rcaat
Revista Caatinga
Rev. Caatinga
0100-316X
1983-2125
Universidade Federal Rural do Semi-Árido
RESUMO
A agricultura familiar possui uma grande diversidade de germoplasma de melão, constituindo-se em uma importante fonte de alelos para uso em programas de melhoramento. Assim, o presente estudo objetivou estimar parâmetros genéticos e selecionar genótipos de uma população de subacessos de melão da agricultura familiar pertencentes a diferentes variedades botânicas, com base em caracteres morfológicos. Foram realizados dois experimentos (2019 e 2020), utilizando 27 subacessos de melão (geração S2) provenientes da agricultura familiar e uma variedade comercial, em Delineamento em Blocos Casualizados (DBC) com três repetições e cinco plantas por parcela. Para avaliação foram utilizados nove descritores quantitativos. Inicialmente testou-se as pressuposições da ANOVA e, em seguida, realizou-se a análise de variância individual e a análise conjunta. Com isso, constatou-se diferença significativa entre os subacessos para todos os descritores avaliados, com herdabilidades superiores a 83% e iteração G x A significativa para 88,8% das características avaliadas. Assim, percebeu-se a existência de variabilidade genética entre os subacessos, com predominância dos efeitos genéticos sobre os ambientais, sendo possível obter ganhos genéticos para o melhoramento de várias características de interesse agronômico. Indica-se os subacessos BGMEL66.0, BGMEL111.0 e BGMEL112.0 para serem inseridos em programas de melhoramento visando obter frutos pequenos, com uma boa prolificidade e elevado teor de sólidos solúveis. Já os subacessos BGMEL (108.3 e 108.5) podem fornecer progênies de elevada prolificidade e os subacessos da variedade momordica podem ser utilizados para extração de progênies que visem diminuir o ciclo da cultura e aumentar o tamanho do fruto.
INTRODUCTION
Melon (Cucumis melo L. Cucurbitaceae) is a species that presents centers of diversity in Africa and Asia (PITRAT, 2013). However, it has great economic expression in Brazil, mainly those from the inodorus and cantalupensis groups; the Northeast region is responsible for 96.84% of the Brazilian melon production (IBGE, 2020). However, creole varieties have been grown in small rural properties, where farmers use their own seeds for new crops (QUEIRÓZ; BARBIERI; SILVA, 2015), resulting in a high variability.
Previous studies using melon germplasm from family farming showed the existence of high variability among melon accessions (DANTAS et al., 2012; ARAGÃO et al., 2013; AMORIM et al., 2016; MACÊDO et al., 2017; ANDRADE et al., 2019). However, some important characters for the improvement of melon were not emphasized in these studies, mainly regarding characteristics of some botanical varieties (PITRAT; HANELT; HAMMER, 2000), which are believed to be important factors and, therefore, should be considered.
Information on genetic factors is essential for any breeding program to identify and maintain favorable alleles; thus, obtaining estimates of genetic parameters is essential to identify the action of alleles involved in controlling characters and estimate genetic gains by selection. (CRUZ; CARNEIRO; REGAZI, 2014).
Melons from traditional agriculture are an important source of alleles for breeding programs. Although several studies have shown variability among melon accessions (AMORIM et al., 2016; MACÊDO et al., 2017), there is no study on this germplasm, focused on generating information for selection of genotypes. It denotes the need for studies using melon germplasm from family farmers for morphological characterization of different botanical varieties based on genetic parameters, focused on selecting superior genotypes.
Thus, the objective of this study was to estimate genetic parameters and select genotypes from a population of melon sub-accessions from different botanical varieties grown by family farmers, based on morphological parameters.
MATERIAL AND METHODS
Two experiments were conducted, one in 2019 and another in 2020, at the Experimental Field of the Department of Technology and Social Sciences of the Bahia State University (DTCS/UNEB), in Juazeiro, Bahia, Brazil (09°25'04.92271"S and 40°29'04.73710"W, and altitude of approximately 352 meters). Twenty-seven melon sub-accessions (AMORIM et al., 2016) (S2 generation) from the botanical varieties momordica, cantalupensis, and makuwa and some accessions not identified were evaluated. These accessions were from the traditional agriculture of the state of Maranhão, Brazil (Table 1) that were stored in the Active Germplasm Bank of Cucurbitaceae from the Northeast Region at the Brazilian Agricultural Research Corporation (Embrapa Semiarid), in Petrolina, Pernambuco. A commercial variety (Melao Amarelo) was used as control.
Table 1
Passport data of sub-accessions of Cucumis melo from the Active Germplasm Bank of Cucurbitaceae from the Northeast Region at the Brazilian Agricultural Research Corporation (Embrapa Semiarid), evaluated in 2019 and 2020.
Sub-accession
Variety*
Municipality of collection
Municipality coordinates
BGMEL 10.0
momordica
São João of Patos
6°29'43"S, 43°42'10"W
BGMEL 66.0
makuwa
Colinas
7°6'59"S, 46°15'26"W
BGMEL 67.0
makuwa
Colinas
7°6'59"S, 46°15'26"W
BGMEL 68.1
momordica
Colinas
7°6'59"S, 46°15'26"W
BGMEL 68.2
ND
Colinas
7°6'59"S, 46°15'26"W
BGMEL 68.3
ND
Colinas
7°6'59"S, 46°15'26"W
BGMEL 77.1
momordica
Coroatá
4°7'31"S, 44°7'49"W
BGMEL 77.3
ND
Coroatá
4°7'31"S, 44°7'49"W
BGMEL 78.0
cantalupensis
Codó
4°27'18"S, 43°52'44"W
BGMEL 82.2
cantalupensis
Itapecuru Mirim
3°23'42"S, 44°21'36"W
BGMEL 83.1
ND
Itapecuru Mirim
3°23'42"S, 44°21'36"W
BGMEL 83.2
ND
Itapecuru Mirim
3°23'42"S, 44°21'36"W
BGMEL 86.1
cantalupensis
Codó
4°27'18"S, 43°52'44"W
BGMEL 86.2
ND
Codó
4°27'18"S, 43°52'44"W
BGMEL 86.3
ND
Codó
4°27'18"S, 43°52'44"W
BGMEL 87.1
momordica
São Luís Gonzaga
4°22'51"S, 44°40'14"W
BGMEL 87.2
cantalupensis
São Luís Gonzaga
4°22'51"S, 44°40'14"W
BGMEL 87.3
ND
São Luís Gonzaga
4°22'51"S, 44°40'14"W
BGMEL 97.1
cantalupensis
Caxias
4°52'29"S, 43°20'49"W
BGMEL 98.0
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 108.3
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 108.4
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 108.5
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 109.2
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 111.0
makuwa
Colinas
7°6'59"S, 46°15'26"W
BGMEL 112.0
makuwa
Colinas
7°6'59"S, 46°15'26"W
BGMEL 115.0
makuwa
São Vicente Ferrer
2°53'44"S, 44°52'53"W
*Botanical classification according to Amorim et al. (2016); ND = botanical variety not defined.
