rca
Revista Ciência Agronômica
Rev. Ciênc. Agron.
0045-6888
1806-6690
Universidade Federal do Ceará
RESUMO
O feijão-caupi é cultivado em diferentes condições edafoclimáticas da região Nordeste do Brasil. Devido à existência da interação entre genótipos e ambientes, torna-se necessário selecionar e desenvolver cultivares para essa região com alta produtividade, estabilidade e adaptabilidade. Este trabalho teve como objetivo selecionar linhagens de feijão-caupi de porte semiereto, simultaneamente, para alta produtividade, adaptabilidade e estabilidade genotípica na região Nordeste do Brasil, via procedimento REML/BLUP. Foram avaliados 20 genótipos de porte semiereto, sendo 15 linhagens e cinco cultivares, em 37 ambientes da Região Nordeste, no período de 2013 a 2015. Os experimentos foram conduzidos em condições de sequeiro, em delineamento de blocos completos casualizados, com quatro repetições. A adaptabilidade e estabilidade genotípica foram avaliadas via procedimento REML/BLUP. A variância ambiental foi o maior componente da variância fenotípica e a interação genótipos x ambientes foi do tipo complexa, com a produtividade de grãos variando de 277 kg ha-1 (Serra Talhada-PE, 2015) a 2.845 kg ha-1(São Raimundo das Mangabeiras-MA, 2013) e média geral de 1.342 kg ha-1. De acordo com as estimativas de média harmônica de desempenho relativo de valores genotípicos (MHPRVG), as linhagens MNC04-795F-153 e MNC04-795F-159 reúnem simultaneamente alta produtividade, estabilidade e adaptabilidade genotípica, podendo ser indicadas com maior probabilidade de sucesso para o cultivo nos ambientes de avaliação da região Nordeste do Brasil.
INTRODUCTION
Cowpea (Vigna unguiculata (L.) Walp.) is an important legume in the Northeast region of Brazil, and a source of energy and protein. The cultivation of this species generates employment and income for the population of this region. Cowpea is the second most consumed type of bean in Brazil, and its cultivation is concentrated in the North, Northeast, and Center-West regions. There are no official statistics on cowpea production in Brazil; thus, based on the estimates of CONAB (2017), the Northeast region presented in 2016 an area of 1,029,600 ha with a production of 196,100 Mg. This represents 82.56% and 54.00% of the area and production of this legume in Brazil, respectively. The largest national producers are the states of Mato Grosso, Ceará, and Maranhão. The total area for cowpea production in Brazil is 1,247,100 ha and its production is 362,500 Mg, which represents 14.43% of all beans produced in Brazil.
Considering that cowpea is cultivated in a wide range of environments in Brazil, but the occurrence of genotype × environment interaction (G×E) may hinder the selection of superior genotypes and the recommendation of cultivars (CARVALHO et al., 2016; OLIVEIRA; FONTES; ROCHA, 2015; ROCHA et al., 2012). Thus, in the final stages of a breeding program, elite lines are tested in various environments; this allows an investigation of the magnitude of the G×E, adaptability, and yield stability, which subsidize the recommendation of cultivars for broad or specific conditions of adaptation.
In the last 60 years, several methodologies to study the adaptability and stability of genotypes in multiple environments were developed to help the breeder to select the most stable and suitable genotypes for crops in different environments (CARVALHO et al., 2016). The most commonly methodologies used in cowpea are the AMMI (BARROS et al., 2013; DDAMULIRA et al., 2015; SANTOS et al., 2015), GGE Biplot (OKORONKWO; NWOFIA, 2016; OLAYIWOLA; SOREMI; OKELEYE, 2015; SANTOS et al., 2016), Bayesian approache (BARROSO et al., 2016; TEODORO et al., 2015), and artificial neural networks (TEODORO et al., 2015).
The REML/BLUP procedure has been one of the most used techniques in studies on adaptability and genotypic stability; it is based on mixed models. This procedure estimates the components of variance by the Restricted Maximum Likelihood (REML) and the prediction of genetic values by the Best Linear Unbiased Prediction (BLUP) (CARIAS et al., 2014). It was originally recommended for studies on quantitative genetics and selection of perennial plants (RESENDE, 2007a,b); however, it has also been used in annual species such as rice (BORGES et al., 2010), common bean (CHIORATO et al., 2008; PEREIRA et al., 2016), soybean ( TESSELE et al.,2016), and wheat (SILVA et al., 2011).
Adaptability and stability studies in cowpea using the REML/BLUP procedure have increased (SANTOS et al., 2016; TORRES et al., 2015, 2016). This is because it allows simultaneous selection for yield, adaptability, and stability in the context of mixed models through the use of the Harmonic Mean of Relative Performance of Genetic Values (HMRPGV) method, proposed by Resende (2004).
The objective of this work was to select semi-erect cowpea lines simultaneously for high yield, adaptability, and genotypic stability in the Northeast region of Brazil by the REML/BLUP procedure.
MATERIAL AND METHODS
Twenty cowpea genotypes of semi-erect plant were evaluated-15 lines and five cultivars-from the Embrapa Meio-Norte Cowpea Breeding Program (Table 1). These lines are part of the value-of-cultivation and use (VCU) trials, which are required for registering new cultivars by the National Register of Cultivars (RNC) of the Ministry of Agriculture, Livestock, and Food Supply (MAPA). These genotypes were selected in intermediate trials, which precede the VCU trials.
Table 1
Semi-erect cowpea genotypes evaluated in the Northeast region of Brazil, from 2013 to 2015, their genealogy and commercial subclass (CS)
GC
Genotype
Genealogy
CS
G21
MNC04-762F-3
TE96-282-22G × (TE96-282-22G × Vita 7)
BL
G22
MNC04-762F-9
TE96-282-22G × (TE96-282-22G × Vita 7)
BL
G23
MNC04-769F-30
CE-315 × TE97-304G-12
ML
G24
MNC04-769F-48
CE-315 × TE97-304G-12
ML
G25
MNC04-792F-146
MNC00-553D-8-1-2-3 × TV×5058-09C
ML
G26
MNC04-769F-62
CE-315 × TE97-304G-12
ML
G27
MNC04-782F-104
(TE97-309G-24 × TE96-406-2E-28-2) × TE97-309G-24
SV
G28
MNC04-792F-143
MNC00-553D-8-1-2-3 × TV×5058-09C
ML
G29
MNC04-792F-144
MNC00-553D-8-1-2-3 × TV×5058-09C
SV
G30
MNC04-792F-148
MNC00-553D-8-1-2-3 × TV×5058-09C
ML
G31
MNC04-795F-153
MNC99-518G-2 × IT92KD-279-3
ML
G32
MNC04-795F-154
MNC99-518G-2 × IT92KD-279-3
SV
G33
MNC04-795F-155
MNC99-518G-2 × IT92KD-279-3
ML
G34
MNC04-795F-159
MNC99-518G-2 × IT92KD-279-3
ML
G35
MNC04-795F-168
MNC99-518G-2 × IT92KD-279-3
BR
G36
BRS Guariba
IT85F-2687 × TE87-98-8G
BL
G37
BRS Tumucumaque
TE96-282-22G × IT87D-611-3
BL
G38
BRS Novaera
TE97-404-1F × TE97-404-3F
BR
G39
BRS Itaim
MNC01-625E-10-1-2-5 × MNC99-544D-101-2-2
FR
G40
BRS Cauamé
TE93-210-13F × TE96-282-22G
BL
GC = Genotype code; ML = Mulato; FR = Fradinho; SV = Sempre-verde; BL = Branco Liso; BR = Branco rugoso
The genotypes were evaluated for grain yield (kg ha-1) in 22 locations in the Northeast region of Brazil (Table 2) under rainfed conditions from 2013 to 2015. Some VCU trials were conducted in 1, 2, or 3 crop seasons totaling 37 environments. Each environment was represented by the location initial letters and year of the crop season: APOD13, ARAP13, BARR13, CARI13, FREI13, ITAP13, MATA13, REDE13, SRMA13, UMBA13, URUC13, ARAR14, CARI14, BARR14, FEIR14, FREI14, GOIA14, IPAN14, ITAP14, MATA14, SERT14, SUMBA14, ARAR15, AROE15, CAMP15, FEIR15, FREI15, IPAN15, GOIA15, LAGS15, NSDO15, PACA15, SAOJ15, SERT15, SRMA15, UMBA15, and URUC15.
