005
https://doi.org/10.1590/S1516-3598201300...
; Matias et al., 2016Matias, F. I.; Barrios, S. C. L.; Valle, C. B.; Mateus, R. G.; Martins, L. B. and Moro, G. V. 2016. Estimate of genetic parameters in Brachiaria decumbens hybrids. Crop Breeding and Applied Biotechnology 16:115-122. https://doi.org/10.1590/1984-70332016v16n2a18
https://doi.org/10.1590/1984-70332016v16...
; Coêlho et al., 2018Coêlho, J. J.; Mello, A. C. L.; Santos, M. V. F.; Dubeux Junior, J. C. B.; Cunha, M. V. and Lira, M. A. 2018. Prediction of the nutritional value of grass species in the semiarid region by repeatability analysis. Pesquisa Agropecuária Brasileira 53:378-385. https://doi.org/10.1590/S0100-204X2018000300013
https://doi.org/10.1590/S0100-204X201800...
; Figueiredo et al., 2019Figueiredo, U. J.; Berchembrock, Y. V.; Valle, C. B.; Barrios, S. C. L.; Quesenberry, K. H.; Muñoz, P. R. and Nunes, J. A. R. 2019. Evaluating early selection in perennial tropical forages. Crop Breeding and Applied Biotechnology 19:291-299. https://doi.org/10.1590/1984-70332019v19n3a41
https://doi.org/10.1590/1984-70332019v19...
), Megathyrsus maximus (Martuscello et al., 2007Martuscello, J. A.; Jank, L.; Fonseca, D. M.; Cruz, C. D. and Cunha, D. N. F. V. 2007. Repetibilidade de caracteres agronômicos em Panicum maximum Jacq. Revista Brasileira de Zootecnia 36:1975-1981. https://doi.org/10.1590/S1516-35982007000900005
https://doi.org/10.1590/S1516-3598200700...
; Braz et al., 2015Braz, T. G. S.; Fonseca, D. M.; Jank, L.; Cruz, C. D. and Martuscello, J. A. 2015. Repeatability of agronomic traits in Panicum maximum (Jacq.) hybrids. Genetics and Molecular Research 14:19282-19294. https://doi.org/10.4238/2015.december.29.38
https://doi.org/10.4238/2015.december.29...
; Martuscello et al., 2015Martuscello, J. A.; Braz, T. G. S.; Jank, L.; Cunha, D. N. F. V.; Lima, B. P. S. and Oliveira, L. P. 2015. Repeatability and phenotypic stabilization of Panicum maximum accessions. Acta Scientiarum. Animal Sciences 37:15-21. https://doi.org/10.4025/actascianimsci.v37i1.23206
https://doi.org/10.4025/actascianimsci.v...
; Coêlho et al., 2018Coêlho, J. J.; Mello, A. C. L.; Santos, M. V. F.; Dubeux Junior, J. C. B.; Cunha, M. V. and Lira, M. A. 2018. Prediction of the nutritional value of grass species in the semiarid region by repeatability analysis. Pesquisa Agropecuária Brasileira 53:378-385. https://doi.org/10.1590/S0100-204X2018000300013
https://doi.org/10.1590/S0100-204X201800...
; Ferreira et al., 2019Ferreira, M. R.; Martuscello, J. A.; Braz, T. G. S.; Nascimento, A. A.; Jank, L.; Assis, J. A.; Almeida, O. G.; Reis, G. A.; Santos, M. V. and Santos, M. F. 2019. Repeatability and genotypic stability of agronomic characteristics in Panicum maximum Jacq. Chilean Journal of Agricultural Research 79:547-556. https://doi.org/10.4067/S0718-58392019000400547
https://doi.org/10.4067/S0718-5839201900...
), Medicago sativa L. (Botrel et al., 2000Botrel, M. A.; Ferreira, R. P.; Cruz, C. D.; Pereira, A. V.; Viana, M. C. M.; Rocha, R. and Miranda, M. 2000. Estimativas de coeficientes de repetibilidade para produção de matéria seca em cultivares de alfafa, sob diferentes ambientes. Revista Ceres 47:651-663.; Ferreira et al., 2010Ferreira, R. P.; Vasconcelos, E. D.; Cruz, C. D.; Barioni Júnior, W.; Rassini, J. B.; Freitas, A. R.; Vilela, D. and Moreira, A. 2010. Determinação do coeficiente de repetibilidade e estabilização genotípica das características agronômicas avaliadas em genótipos de alfafa no ano de estabelecimento. Revista Ceres 57:642-647. https://doi.org/10.1590/S0034-737X2010000500012
https://doi.org/10.1590/S0034-737X201000...