Thirty seeds of each sub-accession were sown in plastic trays filled with a commercial substrate, in a greenhouse covered with a 50% shade screen, and irrigated daily. The seedlings were transplanted to soils previously prepared with plowing and harrowing 15 days after sowing.
The experiments were conducted in a complete randomized block design, with three replications, five plants per plot, and spacings of 2.5 m between rows and 0.8 m between plants, under localized drip irrigation.
The experiments were conducted approximately in the same period (January to April) in 2019 and 2020. Weeding and plant health status monitoring were carried out; the natural soil fertility was adopted, since this system is commonly used under traditional agriculture.
The evaluations were carried out using the following quantitative descriptors (IPGRI, 2003; PITRAT; HANELT; HAMMER, 2000): fruit weight (kg); fruit diameter and length (cm); fruit cavity diameter and length (cm); pulp thickness (cm); soluble solid contents (°Brix) in pulp composite samples homogenized in a kitchen food processor; earliness (number of days from transplanting to harvest), and prolificacy (number of fruits per plant, counted at the end of the crop cycle).
Regarding the statistical analyses, firstly, the assumptions of ANOVA were tested, transforming the variables when necessary. Individual analysis of variance was then performed for each growing year to assess whether the sub-accessions differed from each other. Subsequently, test of homogeneity of variances was applied (Fmax: ratio between the highest and lowest residual mean square for each descriptor). Joint analysis (AxJ3 simple factorial) was carried out using the model: Yijk=μ+Gi+Aj+GAij+B/Ajk+εijk, where μ = overall mean; Gi = effect of the i-th genotype; Aj = effect of the j-th environment GAij = effect of the interaction of the i-th genotype with the j-th environment; B/Ajk = effect of the k-th block inside the j-th environment; and Eijk = random error and effects: G (random) and A (fixed) (CRUZ; REGAZI; CARNEIRO, 2012). All genetic and statistical analyses were processed using the program Genes (CRUZ, 2013).
RESULTS AND DISCUSSION
The data of analysis of variance showed significant differences among melon sub-accessions for all characteristics evaluated (Table 2), denoting the existence of genetic variability among sub-accessions. Similar results were found in previous studies on melon accessions from traditional agriculture (AMORIM et al., 2016; MACÊDO et al., 2017; ANDRADE et al., 2019), supporting those found in the present study and, therefore, denoting the possibility of selecting agronomically superior accessions for the characteristics analyzed (CRUZ; REGAZI; CARNEIRO, 2012).
Table 2
Test of means for nine characters of melon sub-accessions from family farmers of the state of Maranhão, Brazil, evaluated in 2019 and 2020.
SUB
EARL
PROL
FW
FD
FL
19
20
19
20
19
20
19
20
19
20
10.0 mo
49.9dA
53.5bA
3.2cA
3.8cA
1.1aA
1.3cA
11.3cA
11.5cA
24.1bA
26.0bA
68.1 mo
51.7dA
53.6bA
2.7cB
6.6bA
1.1aA
1.3cA
11.2cA
12.2cA
24.9bA
24.5cA
77.1 mo
50.3dA
52.1bA
4.3cA
3.6cA
1.3aA
1.4cA
11.6cA
11.7cA
27.9aA
28.5aA
87.1 mo
58.8cA
56.0bA
1.8cA
2.2cA
0.9bB
2.1bA
11.0cA
12.6bA
19.6dB
29.9aA
Meanmo
52.73
53.83
3.03
4.09
1.17
1.56
11.31
12.05
24.16
27.24
66.0 mk
54.6dA
55.0bA
3.0cB
6.7bA
0.3cA
0.41A
8.0eA
8.6dA
11.6eA
12.61A
67.0mk
55.4cA
53.3bA
2.3cA
4.1cA
0.5cA
0.41A
9.3dA
8.6dA
13.2eA
12.1fA
111.0 mk
54.0dA
54.0bA
1.8cB
7.7bA
0.3cA
0.31A
8.1eA
7.6eA
11.5eA
10.31A
112.0 mk
55.7cA
54.2bA
3.4cA
5.9bA
0.3cA
0.21A
8.0eA
7.5eA
11.6eA
10.1fA
115.0 mk
56.1cA
55.4bA
2.0cB
5.5bA
0.4cA
0.5eA
8.3eA
9.2dA
12.3eA
13.7eA
Mean mk
55.19
54.40
2.51
6.02
0.42
0.41
8.38
8.35
12.09
11.79
78.0 c
65.8bA
59.6aB
1.6cA
2.5cA
1.1aA
1.5cA
10.6cA
10.8cA
20.6cB
24.1cA
82.2 c
63.1bA
55.1bB
1.1cA
3.3cA
0.2cB
0.7eA
7.6eB
9.8dA
7.4fA
14.4eA
86.1 c
63.0bA
55.0bB
1.0cA
2.3cA
0.5cA
0.8eA
9.2dA
10.6cA
14.0eA
15.9eA
87.2 c
67.6bA
61.0aB
0.5cA
1.0cA
1.4aB
1.9bA
11.7cB
13.7bA
18.8dB
21.9dA
97.1 c
71.3aA
59.3aB
0.4cA
l.lcA
0.8bA
0.8eA
11.8cA
10.7cA
14.4eA
15.9eA
Mean c
66.22
60.17
0.96
2.06
0.86
1.16
10.22
11.13
15.10
18.47
68.2 nd
54.1dA
55.1bA
2.6cA
4.2cA
0.8bA
0.8eA
10.8cA
11.1cA
17.8dA
16.5eA
68.3 nd