Table 2
Altitude, geographic coordinate, biome, ecosystem, and climate of the locations where the value-of-cultivation and use trials of semi-erect cowpea were conducted in the Northeast region of Brazil, from 2013 to 2015
Location
Altitude
Latitude
Longitude
Biome
Ecosystem
Climate
Arapiraca-AL
264 m
09º45'07'' S
36º39'39'' W
Caatinga
Agreste
TSu
Feira de Santana-BA
234 m
12º16'01'' S
38º58'01'' W
Caatinga
Sertão
BSh
Barreira-CE
123 m
04º17'13'' S
38º38'34'' W
Caatinga
Sertão
BSh
Itapipoca-CE
109 m
03º29'38'' S
39º34'44'' W
Caatinga
Sertão
TAs
Redenção-CE
88 m
04º13'30'' S
38º43'46'' W
Caatinga
Sertão
TQSu
Pacajus-CE
60 m
04º10'22'' S
38º27'39'' W
Caatinga
Sertão
BSh
Mata Roma-MA
73 m
03º37'30'' S
43º06'39'' W
Cerrado
Meio-Norte
TAw
São R. Mangabeiras-MA
225 m
07º01'19'' S
45º26'51'' W
Cerrado
Meio-Norte
TAw
Lagoa Seca-PB
634 m
07º10'15'' S
35º51'14'' W
Caatinga
Agreste
TAs
Aroeiras-PB
363 m
07º32'42'' S
35º42'28'' W
Caatinga
Agreste
TAs
Araripina-PE
622 m
07º34'33'' S
40º29'52'' W
Caatinga
Sertão
BSh
Serra Talhada-PE
444 m
07º59'09'' S
38º17'45'' W
Caatinga
Sertão
BSh
Goiana-PE
444 m
07º33'39'' S
35º00'10'' W
Caatinga
Zona da Mata
TAs
São João do Piauí-PI
222 m
08º21'28'' S
42º14'49'' W
Caatinga
Sertão
BSh
Campo Grande do Piauí-PI
443 m
07º07'55'' S
41º02'09'' W
Caatinga
Sertão
BSh
Uruçuí-PI
167 m
07º13'44'' S
44º33'41'' W
Cerrado
Meio-Norte
TAw
Apodi-RN
67 m
05º39'50'' S
37º47'56'' W
Caatinga
Sertão
BSh
Ipanguaçu-RN
16 m
05º29'52'' S
36º51'18'' W
Caatinga
Sertão
BSh
Carira-SE
351 m
10º21'29'' S
37º42'03'' W
Caatinga
Sertão
BSh
Frei Paulo-SE
272 m
10º32'56'' S
37º32'02'' W
Caatinga
Sertão
BSh
Umbaúba-SE
130 m
11º22'58'' S
37º39'28'' W
Caatinga
Sertão
TAs
Nossa S. das Dores-SE
204 m
10º29'30'' S
37º11'36'' W
Caatinga
Sertão
TAs
TSu = Tropical sub-humid; TQSu = Tropical hot sub-humid; BSh = Semi-arid mild; TAs = Tropical with dry summer season; Taw = Tropical with dry winter season; Ts = Tropical dry
The planting season varied according to the rainy season in the states, which occurred in January to March, except in Alagoas and Sergipe, which occurred in June. All the trials were conducted in a complete randomized block design with 20 treatments and four replications. The treatments were represented by a plot of 2.0 m x 5.0 m with four 5.0 m rows spaced 0.50 m apart, with 0.25 m between plants. The evaluation area was represented by the two central rows. Four seeds were sown per hole, and 20 days after sowing the plants were thinned, leaving two plants per hole. Cultural practices were carried out for the crop as recommended.
Individual analysis of variance for environments and joint analysis of variance for all environments were performed. The joint analysis of variance considered the effect of genotypes as fixed, and the effect of environments as random. The statistical model used followed the equation:
(1)
Y
ijk
=
μ
+
g
i
+
e
j
+
ge
ij
+
β
k
J
+
ε
ijk
where in: Yijk is the observed value of the genotype i in the environment j and block k ; µ is the overall mean of the trait; gi is the effect of the genotype i ; ej is the effect of the environment j ; geij is the effect of the interaction of the genotype i with the environment j ; βk(J) is the effect of the block k within the environment j ; and εijk is the experimental error associated with the plot ijk.
The mixed models approach through Restricted Maximum Likelihood (REML) and Best Linear Unbiased Prediction (BLUP) multivariate, i.e., REML/BLUP procedure, (RESENDE, 2007b) was used for the analysis of adaptability and stability. This procedure is a method for ordering the genotype simultaneously regarding their genetic values (yield) and stability; it represents the BLUP procedure under the harmonic mean of the data. The lower the standard deviation of the genotypic behavior in the environments, the greater the harmonic mean of genotypic values (HMGV) in the environments. Thus, selection by the highest HMGV implies both selection for yield and stability (RESENDE, 2007b).
In the context of the mixed models, a simple and efficient measure is the relative performance of genotypic values (RPGV) in the environments, i.e., the adaptability of genetic values. The quantity RPGV*OM refers to the relative performance genotypic value multiplied by the overall mean of all environments, providing the average genotypic value, capitalizing the adaptability (RESENDE, 2007b).
Simultaneous selection for yield adaptability and stability in the context of mixed models can be performed by the Harmonic Mean of Relative Performance of Genetic Values (HMRPGV), proposed by Resende (2004). The quantity HMRPGV*OM refers to the HMRPGV multiplied by the overall mean of all environments, which provides the mean genotypic value penalized by instability and capitalized by adaptability.
The following statistical model was used for the randomized block designs with one observation per plot and several environments:
(2)
Y
=
Xb
+
Zg
+
Wga
+
e
where in: y, b, g, ga, and . are the data vectors of fixed effects (mean of blocks through environments), of genotypic effects of the genotype (random), of effects of the genotype × environment interaction (G×E) (random), and of random errors, respectively; X, Z and . are the incidence matrices for b, g, and ga, respectively.
The Harmonic Mean of Genotypic Values (HMGV) was used for the evaluation of stability; the RPGV was used for the simultaneous evaluation of yield and adaptability; and the HMRPGV was used for the simultaneous evaluation of yield, adaptability, and stability. These evaluation were carried out using the following expressions:
(3)
HMGV
i
=
a
/
∑
i
=
1
a
1
/
Vg
j
(4)
RPGV
i
=
1
/
a
∑
Vg
j
/
M
j
(5)
HMRPGV
i
=
n
/
∑
j
=
1
n
1
/
Vg
ij
where in: n is the number of evaluation environments of the genotype i ; Vgij is the genotypic value of the genotype i in the environment j , expressed as a proportion of the average of this environment.