), Pennisetum purpureum Schum. (Shimoya et al., 2002Shimoya, A.; Pereira, A. V.; Ferreira, R. P.; Cruz, C. D. and Carneiro, P. C. S. 2002. Repetibilidade de características forrageiras do capim-elefante. Scientia Agricola 59:227-234. https://doi.org/10.1590/S0103-90162002000200004
https://doi.org/10.1590/S0103-9016200200...
; Rodrigues et al., 2020Rodrigues, E. V.; Daher, R. F.; Gravina, G. A.; Viana, A. P.; Araújo, M. S. B.; Oliveira, M. L. F.; Vivas, M.; Menezes, B. R. S. and Pereira, A. V. 2020. Repeatability estimates and minimum number of evaluations for selection of elephant-grass genotypes for herbage production. Bioscience Journal 36:30-41.), and Lolium multiflorum Lamarck (Rios et al., 2019Rios, E. F.; Kenworthy, K. E.; Gezan, S. A. and Munoz, P. R. 2019. Genetic parameters for phenotypic traits in annual ryegrass. Crop Science 59:2128-2140. https://doi.org/10.2135/cropsci2019.02.0126
https://doi.org/10.2135/cropsci2019.02.0...
). Until now this information has not been available for the Paspalum species. The value indicates a consistent ranking of genotypic performance in a specific location over time (Neyhart et al., 2022Neyhart, J. L.; Gutierrez, L. and Smith, K. P. 2022. Optimizing the choice of test locations for multitrait genotypic evaluation. Crop Science 62:192-202. https://doi.org/10.1002/csc2.20657
https://doi.org/10.1002/csc2.20657...
). In our study, values were medium-to-high for most characteristics (Table 3), based on the criteria of Resende (2002)Resende, M. D. V. 2002. Genética biométrica e estatística no melhoramento de plantas perenes. Embrapa Informação Tecnológica, Brasília.. In most cases, the highest estimates were obtained through the PCACov analysis method, followed by PCACor. These results are supported by previously published work, which also showed that estimates obtained by ANOVA are generally lower than the estimates obtained by other methods (Cargnelutti Filho et al., 2004Cargnelutti Filho, A.; Castilhos, Z. M. S.; Storck, L. and Savian, J. F. 2004. Análise de repetibilidade de caracteres forrageiros de genótipos de Panicum maximum, avaliados com e sem restrição solar. Ciência Rural 34:723-729. https://doi.org/10.1590/S0103-84782004000300011
https://doi.org/10.1590/S0103-8478200400...
; Martuscello et al., 2007Martuscello, J. A.; Jank, L.; Fonseca, D. M.; Cruz, C. D. and Cunha, D. N. F. V. 2007. Repetibilidade de caracteres agronômicos em Panicum maximum Jacq. Revista Brasileira de Zootecnia 36:1975-1981. https://doi.org/10.1590/S1516-35982007000900005
https://doi.org/10.1590/S1516-3598200700...
; Martuscello et al., 2015Martuscello, J. A.; Braz, T. G. S.; Jank, L.; Cunha, D. N. F. V.; Lima, B. P. S. and Oliveira, L. P. 2015. Repeatability and phenotypic stabilization of Panicum maximum accessions. Acta Scientiarum. Animal Sciences 37:15-21. https://doi.org/10.4025/actascianimsci.v37i1.23206
https://doi.org/10.4025/actascianimsci.v...
). Our work showed that the PCACov method estimates of tended to be higher than those obtained by the other methods, which is supported by the results of Martuscello et al. (2015)Martuscello, J. A.; Braz, T. G. S.; Jank, L.; Cunha, D. N. F. V.; Lima, B. P. S. and Oliveira, L. P. 2015. Repeatability and phenotypic stabilization of Panicum maximum accessions. Acta Scientiarum. Animal Sciences 37:15-21. https://doi.org/10.4025/actascianimsci.v37i1.23206
https://doi.org/10.4025/actascianimsci.v...
. The difference among estimates from the analysis methods indicated that evaluation by more than one analysis method is required to obtain a reliable parameter. Evaluation of the analysis procedure as a whole means the real value can probably be found within the range of estimates calculated (Martuscello et al., 2007Martuscello, J. A.; Jank, L.; Fonseca, D. M.; Cruz, C. D. and Cunha, D. N. F. V. 2007. Repetibilidade de caracteres agronômicos em Panicum maximum Jacq. Revista Brasileira de Zootecnia 36:1975-1981. https://doi.org/10.1590/S1516-35982007000900005
https://doi.org/10.1590/S1516-3598200700...