62.4bA
55.0bB
1.5cA
1.9cA
0.5cB
1.0dA
8.1eA
9.0dA
18.4dB
25.6bA
77.3 nd
66.8bA
58.6aB
1.9cA
0.9cA
1.4aA
1.0dB
13.2bA
10.4cB
21.8cA
20.2dA
83.1 nd
57.6cA
55.0bA
1.5cA
3.6cA
1.3aA
1.0dA
14.8aA
13.3bA
14.4eA
14.6eA
83.2 nd
71.6aA
55.3bB
0.5cA
1.2cA
0.3cB
0.7eA
8.7dB
11.3cA
10.4fA
11.5fA
86.2 nd
56.3cA
57.0bA
1.2cB
5.1bA
0.4cB
0.8eA
9.4dB
11.3cA
8.9fA
11.5fA
86.3 nd
59.6cA
56.0bA
0.5cA
1.6cA
0.5cA
0.6eA
9.2dA
9.9dA
12.3eA
13.3fA
87.3 nd
58.5cA
58.5aA
1.5cA
2.1cA
1.5aB
3.1aA
12.7bB
15.6aA
22.3cB
27.1bA
98.0 nd
72.0aA
61.0aB
0.7cA
2.0cA
0.3cB
0.7eA
7.8eB
10.4cA
10.8fB
14.3eA
108.3 nd
54.3dA
51.0bA
11.5aA
10.9aA
0.3cA
0.3fA
7.7eA
7.6eA
11.4eA
12.5fA
108.4 nd
61.1cA
56.5bA
5.2cA
6.9bA
0.5cA
0.6eA
9.1dA
9.5dA
14.0eA
14.4eA
108.5 nd
52.5dA
51.3bA
8.0bA
10.8aA
0.2cA
0.3fA
7.2eA
7.7eA
8.2fA
9.8fA
109.2 nd
59.0cA
52.8bB
3.2cA
3.8cA
0.2cA
0.4fA
7.0eA
7.9eA
10.7fA
12.8fA
Mean nd
60.48
55.64
3.10
4.26
0.68
0.92
9.72
10.43
14.01
15.75
Ama
72.3aA
61.0aB
0.6cA
2.1cA
0.5cB
0.9dA
8.9dB
10.6cA
13.8eA
16.6eA
Min
45.0
49.0
0.2
0.4
0.44
0.25
6.73
7.27
7.1
9.0
Max
76.0
61.0
15.8
16.0
1.52
3.34
15.15
16.7
29.98
32.8
Mean
59.88
55.77
2.51
4.08
0.81
0.96
9.77
10.42
15.30
17.20
Fc
**
**
**
**
**
**
**
**
**
**
CV%
6.60
3.53
75.87
45.99
12.81
22.50
11.16
8.04
11.04
11.29
SUB
FCD
FCL
PT
SS
19
20
19
20
19
20
19
20
10.0 mo
5.9bA
6.1aA
20.0bA
21.3bA
2.3bA
2.4bA
4.4dA
3.7dA
68.1 mo
5.7bA
6.4aA
20.5bA
20.0bA
2.4bA
2.6bA
4.3dA
3.7dA
77.1 mo
6.4bA
6.2aA
23.7aA
24.1aA
2.5aA
2.6bA
4.4dA
4.2dA
87.1 mo
5.0cB
6.4aA
16.8cB
24.8aA
2.1bB
3.0bA
4.8dA
3.8dA
Mean mo
5.81
6.31
20.28
22.60
2.38
2.71
4.48
3.85
66.0 mk
4.4cA
5.0bA
9.1eA
10.1eA
1.4cA
1.8cA
8.6aA
8.1aA
67.0 mk
5.0cA
4.8bA
9.9eA
9.7eA
1.7cA
1.7dA
7.5bA
6.7aA
111.0 mk
4.6cA
4.4bA
9.0eA
8.2eA
1.4cA
1.4dA
9.5aA
7.7aB
112.0 mk
4.4cA
4.7bA
9.0eA
8.2eA
1.5cA
1.3dA
9.2aA
7.7aB
115.0 mk
4.6cA
5.0bA
9.6eA
11.5dA
1.5cB
2.0cA
7.5bA
5.8bB
Mean mk
4.63
4.84
9.36
9.56
1.53
1.67
8.46
7.20
78.0 c
5.2cA
4.9bA
15.6dB
19.8bA
2.6aA
2.7bA
6.0cA
4.3dB
82.2 c
4.3cA
4.6bA
5.2fB
11.0dA
1.5cB
2.5bA
7.4bA
5.1cB
86.1 c
4.8cA
5.6aA
10.0eA
10.9dA
2.1bA
2.3cA
6.4cA
5.8dA
87.2 c
4.6cA
5.2bA
13.7dB
16.9cA
3.1aB
4.1aA
6.0cA
5.7bA
97.1 c
7.3aA
5.9aB
11.0eA
12.1dA
1.9cA
2.0cA
4.7dA
4.2dA
Mean c
5.29
5.29
11.14
14.18
2.27
2.76
6.10
5.02
68.2 nd
6.0bA
6.1aA
14.4dA
12.9dA
2.1bB
3.0bA
6.1cA
4.6dB
68.3 nd
3.8cA
4.2bA
15.5dB
21.6bA
1.7cA
2.2cA
4.1dA
5.0cA
77.3 nd
8.1aA
6.3aB
17.2cA
15.8cA
2.3bA
1.9cA
5.8cA
4.4dB
83.1 nd
8.4aA
7.1aB
9.9eA
9.9eA
2.8aA
2.7bA
5.8cA
5.3cA
83.2 nd
4.4cB
5.8aA
6.4fA
7.7eA
1.9cB
2.5bA
6.0cA
6.9aA
86.2 nd
5.2cA
5.6aA
6.2fA
8.6eA
1.7cB
2.6bA
4.2dA
5.3cA
86.3 nd
5.4cA
6.0aA
8.9eA
10.1eA
1.7cA
1.8cA
5.4cA
5.9bA
87.3 nd
6.1bA
7.0aA
17.4cB
21.1bA
2.7aB
4.2aA
4.7dA
3.4dB
98.0 nd
5.0cA
6.1aA
8.0eB
11.3dA
1.4cB
2.1cA
6.1cA
4.3dB
108.3 nd
4.3cA
3.7bA
8.7eA
8.7eA
1.6cA
1.9cA
3.8dA
3.8dA
108.4 nd
4.5cA
5.1bA
10.5eA
11.3dA
2.0bA
2.1cA
5.9cA
5.3cA
108.5 nd
3.9cA
4.3bA
6.1fA
7.7eA
1.3cA
1.6dA
6.4cA
4.2dB
109.2 nd
3.7cA
4.0bA
7.8eA
9.5eA
1.4cA
1.8cA
7.2bA
6.8aA
Mean nd
5.33
5.51
10.58
12.05
1.94
2.36
5.50
5.02
Ama
4.50cA
4.81bA
9.75eA
12.00dA
2.11bB
2.78bA
5.6cA
4.4dA
Min
3.37
3.47
5.0
6.7
1.2
1.2
2.93
2.87
Max
10.15
8.0
24.85
27.2
4.06
4.45
10.4
9.2
Mean
5.23
5.43
11.82
13.49
1.9
2.37
6.03
5.24
Fc
**
**
**
**
**
**
**
**
CV%
8.77
9.23
3.41
6.97
7.28
14.17
13.82
14.40
Means followed by same lowercase letter in the columns, or uppercase letter in the rows, are not statistically different from each other by the Scott Knott test at 5% significance. SUB = sub-accession; 19 and 20 = evaluation years of 2019 and 2020; FW = fruit weight (Kg); EARL: earliness (number of days from transplanting to harvest); PROL: prolificacy (number of fruits per plants, counted at the end of the crop cycle); FD and FL= fruit diameter and length, respectively (cm); FCD and FCL = fruit cavity diameter and length, respectively (cm); PL = pulp thickness (cm); SS: soluble solid contents (°Brix); Min and Max refer to the individual values and show the variation within the sub-accession; Fc = Snedecor's F distribution. ** = significant at 1%; CV(%) = coefficient of variation; Ama = commercial variety Melao Amarelo; and mo, mk, c, and nd = varieties momordica, makuwa, cantalupensis, and not defined, respectively.
