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ABSTRACT - Site-specific management practices have been possible due to the wide range of solutions for data
acquisition and interventions at the field level. Different approaches have to be considered for data collection, like
dedicated soil and plant sensors, or even associated with the capacity of the agricultural machinery to generate valuable
data that allows the farmer or the manager to infer the spatial variability of the fields. However, high computational
resources are needed to convert extensive databases into useful information for site-specific management. Thus,
technologies from industry, such as the Internet of Things and Artificial Intelligence, applied to agricultural production,
have supported the decision-making process of precision agriculture practices. The interpretation and the integration
of information from different sources of data allow enhancement of agricultural management due to its capacity to
predict attributes of the crop and soil using advanced data-driven tools. Some examples are crop monitoring, local
applications of inputs, and disease detection using cloud-based systems in digital platforms, previously elaborated for
decision-support systems. In this review, we discuss the different approaches and technological resources, popularly
named as Agriculture 4.0 or digital farming, inserted in the context of the management of spatial variability of the fields
considering different sources of crop and soil data.
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RESUMO - As práticas de gestão localizada têm sido possibilitadas devido à ampla variedade de soluções para a aquisição
de dados e as intervenções em nível de talhão. Diferentes abordagens devem ser consideradas para a coleta de dados, como os
sensores de solo e de planta dedicados ou mesmo associados à capacidade das máquinas agrícolas gerarem dados relevantes
que permitam ao agricultor ou ao gerente agrícola inferir a variabilidade espacial dos talhões. No entanto, elevados recursos
computacionais são necessários para converter os extensos bancos de dados em informações úteis ao gerenciamento localizado
da lavoura. Assim, as tecnologias oriundas da indústria, como a Internet das Coisas e a Inteligência Artifi cial, aplicadas à
produção agrícola, têm direcionado o processo de tomada de decisão das práticas de agricultura de precisão. A interpretação
e a integração de informações de diferentes fontes de dados permitem o aprimoramento do manejo agrícola devido à sua
capacidade de predizer atributos de planta e de solo por meio de ferramentas avançadas baseadas em dados. Alguns exemplos
são o monitoramento de cultivos, aplicações localizadas de insumos, e detecção de doenças por meio de sistemas baseados
em nuvem nas plataformas digitais, previamente elaborados para os sistemas de apoio à decisão. Nesta revisão, discutimos as
diferentes abordagens e recursos tecnológicos, popularmente denominados como Agricultura 4.0 ou Agricultura Digital, que
se inserem no contexto do gerenciamento da variabilidade espacial das lavouras considerando diferentes fontes de dados de
planta e de solo.
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THE DIGITAL CONTEXT AND
AGRICULTURE 4.0: CONCEPT AND

APPLICATIONS

Agricultural innovations have supported the
development of solutions to optimize crop production,
mainly focused on intensifi cation and sustainability.
Over the years, agricultural systems have been exposed
to different levels of technology, from mechanization
to smart devices, to improve the effi ciency of the farm
operations considering the whole management cycle
- from crop monitoring to recommendations. The
application of technologies (Internet of Things - IoT,
wireless sensors, Artifi cial Intelligence - AI, etc.) in
agriculture has been providing advancements to the
remote control of objects using integrated communication
networks (BASSOI et al., 2019) and to the adoption of
decision support systems for farm management (FOUNTAS
et al., 2015; ZHAI et al., 2020).

The progress on agricultural management based
on precision agriculture (PA) principles is part of what
is called Agriculture 4.0, which was proposed after the
creation of the Industry 4.0 from the German government
(ANDERL, 2015; ZHAI et al., 2020). At this point it is
worth mentioning the defi nition of  PA as stated by the
International Society of Precision Agriculture (ISPA),
recently updated, according to which “PA is a management
strategy that gathers, processes and analyzes temporal,
spatial and individual data and combines it with other
information to support management decisions according to
estimated variability for improved resource use effi ciency,
productivity, quality, profi tability and sustainability of
agricultural production” (ISPA, 2019).