The HMRPGV method (RESENDE, 2007a) has the advantages of providing adaptability and genotypic-rather than phenotypic-stability; allowing the managing of heterogeneity of variances; and providing already-penalized genetic values of instability. Moreover, this method can be applied to any number of environments, eliminate noises of the genotype × environment interaction (G×E), while considering the heritability of these effects; and allows the computation of genetic gain with selection by the three attributes simultaneously.
The analysis of variance was performed using the SAS software (SAS INSTITUTE, 2002). The analyses of adaptability and genotypic stability were performed by the model 54 of the Selegen-Reml/Blup software (RESENDE, 2007b).
RESULTS AND DISCUSSION
The joint analysis of variance for grain yield is presented in Table 3. Although all genotypes have shown a high inbreeding level and some parentage (Table 1) and underwent several selection cycles, they differed significantly (. <0.0001), denoting the existence of selectable variability.
Table 3
Joint analysis of variance for grain yield of 20 semi-erect cowpea genotypes evaluated in 37 environments of the Northeast region of Brazil, from 2013 to 2015
Source of variation
DF
Mean square
p>F
Blocks/Environments
111
302367.20
<.0001
Genotypes (G)
36
1319851.80
<.0001
Environments (E)
19
20318301.80
<.0001
G×E
684
199350.10
<.0001
Residue
2109
69965.00
CV (%)
19.71
Overall mean (kg ha-1)
1,342
Barros et al. (2013), Santos et al. (2015) and Barroso et al. (2016), evaluated 20 cowpea genotypes for yield adaptability and stability in the Mid-North region and in Mato Grosso do Sul, Brazil, respectively, and also found differences between homozygous genotypes.
The environments also differed for grain yield (. <0.0001), denoting that their eco-physiographic differences (Table 2) combined with the climatic variations affected this trait.
Barroso et al. (2016) evaluated the grain yield of 20 cowpea genotypes in six environments of Mato Grosso do Sul and also found differences between the testing environments; affirming that the edaphoclimatic factors had the greatest effect on the adaptability and stability of the genotypes. Ddamulira et al. (2015), who evaluated the yield adaptability and stability of 25 cowpea genotypes in three environments in Uganda, and Oliveira, Fontes and Rocha (2015), who evaluated cowpea genotypes in several environments in the state of Amazonas in Brazil, also found different grain yields depending on the environment.
The overall mean grain yield was 1,342 kg ha-1. This mean is well above the national (369 kg ha-1) and world (461.30 kg ha-1) mean for yield of cowpea (FREIRE FILHO, 2011) and is also above the means obtained in other studies on cowpea genotypes in Brazil (BARROS et al., 2013; BARROSO et al., 2016; SANTOS et al., 2015; TORRES et al., 2015, 2016). This shows the great potential of this line group in regard to grain yield and the possibility of selecting lines with higher means than the commercial cultivars.
The environment São Raimundo das Mangabeiras-MA 2013 (SRMA13) was the most favorable for grain yield (2,485 kgha-1), while Serra Talhada-PE 2015 (SERT15) was the least favorable (277 kg ha-1) (Figure 1).
Figure 1
Behavior of the grain yield of 37 testing environments obtained from evaluation of 20 semi-erect cowpea genotypes in the Northeast region of Brazil from 2013 to 2015
The G×E for grain yield was highly significant (. <0.0001) (Table 3); it showed the different behavior of the genotypes depending on the testing environments. This lead to difficulties in the selection of superior genotypes and recommending cultivars (CARVALHO et al., 2016; ROCHA et al., 2012), since the cultivars adapted to a particular condition may not perform well in other environmental conditions (OLAYIWOLA, SOREMI; OKELEYE, 2015; TEODORO et al., 2015).
According to estimates of components of variance (REML), the environmental variance contributed most to the phenotypic variance (Table 4). It represented 64% of this variance, followed by the G×E (30%), and genotypic (6%) variances.
Table 4
Estimates of components of variance (individual REML) and genetic parameters obtained from the evaluation of 20 semi-erect cowpea genotypes in 37 environments in the Northeast region of Brazil, from 2013 to 2015
Parameter
Estimate
Genotypic variance (σ2g)
7162.05
Residual variance (σ2a)
70027.28
Genotype × environment interaction variance (σ2ga)
32780.83
Phenotypic variance (σ2f)
109970.17
Heritability genotype mean (h2a)
0.84
Genotype selection Accuracy (Acgen)
0.92
Genotypic correlation between environments (rgloc)
0.18
Relative coefficient of variation (Cvg%/Cve%)
0.32
The preponderance of the environmental variance in relation to the other components of the phenotypic variance are in agreement with the results found in the analysis of variance (Table 3), the information of the test environments (Table 2), and the environment means (Figure 1), which showed marked contrasts between testing environments for grain yield.
Studies evaluating genotypes of common bean (CHIORATO et al., 2008; PEREIRA et al., 2016) and cowpea (TORRES et al., 2015; OLIVEIRA; FONTES; ROCHA, 2015) in multi-environments also found a higher proportion of environmental variance than genotypic and environmental variances for grain yield.
The low genotype variance found in the group of genotypes evaluated (Table 4) was expected considering that some lines showed relation to each other (Table 1) and all are highly inbred, i.e., they have already undergone several selection cycles for high grain yield. Torres et al. (2015, 2016) evaluated the grain yield of 20 cowpea genotypes in multi-environments of Mato Grosso do Sul and also found lower estimates for the genotypic variance than environmental and G×E variances.
The trait yield is controlled by several genes and, therefore, is heavily affected by the environment. In spite of the great effect of the environmental factors, denoted by the relative coefficient of variation (0.32), the heritability at an average genotypic level among the various environments was high (0.84) since the environmental effects were minimized. This allowed a high accuracy (0.92) in the selection of lines based on the average of the environments (Table 4). The heritability obtained in the present study was higher than those estimated by Torres et al. (2015, 2016), who evaluated the grain yield of 20 cowpea genotypes in multi-environment of Mato Grosso do Sul and found estimates of 0.68 and 0.54.
According to Chiorato et al. (2008), heritability at average level is determined based on the number of replicates and evaluated plants. In the case of the present study, the size of the evaluation area in the experimental unit may have contributed positively to minimize the environmental effects, since the genotypes were represented by 80 plants in the evaluation area of the plot.
The G×E variance was the second most important (30%) (Table 4), which resulted from the low genotypic correlation between environments (0.18). These results showed the existence of G×E of complex-type, and that the best lines in one environment will not necessarily be the best in others (RESENDE, 2007a). This represents a certain difficulty in the selection of genotypes with wider adaptation, which justifies considering in the selection of the lines, their stabilities and adaptabilities.
Barros et al. (2013) evaluated the grain yield of 20 cowpea genotypes in the Mid-North region of Brazil and also found the G×E as the second factor affecting the phenotypic variance. On the other hand, Torres et al. (2016) observed similar percentages for the G×E and environmental variances.
According to the mean component estimates (BLUP) and the confidence intervals associated with genotypic values (u+g), the lines G31 (MNC04-795F-153), G34 (MNC04-795F-159), and G26 (MNC04-769F-62) were superior than most of the genotypes evaluated and presented the highest genetic gains compared to the overall mean, with 12.45%; 11.22%; and 9.51%, respectively (Table 5). These gains were lower than those observed by Torres et al. (2016), who evaluated the grain yield of 20 cowpea genotypes in four environments of Mato Grosso do Sul and found gain estimates for the two best genotypes of 18.79% and 18.04%.