Regarding the homogeneity of sub-accessions in the different growing years, the test of means (Table 2) showed that 22.2% of the sub-accessions (BGMEL10.0, BGMEL77.1, BGMEL67.0, BGMEL86.3, BGMEL108.3, and BGMEL108.4) presented no difference to each other for the characters evaluated. However, 25.9% of the sub-accessions (BGMEL77.3, BGMEL82.2, BGMEL83.2, BGMEL87.1, BGMEL87.2, BGMEL87.3, and BGMEL98.0) presented variations higher than 55.5%; the highest variations were found for earliness (37%), soluble solid contents (37%), fruit weight (33.3%), and pulp thickness (33.3%).
The earliness in the different growing years presented variations in for 37% of the sub-accessions: five from the variety cantalupensis (BGMEL78.0, BGMEL82.2, BGMEL 86.1, BGMEL 87.2, and BGMEL97.1), five from botanical varieties not identified (BGMEL68.3, BGMEL77.3, BGMEL83.2, BGMEL98.0, and BGMEL109.2), and the control. According to the means of the melon varieties, the highest means were found in the growing year I (2019), except for momordica. The lowest means were found for momordica and the highest for the commercial variety (Melao Amarelo) (Table 2), denoting the potential of the variety momordica for selection focused on increasing earliness.
Prolificacy and fruit cavity diameter presented only 18.5% variation, highlighting the variety makuwa and botanical varieties not defined (ND), respectively. Regarding the other characteristics, the highest variations were found for sub-accessions of ND varieties (Table 2); these variations are probably because of the high variability among plants within the sub-accessions, which is due to the introgression of alleles among different botanical varieties (MACÊDO et al., 2017; AMORIM et al., 2016).
All characteristics were, in general, favored in the growing year II (2020), except soluble solid contents. Sub-accessions from momordica stood out for earliness and characteristics related to fruit size (fruit weight, fruit diameter and length fruit cavity diameter and length, and pulp thickness). In addition, they presented a good prolificacy (Table 2), denoting that this botanical variety is important for selection processes focused on improving these characteristics.
Sub-accessions from ND varieties presented the highest prolificacy (Table 2), mainly the sub-accessions BGMEL108.3 and BGMEL 108.5, however they presented small fruits with low soluble solid contents. Sub-accessions from makuwa also presented prolificacy and progenies with high soluble solid contents, mainly BGMEL66.0, BGMEL111.0, and BGMEL112.0, with small fruits and good prolificacy, which can be a novelty in the market. The control (commercial variety) presented low prolificacy and medium-sized fruits with low solid soluble contents, under the same crop conditions. The commercial variety presented low performance was probably due to the use of the natural soil fertility management, which is common for traditional agricultural crops, since high chemical fertilizer rates are applied to soils for commercial crops.
The joint analysis of variance (Table 3) showed coefficients of variation varying from 5.40 (earliness) to 57.38 (prolificacy). Joint analysis is recommended only for environments with homogeneous residual variances. According to Cruz, Regazi and Carneiro (2012), several tests can be used to evaluate the homogeneity of residual variances, however, they have limitations or restrictions of use; thus, a practical criterion that can be adopted for grouping experiments to proceed joint analysis is to combine trials whose residual mean squares do not exceed the approximate ratio of 7:1 in the same group. In the present study, the ratios between the highest and lowest variances were between 1.03 and 4.01 for all characteristics evaluated (Table 3), which allowed to proceed the joint analysis and assess the genotype-environment interaction. The high variability found among sub-accessions is partially due to existing differences among plants within each sub-accession. Studies on melon germplasm showed a high variation among accessions (DANTAS et al., 2012; ARAGÃO et al., 2013; TRIMECH et al., 2013; YILDIZ ; AKGUL; SENSOY, 2014; ANDRADE et al., 2019) and among plants within accessions (AMORIM et al., 2016; MACÊDO et al., 2017).
Table 3
Joint analysis of variance among melon sub-accessions from family farmers of the state of Maranhão, Brazil, evaluated in 2019 and 2020.
SV
DF
Mean square
EARL
FW
FD
FL
FCD
FCL
PT
SS
PROL
G
27
12.99**
32.90**
22.70**
57.90**
12.00**
57.12**
19.64**
17.51**
10.18**
E
1
7.85ns
3.99ns
2.38ns
4.84ns
2.02ns
5.56ns
9.38ns
14.68ns
6.69*
G×E
27
3.71**
5.33**
2.72**
3.52**
1.80*
2.97**
3.06**
2.04**
1.04ns
RES
9.77
0.04
0.94
3.31
0.48
2.64
0.09
0.63
3.58
CV
5.40
25.41
9.63
11.20
13.08
12.83
13.91
14.11
57.38
Mean
57.82
0.84
10.09
16.25
5.33
12.65
2.18
5.64
3.29
Fmax
4.01
1.03
1.68
1.31
2.87
1.97
1.57
1.21
1.03
SV = source of variation; DF = degrees of freedom; EARL = earliness; FW = fruit weight; FD = fruit diameter; FL = fruit length; FCD = fruit cavity diameter; FCL = fruit cavity length;; PT = pulp thickness; SS = soluble solid contents (°Brix); PROL = prolificacy; G = genotype; E = environment; G×E = genotype-environment interaction; RES = residue; CV = coefficient of variation; Fmax = ratio between the highest and lowest residual mean square; **, * = significant at 1% and 5% significance, respectively; ns = not significant.
The joint analysis of variance (Table 3) showed that the genotype effect was highly significant (p≤0.01) for all variables, whereas the environmental effect was not significant, except for prolificacy. The genotype-environment interaction was significant for all variables, except prolificacy.
The predominance of estimates of genetic effects over environmental effects indicates that the genetic factors had a greater effect on the observed phenotype. However, the significant interaction for 88.8% of the variables denotes that the relative performance of the sub-accessions (BORÉM; MIRANDA, FRITSCHE-NETO, 2017) varied in the two growing years for all variables evaluated, except prolificacy. However, the temperature data were similar in the two growing years: mean temperatures varied from 27.46 to 28.03 °C (2019) and from 26.56 to 27.28 °C (2020). Rainfall data showed a small difference between growing years: 0.26 to 5.27 mm (2019) and 1.19 to 9.15 mm (2020) (AGRITEMPO, 2021).