Agriculture 4.0, also called Digital Farming
or Smart Farming, was mainly designed to deal with
increasing productivity, allocating resources (land, water,
energy), adapting the supply chain to climate changes,
and avoiding food waste (YUAN et al., 2018; ZHAI et al.,
2020). Other features should be discussed to extend the
current technologies considering its economic viability and
its potential applicability for site-specifi c management.

The main challenge of using digital information
in agriculture is to add value to the different sources of
data (crop, fi eld, machines, economic aspects, etc.), and
to transfer these data into knowledge. Some initiatives
are the elaboration of decision support systems to the
operational strategies of the farmers (BONFANTE et al.,
2019; YAZDANI et al., 2017). Other initiatives involving
digital tools are the data analysis for crop selection
using data compilation (soil fertility) and decision tree
algorithm (RAJESWARI; SUTHENDRAN, 2019), the
crop management based on supervised learning models for

yield prediction and disease detection (PANTAZI et al.,
2016; RAMOS et al., 2017), and a cloud-based system for
spray planning for pests control in vineyards and orchards
(RUPNIK et al., 2019).

The digital platforms enable us to obtain more
representative data of the agronomic inputs, soil
condition, machinery efficiency, and weather aspects
for supporting decision-making by the farmers (SAIZ-
RUBIO; ROVIRA-MÁS, 2020). Also, agricultural
robots associated with remote sensing tools demonstrate
the capability to diagnose and access specific areas
for local applications (SHAMSHIRI et al., 2018).
The identification of potential areas for intervention
is an example that allows robotic applications for
agricultural practices, such as the identification of plant
disease (AMPATZIDIS; BELLIS; LUVISI, 2017), crop
harvesting (VASCONEZ; KANTOR; AUAT CHEEIN,
2019; WILLIAMS et al., 2019), weed detection (WU
et al., 2020), traffic control (BALL et al., 2015; REINA
et al., 2016), among others.

Pedersen et al. (2017), assessed the economic
benefi ts of agricultural robots under sugar beet fi eld
conditions. They found fi nancial viability using robots for
early seeding and re-seeding of the crop. Also, the robotic
systems in agriculture collaborate with the design of
autonomous machinery. McPhee et al. (2020), proposed
small autonomous machinery (50 kW) as an alternative to
reduce soil compaction promoted by combine harvesters
(>300 kW) and to optimizing the operational logistics of
the harvest.

Another approach is implementing robotic
systems for emerging practices, such as urban agriculture
and greenhouses (AMPATZIDIS; BELLIS; LUVISI,
2017; SHAMSHIRI et al., 2018), which requires
understanding the infl uence of external factors on the
controlled environment (smaller scale in agriculture).
IoT-based solutions have been developed to provide
a non-destructive quantifi cation of physiological
characteristics of the plants, involving applications from
data collection to controlling the action. In this case,
the performance of automated systems is satisfactory
due to the limited elements to be monitored. However,
some challenges have been faced to implement it
for commercial applications. Some examples are the
competitiveness with traditional agriculture (larger
scale) for horticulture, costs production, adaptive
algorithms for local control, among others.

The purpose of this paper is to discuss the main
approaches and technological resources involved in
the digital context, considering it to manage the spatial
variability of the fi elds based on different sources of crop
and soil data, as syntheticaly represented on Figure 1.
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DIGITAL SOLUTIONS

Data acquisition

Accelerating the dynamics of acquisition,
accuracy, and accessibility of soil, plant, and climate
data is essential to the success of crop management.
Increased demands for real-time data analysis and
their accessibility speed have caused the development
of modern technologies, especially in the data
collection process (KAMILARIS; KARTAKOULLIS;
PRENAFETA-BOLDÚ, 2017; SIVARAJAH et al.,
2017). According to Lee et al. (2010), PA demands
intensive fi eld data acquisition. Remote and local
sensors or sensor networks can be applied to monitor
plant and soil attributes, soil conditions, and plant health
(especially pest and disease detection). Wireless Sensor
Networks (WSNs) technology is one of the required
Information and Communication Technologies (ICTs) to
achieve an automatic collection of useful agronomy data,
and support subsequent analysis for intelligent decision-
making (OUYANG et al., 2019). This technology can
provide processed real-time fi eld data from sensors
physically distributed in the fi eld (CAMILLI et al.,
2007). The WSN consists of a collection of spatially
distributed and independent devices that collect
information and digitally transmit it over a wireless
channel (LANDALUCE et al., 2020).