Table 5
Estimates of mean components (individual BLUP) of the effects (g) and predicted genotypic values (u+g) free from interaction with environments, confidence interval lower limit (CILL), confidence interval higher limit (CIHL) and genetic gain (Gg) of 20 semi-erect cowpea genotypes evaluated in 37 environments of the Northeast region of Brazil, from 2013 to 2015
Order
G
u+g
(CILL - CIHL)1
Gg
G31
167.03
1,508.84
1,434.38 - 1,583.30
167.03
G34
134.17
1,476.85
1,401.52 - 1,550.45
150.60
G26
81.78
1,423.59
1,349.13 - 1,498.05
127.66
G36
40.59
1,382.41
1,307.95 - 1,456.87
105.90
G33
38.27
1,380.08
1,305.62 - 1,454.54
92.37
G32
37.47
1,379.28
1,304.81 - 1,453.74
83.22
G28
36.81
1,378.17
1,304.15 - 1,453.08
76.59
G25
19.26
1,361.07
1,286.61 - 1,435.53
69.42
G40
15.37
1,357.18
1,282.71 - 1,431.64
63.42
G37
-2.93
1,338.88
1,264.41 - 1,413.34
56.78
G39
-10.35
1,331.46
1,256.99 - 1,405.92
50.68
G30
-15.60
1,326.20
1,251.74 - 1,400.67
45.15
G35
-24.26
1,317.55
1,243.09 - 1,392.01
39.81
G24
-24.66
1,317.15
1,242.69 - 1,391.61
35.21
G29
-27.61
1,314.20
1,239.74 - 1,388.66
31.02
G22
-53.99
1,287.82
1,213.35 - 1,362.28
25.71
G27
-63.47
1,278.34
1,203.88 - 1,352.81
20.46
G38
-70.56
1,271.24
1,196.78 - 1,345.71
15.41
G21
-102.49
1,239.32
1,164.86 - 1,313.78
9.20
G23
-174.82
1,166.99
1,092.53 - 1,241.46
0
Overall mean (u)
1,341.81
1Confidence interval associated to the genotypic value estimates, at 95% probability
The genetic gain depends on the differential of the selection and heritability of the trait. Although the heritability of grain yield was high, a factor that may have led to lower gains than those observed by Torres et al. (2015, 2016) was the differences between the overall mean and the means of the superior genotypes, which in the present study were small, relatively to the selection differentials founded by the authors above.
The results of stability (HMGV), adaptability (RPGV), and simultaneous stability and adaptability (HMRPGV) of the genotypes evaluated are presented in Table 6. The five best genotypes, based on the criteria HMGV, RPGV, and HMRPGV were not necessarily the best based on the criterion of the mean genotypic value (Table 5). The coincidence was 80% among the five best genotypes and there was an inversion of order among the coincident ones between HMGV and RPGV. According to Resende (2007a), the use of these attributes or selection criteria can provide further refinement in selection.
Table 6
Genetic value stability (HMGV), genetic values adaptability (RPGV), simultaneous genetic value adaptability and stability (HMRPGV), genotypic value capitalizing the adaptability (RPGV*OM) and genotypic value penalized by instability and capitalized by adaptability (HMRPGV*OM) of 20 semi-erect cowpea genotypes evaluated in 37 environments of Northeast region of Brazil, from 2013 to 2015
Order
HMGV
Order
RPGV
RPGV*OM
Order
HMRPGV
HMRPGV*OM
G34
1,229
G31
1.1392
1,528
G31
1.1272
1,512
G31
1,229
G34
1.1196
1,502
G34
1.1074
1,485
G36
1,175
G26
1.0734
1,440
G26
1.0578
1,419
G26
1,129
G36
1.0489
1,407
G36
1.0367
1,391
G25
1,127
G28
1.0315
1,384
G28
1.0223
1,371
G28
1,117
G25
1.0304
1,382
G32
1.0181
1,366
G37
1,117
G33
1.0296
1,381
G33
1.0162
1,363
G32
1,106
G32
1.0291
1,380
G25
1.0111
1,356
G33
1,081
G37
1.0060
1,350
G37
0.9947
1,334
G40
1,078
G40
1.0050
1,348
G40
0.9933
1,332
G22
1,070
G29
0.9882
1,326
G30
0.9719
1,304
G30
1,068
G30
0.9848
1,321
G29
0.9707
1,302
G35
1,066
G35
0.9844
1,321
G24
0.9573
1,284
G29
1,044
G39
0.9828
1,319
G22
0.9516
1,276
G39
1,041
G24
0.9674
1,298
G35
0.9503
1,275
G24
1,014
G22
0.9648
1,294
G39
0.9463
1,269
G27
1,004
G27
0.9446
1,267
G27
0.9326
1,251
G38
992
G38
0.9359
1,256
G38
0.9042
1,213
G21
918
G21
0.8953
1,201
G21
0.8811
1,182
G23
818
G23
0.8390
1,126
G23
0.8086
1,085
Overall mean
1,342
Similar results were obtained by Torres et al. (2016), who evaluated the yield of 20 cowpea genotypes in the state of Mato Grosso do Sul, and also observed the same percentage of coincidence between the ordering provided by HMGV and RPGV.
The three best lines (G31 - MNC04-795F-153, G34 - MNC04-795F-159 and G26 - MNC04-769F-62) by the criterion HMRPGV*OM, had grain yield of 1,512 kg ha-1, 1,485 kg ha-1 and 1,419 kg ha-1 (Table 6), i.e., an average superiority of 13%, 11%, and 10%, respectively, over the overall mean of the 37 environments. According to Resende (2007a), these values are obtained through a process that already penalizes the lines for the instability in the environments and capitalizes the capacity of response (adaptability) to the improvement of the environment. These properties are intrinsic to the HMRPGV method.
The values of RPGV and HMRPGV (Table 6) indicate the average superiority of the genotype in relation to the average of a given environment. Thus, the line MNC04-795F-153 (G31) responds on average 1.1272 times the mean of any environment in which it is grown.
The four best genotypes in genotypic value (Table 5) were also the best in HMRPGV. Similar results were found by Torres et al. (2016), who evaluated the yield adaptability and stability of 20 cowpea genotypes in several environments in the State of Mato Grosso do Sul. Based on these authors, this is an indication that the genotypes evaluated in the present work had high adaptive synergism in the 37 environments tested and good predictability, i.e., maintenance of yield in the environments.
In general, the lines MNC04-795F-159 (G31) and MNC04-795F-153 (G34) were superior for yield, adaptability, and stability, and can be recommended for the evaluated environments in the Northeast region of Brazil, with a lower risk of losses in grain yield due to unpredictable environmental factors. According to Torres et al. (2016), genotypes that simultaneously have these three attributes can be used as selection criteria in breeding programs.
The lines G31 and G34 are sisters, presenting the same genealogy, and belong to the same commercial subclass-mulatto (Table 1). Their grain yield is also similar (Table 6). Thus, regarding the releasing of cultivars, the line G31 should be chosen, since this line better combines the attributes of yield, adaptability, and stability.
CONCLUSIONS
The line MNC04-795F-159 presents greater predictability of grain yield in the environmental conditions evaluated in the Northeast region of Brazil;
The line MNC04-795F-153 combines high yield, adaptability and genotypic stability, and can be recommended and grown with greater probability of success in the edaphoclimatic conditions evaluated in the Northeast region of Brazil.