). In this context, identification of the most appropriate analysis method should be used as a strategy to improve parameter estimates for future decision making (Martuscello et al., 2015Martuscello, J. A.; Braz, T. G. S.; Jank, L.; Cunha, D. N. F. V.; Lima, B. P. S. and Oliveira, L. P. 2015. Repeatability and phenotypic stabilization of Panicum maximum accessions. Acta Scientiarum. Animal Sciences 37:15-21. https://doi.org/10.4025/actascianimsci.v37i1.23206
https://doi.org/10.4025/actascianimsci.v...
).
The study of genotypic stabilization contributes to increasing the reliability of the selection process for a trait by identifying groups of repeated measurements with a higher level of association. This is based on the assumption that gene expression can be influenced not only by the stage of development but also by various climatic conditions and management changes that plants experience throughout the year (Braz et al., 2015Braz, T. G. S.; Fonseca, D. M.; Jank, L.; Cruz, C. D. and Martuscello, J. A. 2015. Repeatability of agronomic traits in Panicum maximum (Jacq.) hybrids. Genetics and Molecular Research 14:19282-19294. https://doi.org/10.4238/2015.december.29.38
https://doi.org/10.4238/2015.december.29...
). For most traits studied here, genotypic stabilization between two harvests showed the highest correlation (Table 5). The evaluation between successive harvests may not represent genotypic stabilization, but the occurrence of two very similar harvests (Ferreira et al., 2019Ferreira, M. R.; Martuscello, J. A.; Braz, T. G. S.; Nascimento, A. A.; Jank, L.; Assis, J. A.; Almeida, O. G.; Reis, G. A.; Santos, M. V. and Santos, M. F. 2019. Repeatability and genotypic stability of agronomic characteristics in Panicum maximum Jacq. Chilean Journal of Agricultural Research 79:547-556. https://doi.org/10.4067/S0718-58392019000400547
https://doi.org/10.4067/S0718-5839201900...
). This probably reflects they have been exposed to similar environmental conditions, rather than non-adjacent harvests, which likely experience less similar environmental conditions due to seasonal changes. It is necessary to include longer evaluation periods with more harvests to determine genotypic stabilization. Thus, the evaluation of stabilized genotypes to obtain estimates is extremely important for selecting material within breeding programs (Martuscello et al., 2015Martuscello, J. A.; Braz, T. G. S.; Jank, L.; Cunha, D. N. F. V.; Lima, B. P. S. and Oliveira, L. P. 2015. Repeatability and phenotypic stabilization of Panicum maximum accessions. Acta Scientiarum. Animal Sciences 37:15-21. https://doi.org/10.4025/actascianimsci.v37i1.23206
https://doi.org/10.4025/actascianimsci.v...
).
Finally, our study reports, for the first time, estimates of the repeatability coefficient for forage production traits in hybrids of P. notatum Flügge. Our results showed values differed among the methodologies applied (Table 3). In general, the repeatability coefficient estimates were of medium to high magnitude for most traits evaluated and indicated reliability in identifying superior hybrids of P. notatum Flügge. For all methods evaluated, increasing the accuracy from 0.85 to 0.95 would require a large increase in the number of harvests, but this adds little in terms of precision, especially when there are many hybrids to be evaluated within the improvement program. In addition, the h² and CVg genetic parameters indicated a favorable situation for genetic gains with selection within the studied population.
5. Conclusions
For reliable early selection based on LDM, LSR, and TDM traits of P. notatum Flügge, two to four harvests are recommended. Broad heritability for most of the characters studied suggests this would provide a favorable situation for direct selection for increased forage production. The principal component analysis, based on the covariance matrix, has the highest repeatability estimates compared with the other methods. For early selection, this method is recommended for identification of superior hybrids of P. notatum Flügge.
Acknowledgments
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Associação Sul-Brasileira para o Fomento de Pesquisa em Forrageiras (SULPASTO) for financial support and grants.
References
- Abeywardena, V. 1972. An application of principal component analysis in genetics. Journal of Genetics 61:27-51. https://doi.org/10.1007/BF02984099
» https://doi.org/10.1007/BF02984099 - Basso, K. C.; Resende, R. M. S.; Valle, C. B.; Gonçalves, M. C. and Lempp, B. 2009. Avaliação de acessos de Brachiaria brizantha Stapf e estimativas de parâmetros genéticos para caracteres agronômicos. Acta Scientiarum. Agronomy 31:17-22. https://doi.org/10.4025/actasciagron.v31i1.6605
» https://doi.org/10.4025/actasciagron.v31i1.6605 - Botrel, M. A.; Ferreira, R. P.; Cruz, C. D.; Pereira, A. V.; Viana, M. C. M.; Rocha, R. and Miranda, M. 2000. Estimativas de coeficientes de repetibilidade para produção de matéria seca em cultivares de alfafa, sob diferentes ambientes. Revista Ceres 47:651-663.