Specifi cally, image sensors can be used for
remote sensing techniques to monitor vegetative growth,
real-time surveillance against the deceptive labeling
of production centers. Machine vision is a powerful
tool for fi eld management. A camera installed on-
board of equipment performing some fi eld operation
or autonomous vehicles carrying sensors can provide
automatic method for crop/weed discrimination in real-
time (GARCÍA-SANTILLÁN; PAJARES, 2018; RAJA
et al., 2020; WANG; ZHANG; WEI, 2019). Proximal
optic systems can be used for disease-symptom detection

(CHEN et al., 2020; OBERTI et al., 2014),  and
identifi cation of invertebrate pests on green leaves (LIU;
CHAHL, 2018).

Cameras on-board Remotely Piloted Aircraft (RPA)
systems is another powerful tool to collect high-resolution
data at the fi eld level in real-time. A typical application
of RPA technology is to acquire high-resolution visible,
spectral, infrared or thermal imagery at a low altitude
to achieve large cope farmland monitoring and hazard
prediction (GAŠPAROVIĆ et al., 2020; PANDAY et al.,
2020).  RPA imaging has been used to detect weeds
(DE CASTRO et al., 2020; TANUT; RIYAMONGKOL,
2020), plant diseases (MATESE; DI GENNARO,
2018), perform plant count estimations (KOH et al.,
2019), and characterize plant dimensions (DE CASTRO
et al., 2020; WEISS; BARET, 2017).  Another use
of RPA imagery is the automation of locations for
soil sampling based on a soil map created from RPA
imaging after plowing, and wearable augmented reality
smart glass to assist the user in collecting soil samples
(HUUSKONEN; OKSANEN, 2018).

Smartphone technology is promising for the
future development of agriculture, as it can facilitate
and improve many operational procedures and can be
combined with PA technologies (MICHELS et al., 2020).
Smartphones have a large number of sensors, e.g. motion
sensor (Accelerometer, Gyroscope, Magnetometer), image
sensors (cameras), environmental sensors (temperature,
relative humidity, pressure, light), positioning sensors
(GNSS) and, connectivity modems (cellular network, Wi-
Fi, Bluetooth) (MENDES et al., 2020). According to these
authors, mobile applications allows to allocate different
information in one place that farmers can access. From
there, the farmers can get crop maps, monitor their crops
in real-time, receive alerts, and perform tasks.

Digital images captured by smartphones were
studied to predict soil texture (SWETHA et al., 2020),
and soil organic matter (FU et al., 2020). Li et al. (2020),

Figure 1 - Synthesis of the analysis related to the contributions of digital solutions to the spatial variability present in the agricultural
fi elds and its management
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used a smartphone-based image analysis technique for
measuring plant growth characteristics in controlled
environment. Prasad et al. (2014), depicted a mobile
vision system that aids in the plant disease identifi cation
process. The system worked by capturing images of plant
leaves investigated for diseases, then preprocessing those
images, and transmitting it to remote laboratories. Golicz
et al. (2020), studied the viability of utilizing smartphones
in soil analysis. Pallagani et al. (2019), made available a
smartphone app developed using the disease prediction
model. The farmer can capture the crop images using
the app and analyze the presence or absence of diseases,
thereby demonstrating the feasibility of the solution.

The smartphones are powerful platforms,
but limitations have to be considered, as they were
developed, and are continuously improved for
individuals and predominantly in urban areas. It brings
expectations and challenges to the agricultural sector,
especially on connectivity demand and availability, and
the fact that these devices are personally carried, which
places limitations of covering extensive cropping areas,
commonly condition forBrazilian agriculture. Also, their
image sensors are still based on RGB cameras and for the
specifi c demands of agriculture, more detailed imagery
are necessary.