High heritability was found for the genetic parameters, with estimates higher than 83% for all characters evaluated (Table 4), mainly for some characteristics related to fruit size (fruit length, cavity length, and fruit weight). These results denote a great potential for successful selection focused on these characters, as the observed phenotype was mostly affected by the genetic factor. The sub-accessions BGMEL 77.1 and BGMEL 87.1 (variety momordica) and BGMEL 87.3 (variety not defined) stood out for these characteristics (Table 2), showing to be promising for selection processes focused on increasing fruit size.
Table 4
Genetic parameters for characters of melon sub-accessions from family farmers of the state of Maranhão, Brazil, evaluated in 2019 and 2020.
Genetic parameters
Character
Year
σ
2
F
σ
2
E
σ
2
G
h2(%)
CVg(%)
CVe(%)
(
CV
g
/
CV
e
)
EARL
19
46.45
5.22
41.23
88.76
10.72
6.61
1.62
20
0.03
0.005
0.02
83.31
2.24
1.73
1.29
PROL
19
0.26
0.03
0.22
85.54
26.88
19.2
1.40
20
7.50
1.17
6.33
84.34
61.64
46.00
1.34
FW
19
0.02
0.001
0.02
93.07
11.75
5.56
2.11
20
0.04
0.001
0.04
95.97
14.73
5.22
2.82
FD
19
4.01
0.39
3.61
90.11
19.45
11.17
1.74
20
4.01
0.23
3.77
94.15
18.63
8.06
2.31
FL
19
29.56
0.95
28.61
96.77
34.93
11.05
3.16
20
38.32
1.25
37.06
96.71
35.39
11.29
3.13
FCD
19
0.05
0.008
0.04
83.86
8.38
6.39
1.31
20
0.81
0.08
0.72
89.63
15.67
9.27
1.69
FCL
19
23.57
0.59
22.98
97.48
40.55
11.29
3.59
20
0.46
0.01
0.44
95.79
17.75
6.45
2.75
PT
19
0.23
0.02
0.21
89.93
23.15
13.45
1.72
20
0.03
0.002
0.02
92.45
9.35
4.62
2.02
SS
19
2.35
0.23
2.12
90.12
24.12
13.86
1.74
20
1.78
0.19
1.59
89.29
24.03
14.47
1.66
σ2F = phenotypic variation; σ2E = environmental variation; σ2G = genetic variation; h2(%) = heritability; CVg(%) = coefficient of genetic variation; CVe(%) = coefficient of environmental variation; (CVg/CVe) = CVg to CVe ratio; FW = fruit weight (kg); EARL = earliness; PROL = prolificacy; FD = fruit diameter (cm); FL = fruit length (cm); FCD = fruit cavity diameter (cm); FCL = fruit cavity length (cm); PT= pulp thickness; and SS = soluble solid contents (°Brix).
Lower results were found by Valadares et al. (2017) for fruit weight (86.00%) and length (93.00%) when evaluating heritability of 23 melon accessions from the momordica group. However, this difference can be attributed to the use of another set of genotypes in the experiment conducted under greenhouse conditions, which allows for more control of environmental effects. Aragão, Nunes and Queiróz (2015) evaluated melon families and found lower heritabilities than those found in the present study, for all characters evaluated.
The estimated genetic, phenotypic, and environmental variations (Table 4) indicated that the genetic variation (σ2G) was higher than the environmental variation (σ2E) for all characters evaluated. Thus, it can be said that genetic effects predominate in the expression of the phenotype, indicating greater reliability and greater genetic gains in phenotypic selection. However, more significant variations between growing years were found for earliness, prolificacy, fruit length, and fruit cavity length.
The coefficients of genetic variation (CVg) found varied from 2.24% to 61.64% (Table 4) and were higher than the coefficients of environmental variation (CVe) for all characters evaluated. The lowest CVg were found for earliness and the highest for prolificacy, fruit cavity length fruit length and soluble solids. However, the highest CVe were also found for prolificacy and soluble solid contents, indicating that these characteristics were highly affected by environmental factors. Valadares et al. (2017) evaluated melon accessions from the variety momordica and found the highest CVg for pistil scar size (72.04) and soluble solid contents (55.34). Ferreira et al. (2016) evaluated pumpkin accessions and found the highest CVg for fruit weight and prolificacy, which denotes a greater effect of genetic factors on the expression of the phenotype and reinforces the existence of high variability in the germplasm.
The CVg to CVe ratio (CVg/CVe) presented values >1 for all characters (Table 4). CVg/CVe equal to or higher than 1 and heritability higher than 80% are favorable conditions for selection (CRUZ; REGAZI; CARNEIRO, 2012), which were found for all characteristics evaluated, denoting great potential for a successful selection.
CONCLUSIONS
The melon sub-accessions evaluated present genetic variability, with predominance of genetic effects over environmental effects, denoting the possibility of obtaining genetic gains by improving several characteristics of agronomic interest. The sub-accessions BGMEL 66.0, BGMEL111.0, and BGMEL112.0 from the variety makuwa are an important source of germplasm for the obtaining of good prolificacy and small fruits with high soluble solid contents. However, the sub-accessions BGMEL 108.3 and BGMEL 108.5, from botanical varieties not defined, can generate progenies with a high prolificacy; whereas sub-accessions from the variety momordica can be used for generation of progenies focused on shortening the crop cycle and increasing fruit size.
ACKNOWLEDGEMENTS
The authors thank the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for granting scholarships and financial support for the development of the present study; and the Bahia State University (UNEB), State University of Feira de Santana (UEFS), and Brazilian Agricultural Research Corporation (Embrapa Semiarid) for financial support, infrastructure, and access to the genotypes evaluated.
REFERENCES
AGRITEMPO. Sistema de monitoramento agrometeorológico. Disponível em: <http://www.agritempo.gov.br/agritempo/jsp/Estatisticas/index.jsp?siglaUF=BA>. Acesso em: 23 fev. 2021.
AGRITEMPO
Sistema de monitoramento agrometeorológico
23 fev. 2021
Disponível em: <http://www.agritempo.gov.br/agritempo/jsp/Estatisticas/index.jsp?siglaUF=BA>.
AMORIM, C. C. et al. Morphological diversity and identification of accessions of melon. African Journal of Agricultural Research, 11: 3622-3632, 2016.
AMORIM
C. C.
Morphological diversity and identification of accessions of melon
African Journal of Agricultural Research
11
3622
3632
2016
ANDRADE, C. A. et al. Morphoagronomic genetic diversity of Brazilian melon accessions based on fruit traits. Scientia Horticulturae, 243: 514-523, 2019.
ANDRADE
C. A.
Morphoagronomic genetic diversity of Brazilian melon accessions based on fruit traits
Scientia Horticulturae
243
514
523
2019
ARAGÃO, F. A. S. et al. Genetic divergence among accessions of melon from traditional agriculture of the Brazilian Northeast. Genetics and Molecular Research, 12: 6356-6371, 2013.