- Braz, T. G. S.; Fonseca, D. M.; Jank, L.; Cruz, C. D. and Martuscello, J. A. 2015. Repeatability of agronomic traits in Panicum maximum (Jacq.) hybrids. Genetics and Molecular Research 14:19282-19294. https://doi.org/10.4238/2015.december.29.38
» https://doi.org/10.4238/2015.december.29.38 - Burton, G. W. 1948. Artificial fog facilitates Paspalum emasculation. Agronomy Journal 40:281-282. https://doi.org/10.2134/agronj1948.00021962004000030010x
» https://doi.org/10.2134/agronj1948.00021962004000030010x - Cargnelutti Filho, A.; Castilhos, Z. M. S.; Storck, L. and Savian, J. F. 2004. Análise de repetibilidade de caracteres forrageiros de genótipos de Panicum maximum, avaliados com e sem restrição solar. Ciência Rural 34:723-729. https://doi.org/10.1590/S0103-84782004000300011
» https://doi.org/10.1590/S0103-84782004000300011 - Chase, A. 1929. The North American species of Paspalum. Contributions from the United States National Herbarium 28:1-310.
- Chaves, G. G.; Cargnelutti Filho, A.; Carini, F.; Kleinpaul, J. A.; Neu, I. M. M. and Procedi, A. 2018. Tamanho de parcela e número de repetições para avaliação de caracteres vegetativos em centeio. Revista Brasileira de Ciências Agrárias 13:1-11.
- Coêlho, J. J.; Mello, A. C. L.; Santos, M. V. F.; Dubeux Junior, J. C. B.; Cunha, M. V. and Lira, M. A. 2018. Prediction of the nutritional value of grass species in the semiarid region by repeatability analysis. Pesquisa Agropecuária Brasileira 53:378-385. https://doi.org/10.1590/S0100-204X2018000300013
» https://doi.org/10.1590/S0100-204X2018000300013 - Cortes, D. F. M.; Santa-Catarina, R.; Vettorazzi, J. C. F.; Ramos, H. C. C.; Viana, A. P. and Pereira, M. G. 2019. Development of superior lines of papaya from the Formosa group using the pedigree method and REML/Blup procedure. Bragantia 78:350-360. https://doi.org/10.1590/1678-4499.20180253
» https://doi.org/10.1590/1678-4499.20180253 - CQFS RS/SC - Comissão de Química e Fertilidade do Solo RS/SC. 2004. Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina. 10.ed. Sociedade Brasileira de Ciência do Solo - Núcleo Regional Sul, Porto Alegre.
- Cruz, C. D. 2016. Genes Software-extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy 38:547-552. https://doi.org/10.4025/actasciagron.v38i3.32629
» https://doi.org/10.4025/actasciagron.v38i3.32629 - Ferrão, R. G.; Cruz, C. D.; Ferreira, A.; Cecon, P. R.; Ferrão, M. A. G.; Fonseca, A. F. A.; Carneiro, P. C. S. and Silva, M. F. 2008. Parâmetros genéticos em café Conilon. Pesquisa Agropecuária Brasileira 43:61-69. https://doi.org/10.1590/S0100-204X2008000100009
» https://doi.org/10.1590/S0100-204X2008000100009 - Ferreira, F. M.; Carvalho Rocha, J. R. A. S.; Alves, R. S.; Elizeu, A. M.; Benites, F. R. G.; de Resende, M. D. V.; Souza Sobrinho, F. and Bhering, L. L. 2020. Estimates of repeatability coefficients and optimum number of measures for genetic selection of Cynodon spp. Euphytica 216:70. https://doi.org/10.1007/s10681-020-02605-x
» https://doi.org/10.1007/s10681-020-02605-x - Ferreira, M. R.; Martuscello, J. A.; Braz, T. G. S.; Nascimento, A. A.; Jank, L.; Assis, J. A.; Almeida, O. G.; Reis, G. A.; Santos, M. V. and Santos, M. F. 2019. Repeatability and genotypic stability of agronomic characteristics in Panicum maximum Jacq. Chilean Journal of Agricultural Research 79:547-556. https://doi.org/10.4067/S0718-58392019000400547