1
Pesquisa desenvolvida pela Embrapa (Empresa Brasileira de Pesquisa Agropecuária), Programa de Melhoramento de Feijão-caupi da Embrapa Meio-Norte, região Nordeste, Teresina-PI, Brasil
ACKNOWLEDGEMENTS
The authors thank the partners of the genetic breeding network for cowpea in the Northeast Region for the structural support and personnel in conducting the tests; and Dr. Marcos Deon Vilela de Resende, for the assistance in the statistical analysis of adaptability and stability via REML/BLUP procedure.
REFERENCES
BARROS, M. A. et al. Adaptabilidade e estabilidade produtiva de feijão-caupi de porte semiprostrado. Pesquisa Agropecuária Brasileira, v. 48, n. 4, p. 403-410, 2013.
BARROS
M. A.
Adaptabilidade e estabilidade produtiva de feijão-caupi de porte semiprostrado
Pesquisa Agropecuária Brasileira
48
4
403
410
2013
BARROSO, L. M. A. et al. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability. Genetics and Molecular Research, v. 15, n. 1, p. 1-11, 2016.
BARROSO
L. M. A.
Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability
Genetics and Molecular Research
15
1
1
11
2016
BORGES, V. et al. Desempenho genotípico de linhagens de arroz de terras altas utilizando metodologia de modelos mistos. Bragantia, v. 69, n. 4, p. 833-842, 2010.
BORGES
V.
Desempenho genotípico de linhagens de arroz de terras altas utilizando metodologia de modelos mistos
Bragantia
69
4
833
842
2010
CARIAS, C. M. O. M. et al. Produtividade de grãos de cafeeiro conilon de diferentes grupos de maturação pelo procedimento REML/BLUP. Semina: Ciências Agrárias, v. 35, n. 2, p. 707-718, 2014.
CARIAS
C. M. O. M.
Produtividade de grãos de cafeeiro conilon de diferentes grupos de maturação pelo procedimento REML/BLUP
Semina: Ciências Agrárias
35
2
707
718
2014
CARVALHO, L. C. B. et al. Evolution of methodology for the study of adaptability and stability in cultivated species. African Journal of Agricultural Research, v. 11, n. 12, p. 990-1000, 2016.
CARVALHO
L. C. B.
Evolution of methodology for the study of adaptability and stability in cultivated species
African Journal of Agricultural Research
11
12
990
1000
2016
CHIORATO, A. F. et al. Prediction of genotypic values and estimate of genetic parameters in common bean. Brazilian Archives of Biology and Technology, v. 51, n. 3, p. 465-472, 2008.
CHIORATO
A. F.
Prediction of genotypic values and estimate of genetic parameters in common bean
Brazilian Archives of Biology and Technology
51
3
465
472
2008
COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira de grãos. v. 4, safra 2016/17, n. 10. Brasília: CONAB, 2017. p. 95. Disponível em: <http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_07_12_11_17_01_boletim_graos_julho_2017.pdf>. 2017. Acesso em: 14 jul. 2017.
COMPANHIA NACIONAL DE ABASTECIMENTO
Acompanhamento da safra brasileira de grãos
4
safra 2016/17, n. 10
Brasília
CONAB
2017
95
Disponível em: <http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_07_12_11_17_01_boletim_graos_julho_2017.pdf>
2017. Acesso em: 14 jul. 2017
DDAMULIRA, G. et al. Grain yield and protein content of Brazilian cowpea genotypes under diverse Ugandan environments. American Journal of Plant Science, v. 6, p. 2074-2084, 2015.
DDAMULIRA
G.
Grain yield and protein content of Brazilian cowpea genotypes under diverse Ugandan environments
American Journal of Plant Science
6
2074
2084
2015
FREIRE FILHO, F. R. (Ed.). Feijão-caupi no Brasil: produção, melhoramento genético, avanços e desafios. Teresina: Embrapa Meio-Norte, 2011. 84 p.
FREIRE
F. R.
FILHO
Feijão-caupi no Brasil: produção, melhoramento genético, avanços e desafios
Teresina
Embrapa Meio-Norte
2011
84 p
OKORONKWO, C. M.; NWOFIA, G. E. Yield stability and inter relationships between seed yield and associated traits of 25 cowpea (Vigna unguiculata [L.] Walp.) genotypes. African Journal of Agricultural Science and Technology, v. 4, n. 5, p. 728-734, 2016.
OKORONKWO
C. M.
NWOFIA
G. E.
Yield stability and inter relationships between seed yield and associated traits of 25 cowpea (Vigna unguiculata [L.] Walp.) genotypes
African Journal of Agricultural Science and Technology
4
5
728
734
2016
OLAYIWOLA, M. O.; SOREMI, P. A. S.; OKELEYE, K. A. Evaluation of some cowpea (Vigna unguiculata L. [Walp.]) genotypes for stability of performance over 4 years. Current Research in Agricultural Sciences, v. 2, n. 1, p. 22- 30, 2015.
OLAYIWOLA
M. O.
SOREMI
P. A. S.
OKELEYE
K. A.
Evaluation of some cowpea (Vigna unguiculata L. [Walp.]) genotypes for stability of performance over 4 years
Current Research in Agricultural Sciences
2
1
22
30
2015
OLIVEIRA, I. J.; FONTES, J. R. A.; ROCHA, M. M. Seleção de genótipos de feijão-caupi para adaptabilidade e estabilidade produtiva no Estado do Amazonas. Revista de Ciência Agrárias, v. 58, n. 3, p. 292-300, 2015.
OLIVEIRA
I. J.
FONTES
J. R. A.
ROCHA
M. M
Seleção de genótipos de feijão-caupi para adaptabilidade e estabilidade produtiva no Estado do Amazonas
Revista de Ciência Agrárias
58
3
292
300
2015
PEREIRA, T. C. V. et al. Reflexos da interação genótipo x ambiente sobre o melhoramento genético de feijão. Ciência Rural, v. 46, n. 3, p. 411-417, 2016.
PEREIRA
T. C. V.
Reflexos da interação genótipo x ambiente sobre o melhoramento genético de feijão
Ciência Rural
46
3
411
417
2016
RESENDE, M. D. V. Matemática e estatística na análise de experimentos e no melhoramento genético. Colombo: Embrapa Florestas, 2007a. 362 p.
RESENDE
M. D. V.
Matemática e estatística na análise de experimentos e no melhoramento genético
Colombo
Embrapa Florestas
2007a
362 p
RESENDE, M. D. V. Métodos estatísticos ótimos na análise de experimentos de campo. Colombo: Embrapa Florestas, 2004. 65 p. (Embrapa Florestas. Documentos, 100).
RESENDE
M. D. V.
Métodos estatísticos ótimos na análise de experimentos de campo
Colombo
Embrapa Florestas
2004
65 p
Embrapa Florestas. Documentos, 100
RESENDE, M. D. V. Selegen-Reml/Blup: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Colombo: Embrapa Florestas , 2007b. 359 p.
RESENDE
M. D. V.
Selegen-Reml/Blup: sistema estatístico e seleção genética computadorizada via modelos lineares mistos
Colombo
Embrapa Florestas
2007b
359 p
ROCHA, M. M. et al. Adaptabilidade e estabilidade de genótipos de feijão-caupi quanto à produção de grãos frescos, em Teresina-PI. Revista Científica Rural, v. 14, n. 1, p. 40-55, 2012.
ROCHA
M. M.
Adaptabilidade e estabilidade de genótipos de feijão-caupi quanto à produção de grãos frescos, em Teresina-PI
Revista Científica Rural
14
1
40
55
2012
SANTOS, A. et al. Adaptabilidade e estabilidade de genótipos de feijão-caupi ereto via REML/BLUP e GGE Biplot. Bragantia, v. 75, n. 3, p. 55-62, 2016.