ARAGÃO
F. A. S.
Genetic divergence among accessions of melon from traditional agriculture of the Brazilian Northeast
Genetics and Molecular Research
12
6356
6371
2013
ARAGÃO, F. A. S.; NUNES, G. H. S.; QUEIRÓZ, M. A. Genotype x environment interaction of melon families based on fruit quality traits. Crop Breeding and Applied Biotechnology, 15: 79-86, 2015.
ARAGÃO
F. A. S.
NUNES
G. H. S.
QUEIRÓZ
M. A.
Genotype x environment interaction of melon families based on fruit quality traits
Crop Breeding and Applied Biotechnology
15
79
86
2015
BORÉM, A.; MIRANDA, G.V.; FRITSCHE-NETO, R. Melhoramento de plantas. 7ª. ed. Viçosa, MG: UFV, 2017. 543p.
BORÉM
A.
MIRANDA
G.V.
FRITSCHE
R.
NETO
Melhoramento de plantas
7ª
Viçosa, MG
UFV
2017
543
543
CRUZ, C. D.; REGAZI, A. J.; CARNEIRO, P. C. S. Modelos biométricos Aplicados ao Melhoramento Genético. 4. ed. Viçosa, MG: UFV, 2012. 514 p.
CRUZ
C. D.
REGAZI
A. J.
CARNEIRO
P. C. S.
Modelos biométricos Aplicados ao Melhoramento Genético
4
Viçosa, MG
UFV
2012
514
514
CRUZ, C. D. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35: 271-276, 2013.
CRUZ
C. D.
Genes: a software package for analysis in experimental statistics and quantitative genetics
Acta Scientiarum. Agronomy
35
271
276
2013
CRUZ, C. D.; CARNEIRO, P. C. S; REGAZI, A. J. Modelos biométricos Aplicados ao Melhoramento Genético. 3 ed. Viçosa, MG: UFV, 2014. 668 p.
CRUZ
C. D.
CARNEIRO
P. C. S
REGAZI
A. J.
Modelos biométricos Aplicados ao Melhoramento Genético
3
Viçosa, MG
UFV
2014
668
668
DANTAS, A. C. et al. Caracterização molecular de acessos de melão coletados no Nordeste brasileiro. Revista Brasileira de Fruticultura, 34, 183-189, 2012.
DANTAS
A. C.
Caracterização molecular de acessos de melão coletados no Nordeste brasileiro
Revista Brasileira de Fruticultura
34
183
189
2012
FERREIRA, M. G. et al. Parâmetros genéticos, dissimilaridade e desempenho per se em acessos de abóbora. Horticultura Brasileira, 34: 537-546, 2016.
FERREIRA
M. G.
Parâmetros genéticos, dissimilaridade e desempenho per se em acessos de abóbora
Horticultura Brasileira
34
537
546
2016
IBGE - Instituto Brasileiro de Geografia e Estatística. 2020. Produção agrícola municipal. Disponível em: <https://sidra.ibge.gov.br/tabela/1612>. Acesso em: 25 jul. 2022.
IBGE - Instituto Brasileiro de Geografia e Estatística
2020
Produção agrícola municipal
25 jul. 2022
Disponível em: <https://sidra.ibge.gov.br/tabela/1612>.
IPGRI – International Plant Genetic Resources Institute. Descriptors for melon (Cucumis melo L.). Rome: International Plant Genetic Resources Institute, 2003. 65 p.
IPGRI – International Plant Genetic Resources Institute
Descriptors for melon (Cucumis melo L.)
Rome
International Plant Genetic Resources Institute
2003
65
65
MACÊDO, S. S. et al. Botanical identification and genetic diversity in melons from family farming in the state of Maranhão. Revista Caatinga, 30: 602-613, 2017.
MACÊDO
S. S.
Botanical identification and genetic diversity in melons from family farming in the state of Maranhão
Revista Caatinga
30
602
613
2017
PITRAT, M.; HANELT. P.; HAMMER, K. Some comments on interspecific classification of cultivars of melon. Acta Horticulturae, 510: 29-36, 2000.
PITRAT
M.
HANELT
P.
HAMMER
K.
Some comments on interspecific classification of cultivars of melon
Acta Horticulturae
510
29
36
2000
PITRAT, M. Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotechnology, 30: 273-278, 2013.
PITRAT
M.
Phenotypic diversity in wild and cultivated melons (Cucumis melo)
Plant Biotechnology
30
273
278
2013
QUEIRÓZ, M. A; BARBIERI, R. L.; SILVA, R. A. M. Ocorrência de variabilidade genética em plantas exóticas no Brasil. In: VEIGA, R. F. A.; QUEIRÓZ, M. A. (Eds.). Recursos Fitogenéticos: A base da agricultura sustentável no Brasil. 1 ed. Brasília, DF: Sociedade Brasileira de Recursos Genéticos, 2015. cap. 11, p. 135-147.
QUEIRÓZ
M. A
BARBIERI
R. L.
SILVA
R. A. M.
Ocorrência de variabilidade genética em plantas exóticas no Brasil
VEIGA
R. F. A.
QUEIRÓZ
M. A.
Recursos Fitogenéticos: A base da agricultura sustentável no Brasil
1
Brasília, DF
Sociedade Brasileira de Recursos Genéticos
2015
135
147
cap. 11.
TRIMECH, R. et al. Genetic variation in Tunisian melon (Cucumismelo L.) germplasm as assessed by morphological traits. Genetic Resources and Crop Evolution, 60: 1621-1628, 2013.
TRIMECH
R.
Genetic variation in Tunisian melon (Cucumismelo L.) germplasm as assessed by morphological traits
Genetic Resources and Crop Evolution
60
1621
1628
2013
VALADARES, R. N. et al. Estimativas de parâmetros genéticos e correlações em acessos de melão do grupo momordica. Horticultura Brasileira, 35: 557-563, 2017.
VALADARES
R. N.
Estimativas de parâmetros genéticos e correlações em acessos de melão do grupo momordica
Horticultura Brasileira
35
557
563
2017
YILDIZ, M; AKGUL, N.; SENSOY, S. Morphological and Molecular Characterization of Turkish Landraces of Cucumis melo L. Notulae Botanicae Horti Agrobotanici, 42: 51-58, 2014.
YILDIZ
M
AKGUL
N.
SENSOY
S.