» https://doi.org/10.4067/S0718-58392019000400547 - Ferreira, R. P.; Vasconcelos, E. D.; Cruz, C. D.; Barioni Júnior, W.; Rassini, J. B.; Freitas, A. R.; Vilela, D. and Moreira, A. 2010. Determinação do coeficiente de repetibilidade e estabilização genotípica das características agronômicas avaliadas em genótipos de alfafa no ano de estabelecimento. Revista Ceres 57:642-647. https://doi.org/10.1590/S0034-737X2010000500012
» https://doi.org/10.1590/S0034-737X2010000500012 - Figueiredo, U. J.; Berchembrock, Y. V.; Valle, C. B.; Barrios, S. C. L.; Quesenberry, K. H.; Muñoz, P. R. and Nunes, J. A. R. 2019. Evaluating early selection in perennial tropical forages. Crop Breeding and Applied Biotechnology 19:291-299. https://doi.org/10.1590/1984-70332019v19n3a41
» https://doi.org/10.1590/1984-70332019v19n3a41 - Gasparetto, B. F.; Radunz, L. L.; Lopes, R. R.; Franke, L. B. and Martinelli, J. A. 2021. Fungi associated with Paspalum guenoarum seeds: their impact on physiology and control. Ciência Rural 51:e20200497. https://doi.org/10.1590/0103-8478cr20200497
» https://doi.org/10.1590/0103-8478cr20200497 - IBGE - Instituto Brasileiro de Geografia e Estatística. 2019. Censo agropecuário 2017: Resultados definitivos. IBGE, Rio de Janeiro.
- Jank, L.; Barrios, S. C.; Valle, C. B.; Simeão, R. M. and Alves, G. F. 2014. The value of improved pastures to Brazilian beef production. Crop & Pasture Science 65:1132-1137.
- Johnson, G. R and Frey, K. J. 1967. Heritabilities of quantitative attributes of oats (Avena sp.) at varying levels of environmental stress. Crop Science 7:43-46. https://doi.org/10.2135/cropsci1967.0011183X000700010016x
» https://doi.org/10.2135/cropsci1967.0011183X000700010016x - Kampa, M. B.; Homczinski, I.; Roque, R. H.; Figueiredo Filho, A.; Peres, F. S. B. and Tambarussi, E. V. 2020. Variabilidade genética em progênies de Campomanesia xanthocarpa Mart. ex O. Berg em viveiro. Scientia Forestalis 48:e2935. https://doi.org/10.18671/scifor.v48n125.10
» https://doi.org/10.18671/scifor.v48n125.10 - Lopes, R. R.; Franke, L. B.; Souza, C. H. L.; Bertoncelli, P.; Graminho, L. A.; Ávila, M. R.; Pereira, E. A. and Motta, E. A. M. 2019. Genetic assessment of seed yield-related traits in superior hybrids of Paspalum plicatulum × Paspalum guenoarum. Revista Brasileira de Zootecnia 48:e20190075. https://doi.org/10.1590/rbz4820190075
» https://doi.org/10.1590/rbz4820190075 - Lopes, R. R.; Souza, C. H. L.; Pereira, E. A.; Gasparetto, B. F.; Dall'Agnol, M. and Franke, L. B. 2017. Genetic variability of the components of seed yield in interspecific hybrids of Paspalum Revista Brasileira de Zootecnia 46:296-302. https://doi.org/10.1590/S1806-92902017000400004
» https://doi.org/10.1590/S1806-92902017000400004 - Machado, J. M.; Motta, E. A. M.; Barbosa, M. R.; Weiler, R. L.; Simioni, C.; Silveira, D. C.; Mills, A.; Pereira, E. A. and Dall'Agnol, M. 2021. Multivariate analysis reveals genetic diversity in Paspalum notatum Flügge. Revista Brasileira de Zootecnia 50:e20200252. https://doi.org/10.37496/rbz5020200252
» https://doi.org/10.37496/rbz5020200252 - Majidi, M. M.; Mirlohi, A. and Amini, F. 2009. Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica 167:323-331. https://doi.org/10.1007/s10681-009-9887-6
» https://doi.org/10.1007/s10681-009-9887-6 - Martuscello, J. A.; Braz, T. G. S.; Jank, L.; Cunha, D. N. F. V.; Souza, M. W. M.; Brito, G. F. and Oliveira, L. P. 2013. Repeatability of agronomic characters in Brachiaria brizantha cultivars. Revista Brasileira de Zootecnia 42:30-35. https://doi.org/10.1590/S1516-35982013000100005