SANTOS
A.
Adaptabilidade e estabilidade de genótipos de feijão-caupi ereto via REML/BLUP e GGE Biplot
Bragantia
75
3
55
62
2016
SANTOS, A. et al. Adaptability and stability of cowpea genotypes to Brazil Midwest. African Journal of Agricultural Research, v. 10, n. 41, p. 3901-3908, 2015.
SANTOS
A.
Adaptability and stability of cowpea genotypes to Brazil Midwest
African Journal of Agricultural Research
10
41
3901
3908
2015
SAS INSTITUTE INC. SAS/STAT user's guide. Version 8.1. Cary, 2002. v. 1, 890 p.
SAS INSTITUTE INC
SAS/STAT user's guide
Version 8.1.
Cary
2002
1
890 p
SILVA, R. R. et al. Adaptabilidade e estabilidade de cultivares de trigo em diferentes épocas de semeadura, no Paraná. Pesquisa Agropecuária Brasileira, v. 46, n. 11, p. 1439-1447, 2011.
SILVA
R. R.
Adaptabilidade e estabilidade de cultivares de trigo em diferentes épocas de semeadura, no Paraná
Pesquisa Agropecuária Brasileira
46
11
1439
1447
2011
TEODORO, P. E. et al. Perspectiva bayesiana na seleção de genótipos de feijão-caupi em ensaios de valor de cultivo e uso. Pesquisa Agropecuária Brasileira, v. 50, n. 10, p. 878-885, 2015.
TEODORO
P. E.
Perspectiva bayesiana na seleção de genótipos de feijão-caupi em ensaios de valor de cultivo e uso
Pesquisa Agropecuária Brasileira
50
10
878
885
2015
TESELLE, A. et al. Adaptability and stability of soybean cultivars under different times of sowing in Southern Brazil. Journal of Plant Sciences, v. 4, n. 2, p. 17-22, 2016.
TESELLE
A.
Adaptability and stability of soybean cultivars under different times of sowing in Southern Brazil
Journal of Plant Sciences
4
2
17
22
2016
TORRES, F. E. et al. Interação genótipos x ambientes em genótipos de feijão-caupi semiprostrados via modelos mistos. Bragantia, v. 74, n. 3, p. 15-20, 2015.
TORRES
F. E.
Interação genótipos x ambientes em genótipos de feijão-caupi semiprostrados via modelos mistos
Bragantia
74
3
15
20
2015
TORRES, F. E. et al. Simultaneous selection for cowpea (Vigna unguiculata L.) genotypes with adaptability and yield stability using mixed models. Genetics and Molecular Research, v. 15, n. 2, p. 1-11, 2016.
TORRES
F. E.
Simultaneous selection for cowpea (Vigna unguiculata L.) genotypes with adaptability and yield stability using mixed models
Genetics and Molecular Research
15
2
1
11
2016
Autoria
Maurisrael de Moura Rocha **Autor para corresponência
Embrapa Meio-Norte, Teresina-PI, Brasil, maurisrael.rocha@embrapa.br, kaesel.damasceno@embrapa.br, jose-angelo.junior@embrapa.brEmbrapa Meio-NorteBrazilTeresina, PI, BrazilEmbrapa Meio-Norte, Teresina-PI, Brasil, maurisrael.rocha@embrapa.br, kaesel.damasceno@embrapa.br, jose-angelo.junior@embrapa.br
Kaesel Jackson Damasceno-Silva
Embrapa Meio-Norte, Teresina-PI, Brasil, maurisrael.rocha@embrapa.br, kaesel.damasceno@embrapa.br, jose-angelo.junior@embrapa.brEmbrapa Meio-NorteBrazilTeresina, PI, BrazilEmbrapa Meio-Norte, Teresina-PI, Brasil, maurisrael.rocha@embrapa.br, kaesel.damasceno@embrapa.br, jose-angelo.junior@embrapa.br
José Ângelo Nogueira de Menezes-Júnior
Embrapa Meio-Norte, Teresina-PI, Brasil, maurisrael.rocha@embrapa.br, kaesel.damasceno@embrapa.br, jose-angelo.junior@embrapa.brEmbrapa Meio-NorteBrazilTeresina, PI, BrazilEmbrapa Meio-Norte, Teresina-PI, Brasil, maurisrael.rocha@embrapa.br, kaesel.damasceno@embrapa.br, jose-angelo.junior@embrapa.br
Hélio Wilson Lemos de Carvalho
Embrapa Tabuleiros Costeiros, Aracajú-SE, Brasil, helio.carvalho@embrapa.brEmbrapa Tabuleiros CosteirosBrazilAracajú, SE, BrazilEmbrapa Tabuleiros Costeiros, Aracajú-SE, Brasil, helio.carvalho@embrapa.br
Antônio Félix da Costa
Instituto Agronômico de Pernambuco, Recife-PE, Brasil, felix.antonio@ipa.brInstituto Agronômico de PernambucoBrazilRecife, PE, BrazilInstituto Agronômico de Pernambuco, Recife-PE, Brasil, felix.antonio@ipa.br
João Maria Pinheiro de Lima
Empresa de Pesquisa Agropecuária do Rio Grande do Norte, Natal-RN, Brazil, jmariaplima@gmail.comEmpresa de Pesquisa Agropecuária do Rio Grande do NorteBrazilNatal, RN, BrazilEmpresa de Pesquisa Agropecuária do Rio Grande do Norte, Natal-RN, Brazil, jmariaplima@gmail.com
João Felinto dos Santos
Empresa Estadual de Pesquisa Agropecuária da Paraíba, João Pessoa-PB, Brasil, joao_felinto_santos@hotmail.comEmpresa Estadual de Pesquisa Agropecuária da ParaíbaBrasilJoão Pessoa, PB, BrasilEmpresa Estadual de Pesquisa Agropecuária da Paraíba, João Pessoa-PB, Brasil, joao_felinto_santos@hotmail.com
Cândida Hermínia Campos de Magalhães Bertini
Universidade Federal do Ceará, Fortaleza-CE, Brasil, candida@ufc.brUniversidade Federal do CearáBrazilFortaleza, CE, BrazilUniversidade Federal do Ceará, Fortaleza-CE, Brasil, candida@ufc.br
Adriana Rodrigues Passos
Universidade Estadual de Feira de Santana, Feira de Santana-BA, Brasil, adrianarpassos@yahoo.com.brUniversidade Estadual de Feira de SantanaBrazilFeira de Santana, BA, BrazilUniversidade Estadual de Feira de Santana, Feira de Santana-BA, Brasil, adrianarpassos@yahoo.com.br
Otoniel Magalhães Morais
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista-BA, Brasil, moraisom@ig.com.brUniversidade Estadual do Sudoeste da BahiaBrazilVitória da Conquista, BA, BrazilUniversidade Estadual do Sudoeste da Bahia, Vitória da Conquista-BA, Brasil, moraisom@ig.com.br
*Autor para corresponência
SCIMAGO INSTITUTIONS RANKINGS