Wireless Underground Sensor Networks (WUSN)
are one of the types of WSN with embedded sensor
nodes (BAYRAKDAR, 2019; JAO; SUN; WU, 2013).
WUSNs can be used to monitor soil conditions so that
parameters such as water content, mineral content,
salinity, and temperature can be maintained at optimal
levels (MAHDAVIPOUR et al., 2017; STUNTEBECK;
POMPILI; MELODIA, 2006). Hu et al. (2010), developed
a specifi c wireless sensor and actor-network application for
PA with the ability of intelligent irrigation and emphasized
that the functions of the platform can be extended to other
PA applications. Bayrakdar (2019) studied a smart insect
pest detection technique with qualifi ed underground
wireless sensor nodes for PA.

Although there are already many studies with
sensors for data collection in real-time using WSN,
according to Landaluce et al. (2020), all of them,
regardless of their application, present several common
challenges. The latency is affected by the communication
mechanisms, such as coding techniques or the routing and
rerouting of the messages, as well as the scalability of
the system; and at the same time, it degrades the energy
consumption of the network. Also, the data rate balances
the energy consumed by the system and the scalability to
interrogate a higher number of nodes at the same time.
The computing techniques relevance for analysis and
processing large database becomes highlighted.

Advanced tools for data analysis

AI is a subject of engineering where machines
become intelligent through programmed algorithms. It
is a continuous exploration approach that studies how
to make a computer or any other machine to think and
solve problems the same way human beings do (PATHAN
et al., 2020). It enables machines to perform certain
functions based on past learning experiences. Among the
different AI techniques, two have been widely used for
agriculture: supervised and unsupervised learning. Both
techniques require a training dataset to learn on, however,
the supervised learning requires that the correct answers
be provided during learning, while the unsupervised
will generalize the dataset behavior to similar group
observations. Machine learning models based on decision
trees, support vector machines, artifi cial neural networks,
convolutional neural networks, and recurrent neural
networks are examples of supervised learning algorithms
used for regression and classifi cation. Examples of
unsupervised learning algorithms used for data clustering
are k-means, fuzzy c-means, Gaussian mixture, and partial
component analysis. These algorithms help to solve
complex challenges for human beings by transferring the
decision making to the machine through data, and a deep
and robust learning.

In agriculture, technological advances pushed by AI
is helping farmers to move from traditional to modernized
concepts. Brogan and Edison (1974) performed one of the
pioneer studies using machine vision for the classifi cation
of agricultural products. The authors developed a pattern
recognition algorithm using morphological attributes for
the automatic classifi cation of grains. Other researchers
working with that have created theories and practices
that incorporate smart devices to contribute to the crop
management (KHANNA; KAUR, 2019). Recent research
has shown that popular AI applications in agriculture
are related to the detection and harvesting of fruits using
agricultural robots (XIONG et al., 2020), identifi cation
and classifi cation of plants (BAO et al., 2019; GRINBLAT
et al., 2016; LIU et al., 2020; MAZZIA et al., 2020;
TU et al., 2020), detection and classifi cation of pests
and diseases (CRUZ et al., 2019; KAUR; PANDEY;
GOEL, 2018; SHARIF et al., 2018), crop and soil
monitoring (AMPATZIDIS; BELLIS; LUVISI, 2017;
AMPATZIDIS; PARTEL; COSTA, 2020; VALENTE et
al., 2020), recognition of nutritional defi ciencies (CHOI;
CHA, 2019), development of maps for crop management
(TALAVIYA et al., 2020), among others. AI provides a
simple and objective analysis with high accuracy, making
it feasible to automate and optimize laborious tasks.

AI has provided farmers and technicians solutions
to many crop-related issues. Due to the decrease
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in equipment costs and growth in computational
performance, this approach has become ever more
popular in recent years in agriculture. These new
technologies are slowly being introduced and evolving
into a scenario where crop management will be carried
out based on individual plants (PATRÍCIO; RIEDER,
2018). The use of these techniques has many advantages
when compared to manual labor and traditional methods,
however, there are still many challenges to be overcome
(BARBEDO, 2016).