» https://doi.org/10.1590/S1516-35982013000100005 - Martuscello, J. A.; Braz, T. G. S.; Jank, L.; Cunha, D. N. F. V.; Lima, B. P. S. and Oliveira, L. P. 2015. Repeatability and phenotypic stabilization of Panicum maximum accessions. Acta Scientiarum. Animal Sciences 37:15-21. https://doi.org/10.4025/actascianimsci.v37i1.23206
» https://doi.org/10.4025/actascianimsci.v37i1.23206 - Martuscello, J. A.; Jank, L.; Fonseca, D. M.; Cruz, C. D. and Cunha, D. N. F. V. 2007. Repetibilidade de caracteres agronômicos em Panicum maximum Jacq. Revista Brasileira de Zootecnia 36:1975-1981. https://doi.org/10.1590/S1516-35982007000900005
» https://doi.org/10.1590/S1516-35982007000900005 - Matias, F. I.; Barrios, S. C. L.; Valle, C. B.; Mateus, R. G.; Martins, L. B. and Moro, G. V. 2016. Estimate of genetic parameters in Brachiaria decumbens hybrids. Crop Breeding and Applied Biotechnology 16:115-122. https://doi.org/10.1590/1984-70332016v16n2a18
» https://doi.org/10.1590/1984-70332016v16n2a18 - Moreno, J. A. 1961. Clima do Rio Grande do Sul. Secretaria da Agricultura, Porto Alegre.
- Morrone, O.; Aagesen, L.; Scataglini, M. A.; Salariato, D. L.; Denham, S. S.; Chemisquy, M. A.; Sede, S. M.; Giussani, L. M.; Kellogg, E. A. and Zuloaga, F. O. 2012. Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics 28:333-356. https://doi.org/10.1111/j.1096-0031.2011.00384.x
» https://doi.org/10.1111/j.1096-0031.2011.00384.x - Motta, E. A. M.; Dall'Agnol, M.; Pereira, E. A.; Machado, J. M. and Simioni, C. 2017. Valor forrageiro de híbridos interespecíficos superiores de Paspalum Revista Ciência Agronômica 48:191-198.
- Neyhart, J. L.; Gutierrez, L. and Smith, K. P. 2022. Optimizing the choice of test locations for multitrait genotypic evaluation. Crop Science 62:192-202. https://doi.org/10.1002/csc2.20657
» https://doi.org/10.1002/csc2.20657 - Nielsen, H. B.; Almeida, M.; Juncker, A. S.; Rasmussen, S.; Li, J.; Sunagawa, S.; Plichta, D. R.; Gautier, L.; Pedersen, A. G.; Le Chatelier, E.; Pelletier, E.; Bonde, I.; Nielsen, T.; Manichanh, C.; Arumugam, M.; Batto, J.-M.; dos Santos, M. B. Q.; Blom, N.; Borruel, N.; Burgdorf, K. S.; Boumezbeur, F.; Casellas, F.; Doré, J.; Dworzynski, P.; Guarner, F.; Hansen, T.; Hildebrand, F.; Kaas, R. S.; Kennedy, S.; Kristiansen, K.; Kultima, J. R.; Léonard, P.; Levenez, F.; Lund, O.; Moumen, B.; Le Paslier, D.; Pons, N.; Pedersen, O.; Prifti, E.; Qin, J.; Raes, J.; Sørensen, S.; Tap, J.; Tims, S.; Ussery, D. W.; Yamada, T.; Renault, P.; Sicheritz-Ponten, T.; Bork, P.; Wang, J.; Brunak, S. and Ehrlich, S. D. 2014. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology 32:822-828. https://doi.org/10.1038/nbt.2939
» https://doi.org/10.1038/nbt.2939 - Novo, P. E.; Valls, J. F. M.; Galdeano, F.; Honfi, A. I.; Espinoza, F. and Quarin, C. L. 2016. Interspecific hybrids between Paspalum plicatulum and P. oteroi: a key tool for forage breeding. Scientia Agricola 73:356-362. https://doi.org/10.1590/0103-9016-2015-0218
» https://doi.org/10.1590/0103-9016-2015-0218 - Projeto MapBiomas. 2021. Mapeamento anual de cobertura e uso da terra do Brasil - Coleção 6. Available at: <https://mapbiomas-br-site.s3.amazonaws.com/Fact_Sheet_PASTAGEM_13.10.2021_ok_ALTA.pdf.>. Accessed on: Dec. 09, 2022.