Embrapa Meio-Norte, Teresina-PI, Brasil, maurisrael.rocha@embrapa.br, kaesel.damasceno@embrapa.br, jose-angelo.junior@embrapa.brEmbrapa Meio-NorteBrazilTeresina, PI, BrazilEmbrapa Meio-Norte, Teresina-PI, Brasil, maurisrael.rocha@embrapa.br, kaesel.damasceno@embrapa.br, jose-angelo.junior@embrapa.br
Embrapa Tabuleiros Costeiros, Aracajú-SE, Brasil, helio.carvalho@embrapa.brEmbrapa Tabuleiros CosteirosBrazilAracajú, SE, BrazilEmbrapa Tabuleiros Costeiros, Aracajú-SE, Brasil, helio.carvalho@embrapa.br
Instituto Agronômico de Pernambuco, Recife-PE, Brasil, felix.antonio@ipa.brInstituto Agronômico de PernambucoBrazilRecife, PE, BrazilInstituto Agronômico de Pernambuco, Recife-PE, Brasil, felix.antonio@ipa.br
Empresa de Pesquisa Agropecuária do Rio Grande do Norte, Natal-RN, Brazil, jmariaplima@gmail.comEmpresa de Pesquisa Agropecuária do Rio Grande do NorteBrazilNatal, RN, BrazilEmpresa de Pesquisa Agropecuária do Rio Grande do Norte, Natal-RN, Brazil, jmariaplima@gmail.com
Empresa Estadual de Pesquisa Agropecuária da Paraíba, João Pessoa-PB, Brasil, joao_felinto_santos@hotmail.comEmpresa Estadual de Pesquisa Agropecuária da ParaíbaBrasilJoão Pessoa, PB, BrasilEmpresa Estadual de Pesquisa Agropecuária da Paraíba, João Pessoa-PB, Brasil, joao_felinto_santos@hotmail.com
Universidade Federal do Ceará, Fortaleza-CE, Brasil, candida@ufc.brUniversidade Federal do CearáBrazilFortaleza, CE, BrazilUniversidade Federal do Ceará, Fortaleza-CE, Brasil, candida@ufc.br
Universidade Estadual de Feira de Santana, Feira de Santana-BA, Brasil, adrianarpassos@yahoo.com.brUniversidade Estadual de Feira de SantanaBrazilFeira de Santana, BA, BrazilUniversidade Estadual de Feira de Santana, Feira de Santana-BA, Brasil, adrianarpassos@yahoo.com.br
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista-BA, Brasil, moraisom@ig.com.brUniversidade Estadual do Sudoeste da BahiaBrazilVitória da Conquista, BA, BrazilUniversidade Estadual do Sudoeste da Bahia, Vitória da Conquista-BA, Brasil, moraisom@ig.com.br
Figure 1
Behavior of the grain yield of 37 testing environments obtained from evaluation of 20 semi-erect cowpea genotypes in the Northeast region of Brazil from 2013 to 2015
Table 2
Altitude, geographic coordinate, biome, ecosystem, and climate of the locations where the value-of-cultivation and use trials of semi-erect cowpea were conducted in the Northeast region of Brazil, from 2013 to 2015
Table 3
Joint analysis of variance for grain yield of 20 semi-erect cowpea genotypes evaluated in 37 environments of the Northeast region of Brazil, from 2013 to 2015
Table 4
Estimates of components of variance (individual REML) and genetic parameters obtained from the evaluation of 20 semi-erect cowpea genotypes in 37 environments in the Northeast region of Brazil, from 2013 to 2015
Table 5
Estimates of mean components (individual BLUP) of the effects (g) and predicted genotypic values (u+g) free from interaction with environments, confidence interval lower limit (CILL), confidence interval higher limit (CIHL) and genetic gain (Gg) of 20 semi-erect cowpea genotypes evaluated in 37 environments of the Northeast region of Brazil, from 2013 to 2015
Table 6
Genetic value stability (HMGV), genetic values adaptability (RPGV), simultaneous genetic value adaptability and stability (HMRPGV), genotypic value capitalizing the adaptability (RPGV*OM) and genotypic value penalized by instability and capitalized by adaptability (HMRPGV*OM) of 20 semi-erect cowpea genotypes evaluated in 37 environments of Northeast region of Brazil, from 2013 to 2015
imageFigure 1
Behavior of the grain yield of 37 testing environments obtained from evaluation of 20 semi-erect cowpea genotypes in the Northeast region of Brazil from 2013 to 2015
open_in_new
table_chartTable 1
Semi-erect cowpea genotypes evaluated in the Northeast region of Brazil, from 2013 to 2015, their genealogy and commercial subclass (CS)
GC
Genotype
Genealogy
CS
G21
MNC04-762F-3
TE96-282-22G × (TE96-282-22G × Vita 7)
BL
G22
MNC04-762F-9
TE96-282-22G × (TE96-282-22G × Vita 7)
BL
G23
MNC04-769F-30
CE-315 × TE97-304G-12
ML
G24
MNC04-769F-48
CE-315 × TE97-304G-12
ML
G25
MNC04-792F-146
MNC00-553D-8-1-2-3 × TV×5058-09C
ML
G26
MNC04-769F-62
CE-315 × TE97-304G-12
ML
G27
MNC04-782F-104
(TE97-309G-24 × TE96-406-2E-28-2) × TE97-309G-24
SV
G28
MNC04-792F-143
MNC00-553D-8-1-2-3 × TV×5058-09C
ML
G29
MNC04-792F-144
MNC00-553D-8-1-2-3 × TV×5058-09C
SV
G30
MNC04-792F-148
MNC00-553D-8-1-2-3 × TV×5058-09C
ML
G31
MNC04-795F-153
MNC99-518G-2 × IT92KD-279-3
ML
G32
MNC04-795F-154
MNC99-518G-2 × IT92KD-279-3
SV
G33
MNC04-795F-155
MNC99-518G-2 × IT92KD-279-3
ML
G34
MNC04-795F-159
MNC99-518G-2 × IT92KD-279-3
ML
G35
MNC04-795F-168
MNC99-518G-2 × IT92KD-279-3
BR
G36
BRS Guariba
IT85F-2687 × TE87-98-8G
BL
G37
BRS Tumucumaque
TE96-282-22G × IT87D-611-3
BL
G38
BRS Novaera
TE97-404-1F × TE97-404-3F
BR
G39
BRS Itaim
MNC01-625E-10-1-2-5 × MNC99-544D-101-2-2
FR
G40
BRS Cauamé
TE93-210-13F × TE96-282-22G
BL
table_chartTable 2
Altitude, geographic coordinate, biome, ecosystem, and climate of the locations where the value-of-cultivation and use trials of semi-erect cowpea were conducted in the Northeast region of Brazil, from 2013 to 2015
Location
Altitude
Latitude
Longitude
Biome
Ecosystem
Climate
Arapiraca-AL
264 m
09º45'07'' S
36º39'39'' W
Caatinga
Agreste
TSu
Feira de Santana-BA
234 m
12º16'01'' S
38º58'01'' W
Caatinga
Sertão
BSh
Barreira-CE
123 m
04º17'13'' S
38º38'34'' W
Caatinga
Sertão
BSh
Itapipoca-CE
109 m
03º29'38'' S
39º34'44'' W
Caatinga
Sertão
TAs
Redenção-CE
88 m
04º13'30'' S