Diagnostics and recommendations

The continuous evolution of remote and
proximal sensing techniques, whether of edaphic
or crop attributes, allied to the advances of in-fi eld
connectivity technologies, has directed the development
of agricultural automation for real-time diagnosis and
prescriptions (SHAFI et al., 2019). This method of
agricultural intervention for site-specifi c management
is based on geo-positioned values, which is unitary
information (e.g., pixel) associated with geographical
coordinates. Thus, each crop area, as a production
unit with spatially intrinsic specifi cities, is translated
into a set of pixels by specifi c sensing technology.
The set of pixels estimate the level transitions of any
attribute that one wants to represent, composing a layer
of information. The acquisition of layers providing
different crop and soil information, through sensors and
coming from the network (e.g. data from yield monitors,
weather stations, hydrography, soil fertility, disease
incidence, orbital images) requires virtual platforms to
integrate and manage the database. Thus, Agricultural
Decision Support Systems (ADSS) platforms have aided
in the management of the database and user information
availability (LINDBLOM et al., 2017; SAIZ-RUBIO;
ROVIRA-MÁS, 2020).

The most current and comprehensive defi nition of
ADSS was made by Zhai et al. (2020): “an ADSS can be
defi ned as a human-computer system, which utilizes data
from various sources, aiming at providing farmers with a
list of advice for supporting their decision-making under
different circumstances”. ADSS development is closely
related to the IoT and cloud computing concepts, which
offer advances to PA utilizing enhancing connectivity
applications at the fi eld (RUPNIK et al., 2019; ZAMORA-
IZQUIERDO et al., 2019).

In agricultural context, the IoT provides objects
of interest (e.g. harvesters, tractors, implements, weather
stations, sensors, satellite imagery, etc.), which collect
specifi c crop data, to be detected and controlled remotely
in the existing and future network infrastructure. This
network makes it possible to integrate physical objects
responsible for collecting crop information with computer-

based systems (FERRÁNDEZ-PASTOR et al., 2018;
JHA et al., 2019; OJHA; MISRA; RAGHUWANSHI,
2015; POPOVIĆ et al., 2017). However, ADSS depends
on high-level computer resources in terms of storage,
memory, processors, connectivity, and communication
between parts of the system. Cloud computing service
models are based on these requisites, which offer
fl exibility by software platform that can be located and
managed remotely (ZAMORA-IZQUIERDO et al.,
2019). It includes Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS) (POPOVIĆ et al., 2017). These platforms
facilitate processing, as they can work on-demand and
avoid the installation of complex systems at the local
level (ZAMORA-IZQUIERDO et al., 2019).

The main purpose of ADSS is to provide useful
and reliable information based on a database, leaving it
to the user to make a decision based on this information
(ZHAI et al., 2020). Therefore, the integration between
different data collection systems, via IoT tools, and the
storage and processing of this robust database, through
cloud computing, represents essential step towards
converting information from farming into information
for supporting decision making. However, the database
quality must consist of a thorough reading of the intrinsic
crop characteristics. Extensive crop attributes database
coming from different sensors and technologies require,
in addition to the storage and processing technologies,
these ADSS platforms for information management and
assisting to necessary interventions based on multiple
variables. Also, more complex analyzes and in-depth as
are the complexities of cause and effect in biophysics
systems.

Yield data, for example, are a refl ection of all
interventions, human or not, carried out during the crop
development cycle, constituting the noblest data layer
for handling spatial variability (VEGA et al., 2019).
Through this information, it is possible to make nutrient
recommendation maps based on exported nutrients. Thus,
information related to the crop obtained with digital
agriculture tools allows for more in-depth and detailed
analysis, taking into account the different variables that
will refl ect on crop yield. Through these tools, the concept
of PA intensifi es, as the idea of handling crop attributes
spatial variability gains input from technological resources
for data analysis, and prescription of recommendations,
also improving the resolution of interventions.

Challenges and limitations for data-based agricultural
interventions

As previously highlighted, as information
systems and Internet technologies advance, large sets
of agricultural data are inevitably obtained, analyzed,



Rev. Ciênc. Agron., v. 51, Special Agriculture 4.0, e20207720, 20206

  J. P. Molin et al.

and processed to assist farmers in making decisions
aimed at increasing the sustainability of activities, both
environmentally and economically. However, the use of
adequate resources for storing, managing, and processing
this information is essential when applications based
on PA are developed. Researchers are looking for new
solutions based on designing software architectures in
the cloud-based systems. This demand is due to the large
amount of data that can be stored and processed, and the
need to generate information to make decisions in the
fi eld (LÓPEZ-RIQUELME et al., 2017).