» https://mapbiomas-br-site.s3.amazonaws.com/Fact_Sheet_PASTAGEM_13.10.2021_ok_ALTA.pdf.> - Quarin, C. L.; Espinoza, F.; Martinez, E. J.; Pessino, S. C. and Bovo, O. A. 2001. A rise of ploidy level induces the expression of apomixis in Paspalum notatum Sexual Plant Reproduction 13:243-249. https://doi.org/10.1007/s004970100070
» https://doi.org/10.1007/s004970100070 - Quarin, C. L.; Urbani, M. H.; Blount, A. R.; Martinez, E. J.; Hack, C. M.; Burton, G. W. and Quesenberry, K. H. 2003. Registration of Q4188 and Q4205, sexual tetraploid germplasm lines of bahiagrass. Crop Science 43:745-746. https://doi.org/10.2135/cropsci2003.7450
» https://doi.org/10.2135/cropsci2003.7450 - Resende, M. D. V. 2015. Genética quantitativa e de populações. Suprema, Viçosa, MG. 463p.
- Resende, M. D. V. 2002. Genética biométrica e estatística no melhoramento de plantas perenes. Embrapa Informação Tecnológica, Brasília.
- Rios, E. F.; Kenworthy, K. E.; Gezan, S. A. and Munoz, P. R. 2019. Genetic parameters for phenotypic traits in annual ryegrass. Crop Science 59:2128-2140. https://doi.org/10.2135/cropsci2019.02.0126
» https://doi.org/10.2135/cropsci2019.02.0126 - Rodrigues, E. V.; Daher, R. F.; Gravina, G. A.; Viana, A. P.; Araújo, M. S. B.; Oliveira, M. L. F.; Vivas, M.; Menezes, B. R. S. and Pereira, A. V. 2020. Repeatability estimates and minimum number of evaluations for selection of elephant-grass genotypes for herbage production. Bioscience Journal 36:30-41.
- Rutledge, J. J. 1974. A scaling which removes bias of Abeywardena's estimator of repeatability. Journal of Genetics 61:247-250.
- Sant'Anna, I. C.; Gouvêa, L. R. L.; Martins, M. A.; Scaloppi Junior, E. J.; de Freitas, R. S. and Goncalves, P. S. 2021. Genetic diversity associated with natural rubber quality in elite genotypes of the rubber tree. Scientific Reports 11:1081. https://doi.org/10.1038/s41598-020-80110-w
» https://doi.org/10.1038/s41598-020-80110-w - Santos, H. G.; Jacomine, P. K. T.; Anjos, L. H. C.; Oliveira, V. A.; Oliveira, J. B.; Coelho, M. R.; Lumbreras, J. F. and Cunha, T. J. F. (eds.). 2006. Sistema brasileiro de classificação de solos. 2.ed. Embrapa Solos, Rio de Janeiro.
- Saraiva, K. M.; Dall'Agnol, M.; Da Motta, E. A. M.; Pereira, E. A.; De Souza, C. H. L.; Simioni, C.; Weiler, R. L.; Kopp, M. M.; Schneider-Canny, R. and Barbosa, M. R. 2021. Hybrids of Paspalum plicatulum × P. guenoarum: selection for forage yield and cold tolerance in a subtropical environment. Tropical Grasslands-Forrajes Tropicales 9:138-143. https://doi.org/10.17138/tgft(9)138-143
» https://doi.org/10.17138/tgft(9)138-143 - Shimoya, A.; Pereira, A. V.; Ferreira, R. P.; Cruz, C. D. and Carneiro, P. C. S. 2002. Repetibilidade de características forrageiras do capim-elefante. Scientia Agricola 59:227-234. https://doi.org/10.1590/S0103-90162002000200004
» https://doi.org/10.1590/S0103-90162002000200004 - Silveira, D. C.; Machado, J. M.; Motta, E. A. M.; Barbosa, M. R.; Simioni, C.; Weiler, R. L.; Mills, A.; Sampaio, R.; Brunes, A. P. and Dall'Agnol, M. 2022. Genetic parameters, prediction of gains and intraspecific hybrid selection of Paspalum notatum Flügge for forage using REML/BLUP. Agronomy 12:1654. https://doi.org/10.3390/agronomy12071654
» https://doi.org/10.3390/agronomy12071654 - Sollenberger, L. E.; Kohmann, M. M.; Dubeux Jr, J. C. B. and Silveira, M. L. 2019. Grassland management affects delivery of regulating and supporting ecosystem services. Crop Science 59:441-459. https://doi.org/10.2135/cropsci2018.09.0594