38º43'46'' W
Caatinga
Sertão
TQSu
Pacajus-CE
60 m
04º10'22'' S
38º27'39'' W
Caatinga
Sertão
BSh
Mata Roma-MA
73 m
03º37'30'' S
43º06'39'' W
Cerrado
Meio-Norte
TAw
São R. Mangabeiras-MA
225 m
07º01'19'' S
45º26'51'' W
Cerrado
Meio-Norte
TAw
Lagoa Seca-PB
634 m
07º10'15'' S
35º51'14'' W
Caatinga
Agreste
TAs
Aroeiras-PB
363 m
07º32'42'' S
35º42'28'' W
Caatinga
Agreste
TAs
Araripina-PE
622 m
07º34'33'' S
40º29'52'' W
Caatinga
Sertão
BSh
Serra Talhada-PE
444 m
07º59'09'' S
38º17'45'' W
Caatinga
Sertão
BSh
Goiana-PE
444 m
07º33'39'' S
35º00'10'' W
Caatinga
Zona da Mata
TAs
São João do Piauí-PI
222 m
08º21'28'' S
42º14'49'' W
Caatinga
Sertão
BSh
Campo Grande do Piauí-PI
443 m
07º07'55'' S
41º02'09'' W
Caatinga
Sertão
BSh
Uruçuí-PI
167 m
07º13'44'' S
44º33'41'' W
Cerrado
Meio-Norte
TAw
Apodi-RN
67 m
05º39'50'' S
37º47'56'' W
Caatinga
Sertão
BSh
Ipanguaçu-RN
16 m
05º29'52'' S
36º51'18'' W
Caatinga
Sertão
BSh
Carira-SE
351 m
10º21'29'' S
37º42'03'' W
Caatinga
Sertão
BSh
Frei Paulo-SE
272 m
10º32'56'' S
37º32'02'' W
Caatinga
Sertão
BSh
Umbaúba-SE
130 m
11º22'58'' S
37º39'28'' W
Caatinga
Sertão
TAs
Nossa S. das Dores-SE
204 m
10º29'30'' S
37º11'36'' W
Caatinga
Sertão
TAs
table_chartTable 3
Joint analysis of variance for grain yield of 20 semi-erect cowpea genotypes evaluated in 37 environments of the Northeast region of Brazil, from 2013 to 2015
Source of variation
DF
Mean square
p>F
Blocks/Environments
111
302367.20
<.0001
Genotypes (G)
36
1319851.80
<.0001
Environments (E)
19
20318301.80
<.0001
G×E
684
199350.10
<.0001
Residue
2109
69965.00
CV (%)
19.71
Overall mean (kg ha-1)
1,342
table_chartTable 4
Estimates of components of variance (individual REML) and genetic parameters obtained from the evaluation of 20 semi-erect cowpea genotypes in 37 environments in the Northeast region of Brazil, from 2013 to 2015
Genotypic correlation between environments (rgloc)
0.18
Relative coefficient of variation (Cvg%/Cve%)
0.32
table_chartTable 5
Estimates of mean components (individual BLUP) of the effects (g) and predicted genotypic values (u+g) free from interaction with environments, confidence interval lower limit (CILL), confidence interval higher limit (CIHL) and genetic gain (Gg) of 20 semi-erect cowpea genotypes evaluated in 37 environments of the Northeast region of Brazil, from 2013 to 2015
Order
G
u+g
(CILL - CIHL)1
Gg
G31
167.03
1,508.84
1,434.38 - 1,583.30
167.03
G34
134.17
1,476.85
1,401.52 - 1,550.45
150.60
G26
81.78
1,423.59
1,349.13 - 1,498.05
127.66
G36
40.59
1,382.41
1,307.95 - 1,456.87
105.90
G33
38.27
1,380.08
1,305.62 - 1,454.54
92.37
G32
37.47
1,379.28
1,304.81 - 1,453.74
83.22
G28
36.81
1,378.17
1,304.15 - 1,453.08
76.59
G25
19.26
1,361.07
1,286.61 - 1,435.53
69.42
G40
15.37
1,357.18
1,282.71 - 1,431.64
63.42
G37
-2.93
1,338.88
1,264.41 - 1,413.34
56.78
G39
-10.35
1,331.46
1,256.99 - 1,405.92
50.68
G30
-15.60
1,326.20
1,251.74 - 1,400.67
45.15
G35
-24.26
1,317.55
1,243.09 - 1,392.01
39.81
G24
-24.66
1,317.15
1,242.69 - 1,391.61
35.21
G29
-27.61
1,314.20
1,239.74 - 1,388.66
31.02
G22
-53.99
1,287.82
1,213.35 - 1,362.28
25.71
G27
-63.47
1,278.34
1,203.88 - 1,352.81
20.46
G38
-70.56
1,271.24
1,196.78 - 1,345.71
15.41
G21
-102.49
1,239.32
1,164.86 - 1,313.78
9.20
G23
-174.82
1,166.99
1,092.53 - 1,241.46
0
Overall mean (u)
1,341.81
table_chartTable 6
Genetic value stability (HMGV), genetic values adaptability (RPGV), simultaneous genetic value adaptability and stability (HMRPGV), genotypic value capitalizing the adaptability (RPGV*OM) and genotypic value penalized by instability and capitalized by adaptability (HMRPGV*OM) of 20 semi-erect cowpea genotypes evaluated in 37 environments of Northeast region of Brazil, from 2013 to 2015
Order
HMGV
Order
RPGV
RPGV*OM
Order
HMRPGV
HMRPGV*OM
G34
1,229
G31
1.1392
1,528
G31
1.1272
1,512
G31
1,229
G34
1.1196
1,502
G34
1.1074
1,485
G36
1,175
G26
1.0734
1,440
G26
1.0578
1,419
G26
1,129
G36
1.0489
1,407
G36
1.0367
1,391
G25
1,127
G28
1.0315
1,384
G28
1.0223
1,371
G28
1,117
G25
1.0304
1,382
G32
1.0181
1,366
G37
1,117
G33
1.0296
1,381
G33
1.0162
1,363
G32
1,106
G32
1.0291
1,380
G25
1.0111
1,356
G33
1,081
G37
1.0060
1,350
G37
0.9947
1,334
G40
1,078
G40
1.0050
1,348
G40
0.9933
1,332
G22
1,070
G29
0.9882
1,326
G30
0.9719
1,304
G30
1,068
G30
0.9848
1,321
G29
0.9707
1,302
G35
1,066
G35
0.9844
1,321
G24
0.9573
1,284
G29
1,044
G39
0.9828
1,319
G22
0.9516
1,276
G39
1,041
G24
0.9674
1,298
G35
0.9503
1,275
G24
1,014
G22
0.9648
1,294
G39
0.9463
1,269
G27
1,004
G27
0.9446
1,267
G27
0.9326
1,251
G38
992
G38
0.9359
1,256
G38
0.9042
1,213
G21
918
G21
0.8953
1,201
G21
0.8811
1,182
G23
818
G23
0.8390
1,126
G23
0.8086
1,085
Overall mean
1,342
(1)
Yijk=μ+gi+ej+geij+βk(J)+εijk
(2)
Y=Xb+Zg+Wga+e
(3)
HMGVi=a/∑ai=11/Vgj
(4)
RPGVi=1/a[∑Vgj/Mj]
(5)
HMRPGVi=n/[∑nj=11/Vgij]
Como citar
Rocha, Maurisrael de Moura et al. Adaptabilidade e estabilidade produtiva de genótipos de feijão-caupi semieretos no Nordeste do Brasil via REML/BLUP. Revista Ciência Agronômica [online]. 2017, v. 48, n. 5spe [Acessado 3 Abril 2025], pp. 862-871. Disponível em: <https://doi.org/10.5935/1806-6690.20170102>. ISSN 1806-6690. https://doi.org/10.5935/1806-6690.20170102.
Universidade Federal do CearáAv. Mister Hull, 2977 - Bloco 487, Campus do Pici, 60356-000 - Fortaleza - CE - Brasil, Tel.: (55 85) 3366-9702 / 3366-9732, Fax: (55 85) 3366-9417 -
Fortaleza -
CE -
Brazil E-mail: ccarev@ufc.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.