Considering that the construction of this type
of agricultural information storage must be extremely
benefi cial, new techniques based on cloud computing
must be considered to achieve this objective, mainly
because many of the existing PA systems are currently
implemented using hosting servers on traditional
websites (VYAS; BOROLE; SINGH, 2016). On the other
hand, those that include cloud computing techniques
often use generic cloud providers that do not offer
specifi c agriculture-oriented services. Also, most PA-
based systems are generally designed ad-hoc to solve
a specifi c problem in a specifi c crop; therefore, most
solutions are not easily applicable in another context
(SALES; REMEDIOS; ARSENIO, 2015). In this sense,
some authors have developed and evaluated the cloud-
based software architecture using different resources,
López-Riquelme et al. (2017), for example, evaluated the
development of a cloud-based software architecture using
FIWARE and observed that, in this way, agronomic data
can be stored reliably and safely.

In addition to the aspects related to hosting and
availability of data in the cloud, other limitations related to
fi eld interventions should be noted. Due to the complexity
of agricultural systems, modeling and intervention
become more diffi cult in the fi eld, since they are affected
by several factors, such as environmental conditions, soil
characteristics, diseases, weed management, and water
availability for the crop.

The data collected from the fi eld has been
concentrated on the machines, with companies and service
providers offering cloud-based solutions for data captured
from the machine. Those data normally come from the
Controller Area Network (CAN), already available on
some equipment, but limited to machine performance
parameters. There are good opportunities to implement
additional data, related to the crop, like yield, losses, and
quality, as proposed by Corrêdo et al. (2020), on sugarcane
harvesters, to improve not only the machine operation and
its automation, but to create data layers of the crop.

Although the amount of data has increased
dramatically in recent years, its availability and quality
still restrict the capabilities of existing models to include

factors of importance and to be accurate enough to gain
user’s trust. Even when large data sets are available,
machine learning techniques focusing on learning data
still face challenges. Tantalaki et al. (2019), mention
the main weaknesses, computational demand and
processing time; specialized knowledge, adjustments;
data transformation, and aggregation techniques. Also,
data types have changed; in addition to simple numerical
values, the data can include qualitative measures, images,
or videos.

Another limiting point for the intervention is the
selection of variables. Establishing a consistent set of
variables that guarantee robust and satisfactory results for
all techniques is a challenge. The complexity to model
the behavior of some crops makes it diffi cult to select the
variables (ZHAI et al., 2020). Models with large datasets
are not always synonymous of high performance, as a
large number of irrelevant features would simply increase
the likelihood of overturning. The challenge for future
models includes not only modeling the known factors that
affect crop yield but also incorporating all other external
factors that can improve the model. For this, it is necessary
to collect large and adequate datasets that describe the
production process. In this context, a real-time intervention
based on large datasets is still a challenge to be overcome
in the context of PA.

CONCLUSIONS

1. World agriculture is facing several challenges with
the data acquisition and processing , and delivery of
information useful for decision making. However,
technological advances for data collection from
different sources, and the development of decision
support systems are focused on managing the temporal
and spatial variability of the crops at the fi eld.

2. The acquisition of diversifi ed data in different harvests
over the years, combined with advances in analytical
techniques and computational processing, will make it
possible to aggregate different layers of information to
characterize the complexity of the factors that interfere
with yield and quality aspects of the crop. Based on
concise and robust databases, the machines could support
decisions, such as which crop is best suited for planting,
the management practices, and harvest time for a given
part of the fi eld.  This information would enable more
assertive management, increasing the yield and quality
of agricultural products, in addition to saving on inputs
and greater sustainability of the agricultural production
system.

3. The association of these technologies and concepts
around the site-specifi c management of the fi elds is the
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key to develop autonomous interventions in the future.
Therefore, the application of technologies classifi ed as
digital agriculture is based on and incorporated into the
basic concepts of PA.
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