» https://doi.org/10.2135/cropsci2018.09.0594 - Souza Sobrinho, F.; Borges, V.; Lédo, F. J. S. and Kopp, M. M. 2010. Repetibilidade de características agronômicas e número de cortes necessários para seleção de Urochloa ruziziensis Pesquisa Agropecuária Brasileira 45:579-584. https://doi.org/10.1590/S0100-204X2010000600007
» https://doi.org/10.1590/S0100-204X2010000600007 - Steiner, M. G.; Weiler, R. L.; Brunes, A. P.; Mills, A.; Dall'Agnol, M.; Nabinger, C., Motta, E. A. M.; Silveira, D. C.; Sampaio, R. and Tessis, G. 2022. Characterization and genetic diversity in Paspalum notatum Flügge accessions: Morphological and geographical distance. Revista Brasileira de Zootecnia 51:e20220015. https://doi.org/10.37496/rbz5120220015
» https://doi.org/10.37496/rbz5120220015 - Teixeira, V. I.; Dubeux Jr, J. C. B.; Mello, A. C. L.; Lira Jr, M. A.; Lira, M. A. and Saraiva, F. M. 2011. Repetibilidade de variáveis produtivas e qualitativas da forragem e da excreta bovina em pastagem de braquiária. Pesquisa Agropecuária Brasileira 46:655-662. https://doi.org/10.1590/S0100-204X2011000600012
» https://doi.org/10.1590/S0100-204X2011000600012 - Toebe, M.; Cargnelutti Filho, A.; Mello, A. C.; Souza, R. R.; Soares, F. S.; Silva, L. S. and Segatto, A. 2020. Plot size and replications number for triticale experiments. Ciência Rural 50:e20200222. https://doi.org/10.1590/0103-8478cr20200222
» https://doi.org/10.1590/0103-8478cr20200222 - Torres, F. E.; do Valle, C. B.; Lempp, B.; Teodoro, P. E.; Santos, A. and da Silva Junior, C. A. 2015. Minimum number of measurements for accurate evaluation of qualitative traits in Urochloa brizantha Journal of Agronomy 14:180-184. https://doi.org/10.3923/ja.2015.180.184
» https://doi.org/10.3923/ja.2015.180.184 - Valls, J. F. M. 1987. Recursos genéticos de espécies de Paspalum no Brasil. p.3-13. In: Anais do Encontro Internacional sobre Melhoramento Genético de Paspalum Instituto de Zootecnia, Nova Odessa.
- Vela-Cardenas, M. and Frey, K. J. 1972. Optimum environment for maximizing heritability and genetic gain from selection. Iowa State Journal of Science 46:381-394.
- Wang, X.; Yan, M.; Wang, X.; Wu, Z.; Zhou, J.; Wang, C.; Chen, R.; Qin, X.; Yang, H.; Wei, H. and Gu, W. 2022. The phenotypic diversity of Schisandra sphenanthera fruit and SVR model for phenotype forecasting. Industrial Crops and Products 186:115162. https://doi.org/10.1016/j.indcrop.2022.115162
» https://doi.org/10.1016/j.indcrop.2022.115162 - Weiler, R. L.; Dall'Agnol, M.; Simioni, C.; Krycki, K. C.; Dahmer, N. and Guerra, D. 2017. Determination of the mode of reproduction of bahiagrass hybrids using cytoembryological analysis and molecular markers. Revista Brasileira de Zootecnia 46:185-191. https://doi.org/10.1590/S1806-92902017000300002
» https://doi.org/10.1590/S1806-92902017000300002 - Weiler, R. L.; Dall'Agnol, M.; Simioni, C.; Krycki, K. C.; Pereira, E. A.; Machado, J. M.; Motta, E. A. M. 2018. Intraspecific tetraploid hybrids of Paspalum notatum: agronomic evaluation of segregating progeny. Scientia Agricola 75:36-42. https://doi.org/10.1590/1678-992X-2016-0354
» https://doi.org/10.1590/1678-992X-2016-0354 - Zanata, M.; Freitas, M. L. M.; Silva, M. T.; Morais, E.; Zanatto, A. C. S. and Sebbenn, A. M. 2010. Parâmetros genéticos e ganhos na seleção em teste de progênies de polinização aberta de Eucalyptus pellita, Batatais–SP. Revista do Instituto Florestal 22:233-242.
Publication Dates
-
Publication in this collection
24 Nov 2023 -
Date of issue
2023
History
-
Received
28 Feb 2023 -
Accepted
03 Oct 2023