Morphological and Molecular Characterization of Turkish Landraces of Cucumis melo L
Notulae Botanicae Horti Agrobotanici
42
51
58
2014
Autoria
Clisneide C. de Amorim **Corresponding author: <clisamorim@yahoo.com.br>
Department of Biology, Universidade Estadual de Feira de Santana, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaBrazilFeira de Santana, BA, BrazilDepartment of Biology, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
Department of Technology and Social Sciences, Universidade do Estado da Bahia, Juazeiro, BA, BrazilUniversidade do Estado da BahiaBrazilJuazeiro, BA, BrazilDepartment of Technology and Social Sciences, Universidade do Estado da Bahia, Juazeiro, BA, Brazil
Department of Biology, Universidade Estadual de Feira de Santana, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaBrazilFeira de Santana, BA, BrazilDepartment of Biology, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
Department of Technology and Social Sciences, Universidade do Estado da Bahia, Juazeiro, BA, BrazilUniversidade do Estado da BahiaBrazilJuazeiro, BA, BrazilDepartment of Technology and Social Sciences, Universidade do Estado da Bahia, Juazeiro, BA, Brazil
Universidade Federal do Vale do São Francisco, Petrolina, PE, BrazilUniversidade Federal do Vale do São FranciscoBrazilPetrolina, PE, BrazilUniversidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
Conflict of interest: The authors declare no conflict of interest related to the publication of this manuscript.
SCIMAGO INSTITUTIONS RANKINGS
Department of Biology, Universidade Estadual de Feira de Santana, Feira de Santana, BA, BrazilUniversidade Estadual de Feira de SantanaBrazilFeira de Santana, BA, BrazilDepartment of Biology, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
Department of Technology and Social Sciences, Universidade do Estado da Bahia, Juazeiro, BA, BrazilUniversidade do Estado da BahiaBrazilJuazeiro, BA, BrazilDepartment of Technology and Social Sciences, Universidade do Estado da Bahia, Juazeiro, BA, Brazil
Universidade Federal do Vale do São Francisco, Petrolina, PE, BrazilUniversidade Federal do Vale do São FranciscoBrazilPetrolina, PE, BrazilUniversidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
Table 1
Passport data of sub-accessions of Cucumis melo from the Active Germplasm Bank of Cucurbitaceae from the Northeast Region at the Brazilian Agricultural Research Corporation (Embrapa Semiarid), evaluated in 2019 and 2020.
Table 4
Genetic parameters for characters of melon sub-accessions from family farmers of the state of Maranhão, Brazil, evaluated in 2019 and 2020.
table_chartTable 1
Passport data of sub-accessions of Cucumis melo from the Active Germplasm Bank of Cucurbitaceae from the Northeast Region at the Brazilian Agricultural Research Corporation (Embrapa Semiarid), evaluated in 2019 and 2020.
Sub-accession
Variety*
*Botanical classification according to Amorim et al. (2016); ND = botanical variety not defined.
Municipality of collection
Municipality coordinates
BGMEL 10.0
momordica
São João of Patos
6°29'43"S, 43°42'10"W
BGMEL 66.0
makuwa
Colinas
7°6'59"S, 46°15'26"W
BGMEL 67.0
makuwa
Colinas
7°6'59"S, 46°15'26"W
BGMEL 68.1
momordica
Colinas
7°6'59"S, 46°15'26"W
BGMEL 68.2
ND
Colinas
7°6'59"S, 46°15'26"W
BGMEL 68.3
ND
Colinas
7°6'59"S, 46°15'26"W
BGMEL 77.1
momordica
Coroatá
4°7'31"S, 44°7'49"W
BGMEL 77.3
ND
Coroatá
4°7'31"S, 44°7'49"W
BGMEL 78.0
cantalupensis
Codó
4°27'18"S, 43°52'44"W
BGMEL 82.2
cantalupensis
Itapecuru Mirim
3°23'42"S, 44°21'36"W
BGMEL 83.1
ND
Itapecuru Mirim
3°23'42"S, 44°21'36"W
BGMEL 83.2
ND
Itapecuru Mirim
3°23'42"S, 44°21'36"W
BGMEL 86.1
cantalupensis
Codó
4°27'18"S, 43°52'44"W
BGMEL 86.2
ND
Codó
4°27'18"S, 43°52'44"W
BGMEL 86.3
ND
Codó
4°27'18"S, 43°52'44"W
BGMEL 87.1
momordica
São Luís Gonzaga
4°22'51"S, 44°40'14"W
BGMEL 87.2
cantalupensis
São Luís Gonzaga
4°22'51"S, 44°40'14"W
BGMEL 87.3
ND
São Luís Gonzaga
4°22'51"S, 44°40'14"W
BGMEL 97.1
cantalupensis
Caxias
4°52'29"S, 43°20'49"W
BGMEL 98.0
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 108.3
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 108.4
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 108.5
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 109.2
ND
Caxias
4°52'29"S, 43°20'49"W
BGMEL 111.0
makuwa
Colinas
7°6'59"S, 46°15'26"W
BGMEL 112.0
makuwa
Colinas
7°6'59"S, 46°15'26"W
BGMEL 115.0
makuwa
São Vicente Ferrer
2°53'44"S, 44°52'53"W
table_chartTable 2
Test of means for nine characters of melon sub-accessions from family farmers of the state of Maranhão, Brazil, evaluated in 2019 and 2020.
SUB
EARL
PROL
FW
FD
FL
19
20
19
20
19
20
19
20
19
20
10.0 mo
49.9dA
53.5bA
3.2cA
3.8cA
1.1aA
1.3cA
11.3cA
11.5cA
24.1bA
26.0bA
68.1 mo
51.7dA
53.6bA
2.7cB
6.6bA
1.1aA
1.3cA
11.2cA
12.2cA
24.9bA
24.5cA
77.1 mo
50.3dA
52.1bA
4.3cA
3.6cA
1.3aA
1.4cA
11.6cA
11.7cA
27.9aA
28.5aA
87.1 mo
58.8cA
56.0bA
1.8cA
2.2cA
0.9bB
2.1bA
11.0cA
12.6bA
19.6dB
29.9aA
Meanmo
52.73
53.83
3.03
4.09
1.17
1.56
11.31
12.05
24.16
27.24
66.0 mk
54.6dA
55.0bA
3.0cB
6.7bA
0.3cA
0.41A
8.0eA
8.6dA
11.6eA
12.61A
67.0mk
55.4cA
53.3bA
2.3cA
4.1cA
0.5cA
0.41A
9.3dA
8.6dA
13.2eA
12.1fA
111.0 mk
54.0dA
54.0bA
1.8cB
7.7bA
0.3cA
0.31A
8.1eA
7.6eA
11.5eA
10.31A
112.0 mk
55.7cA
54.2bA
3.4cA
5.9bA
0.3cA
0.21A
8.0eA
7.5eA
11.6eA
10.1fA
115.0 mk
56.1cA
55.4bA
2.0cB
5.5bA
0.4cA
0.5eA
8.3eA
9.2dA
12.3eA
13.7eA
Mean mk
55.19
54.40
2.51
6.02
0.42
0.41
8.38
8.35
12.09
11.79
78.0 c
65.8bA
59.6aB
1.6cA
2.5cA
1.1aA
1.5cA
10.6cA
10.8cA
20.6cB
24.1cA
82.2 c
63.1bA
55.1bB
1.1cA
3.3cA
0.2cB
0.7eA
7.6eB
9.8dA
7.4fA
14.4eA
86.1 c
63.0bA
55.0bB
1.0cA
2.3cA
0.5cA
0.8eA
9.2dA
10.6cA
14.0eA
15.9eA
87.2 c
67.6bA
61.0aB
0.5cA
1.0cA
1.4aB
1.9bA
11.7cB
13.7bA
18.8dB
21.9dA
97.1 c
71.3aA
59.3aB
0.4cA
l.lcA
0.8bA
0.8eA
11.8cA
10.7cA
14.4eA
15.9eA
Mean c
66.22
60.17
0.96
2.06
0.86
1.16
10.22
11.13
15.10
18.47
68.2 nd
54.1dA
55.1bA
2.6cA
4.2cA
0.8bA
0.8eA
10.8cA
11.1cA
17.8dA
16.5eA
68.3 nd
62.4bA
55.0bB
1.5cA
1.9cA
0.5cB
1.0dA
8.1eA
9.0dA
18.4dB
25.6bA
77.3 nd
66.8bA
58.6aB
1.9cA
0.9cA
1.4aA
1.0dB
13.2bA
10.4cB
21.8cA
20.2dA
83.1 nd
57.6cA
55.0bA
1.5cA
3.6cA
1.3aA
1.0dA
14.8aA
13.3bA
14.4eA
14.6eA
83.2 nd
71.6aA
55.3bB
0.5cA
1.2cA
0.3cB
0.7eA
8.7dB
11.3cA
10.4fA
11.5fA
86.2 nd
56.3cA
57.0bA
1.2cB
5.1bA
0.4cB
0.8eA
9.4dB
11.3cA
8.9fA
11.5fA
86.3 nd
59.6cA
56.0bA
0.5cA
1.6cA
0.5cA
0.6eA
9.2dA
9.9dA
12.3eA
13.3fA
87.3 nd
58.5cA
58.5aA
1.5cA
2.1cA
1.5aB
3.1aA
12.7bB
15.6aA
22.3cB
27.1bA
98.0 nd
72.0aA
61.0aB
0.7cA
2.0cA
0.3cB
0.7eA
7.8eB
10.4cA
10.8fB
14.3eA
108.3 nd
54.3dA
51.0bA
11.5aA
10.9aA
0.3cA
0.3fA
7.7eA
7.6eA
11.4eA
12.5fA
108.4 nd
61.1cA
56.5bA
5.2cA
6.9bA
0.5cA
0.6eA
9.1dA
9.5dA
14.0eA
14.4eA
108.5 nd
52.5dA
51.3bA
8.0bA
10.8aA
0.2cA
0.3fA
7.2eA
7.7eA
8.2fA
9.8fA
109.2 nd
59.0cA
52.8bB
3.2cA
3.8cA
0.2cA
0.4fA
7.0eA
7.9eA
10.7fA
12.8fA
Mean nd
60.48
55.64
3.10
4.26
0.68
0.92
9.72
10.43
14.01
15.75
Ama
72.3aA
61.0aB
0.6cA
2.1cA
0.5cB
0.9dA
8.9dB
10.6cA
13.8eA
16.6eA
Min
45.0
49.0
0.2
0.4
0.44
0.25
6.73
7.27
7.1
9.0
Max
76.0
61.0
15.8
16.0
1.52
3.34
15.15
16.7
29.98
32.8
Mean
59.88
55.77
2.51
4.08
0.81
0.96
9.77
10.42
15.30
17.20
Fc
**
**
**
**
**
**
**
**
**
**
CV%
6.60
3.53
75.87
45.99
12.81
22.50
11.16
8.04
11.04
11.29
SUB
FCD
FCL
PT
SS
19
20
19
20
19
20
19
20
10.0 mo
5.9bA
6.1aA
20.0bA
21.3bA
2.3bA
2.4bA
4.4dA
3.7dA
68.1 mo
5.7bA
6.4aA
20.5bA
20.0bA
2.4bA
2.6bA
4.3dA
3.7dA
77.1 mo
6.4bA
6.2aA
23.7aA
24.1aA
2.5aA
2.6bA
4.4dA
4.2dA
87.1 mo
5.0cB
6.4aA
16.8cB
24.8aA
2.1bB
3.0bA
4.8dA
3.8dA
Mean mo
5.81
6.31
20.28
22.60
2.38
2.71
4.48
3.85
66.0 mk
4.4cA
5.0bA
9.1eA
10.1eA
1.4cA
1.8cA
8.6aA
8.1aA
67.0 mk
5.0cA
4.8bA
9.9eA
9.7eA
1.7cA
1.7dA
7.5bA
6.7aA
111.0 mk
4.6cA
4.4bA
9.0eA
8.2eA
1.4cA
1.4dA
9.5aA
7.7aB
112.0 mk
4.4cA
4.7bA
9.0eA
8.2eA
1.5cA
1.3dA
9.2aA
7.7aB
115.0 mk
4.6cA
5.0bA
9.6eA
11.5dA
1.5cB
2.0cA
7.5bA
5.8bB
Mean mk
4.63
4.84
9.36
9.56
1.53
1.67
8.46
7.20
78.0 c
5.2cA
4.9bA
15.6dB
19.8bA
2.6aA
2.7bA
6.0cA
4.3dB
82.2 c
4.3cA
4.6bA
5.2fB
11.0dA
1.5cB
2.5bA
7.4bA
5.1cB
86.1 c
4.8cA
5.6aA
10.0eA
10.9dA
2.1bA
2.3cA
6.4cA
5.8dA
87.2 c
4.6cA
5.2bA
13.7dB
16.9cA
3.1aB
4.1aA
6.0cA
5.7bA
97.1 c
7.3aA
5.9aB
11.0eA
12.1dA
1.9cA
2.0cA
4.7dA
4.2dA
Mean c
5.29
5.29
11.14
14.18
2.27
2.76
6.10
5.02
68.2 nd
6.0bA
6.1aA
14.4dA
12.9dA
2.1bB
3.0bA
6.1cA
4.6dB
68.3 nd
3.8cA
4.2bA
15.5dB
21.6bA
1.7cA
2.2cA
4.1dA
5.0cA
77.3 nd
8.1aA
6.3aB
17.2cA
15.8cA
2.3bA
1.9cA
5.8cA
4.4dB
83.1 nd
8.4aA
7.1aB
9.9eA
9.9eA
2.8aA
2.7bA
5.8cA
5.3cA
83.2 nd
4.4cB
5.8aA
6.4fA
7.7eA
1.9cB
2.5bA
6.0cA
6.9aA
86.2 nd
5.2cA
5.6aA
6.2fA
8.6eA
1.7cB
2.6bA
4.2dA
5.3cA
86.3 nd
5.4cA
6.0aA
8.9eA
10.1eA
1.7cA
1.8cA
5.4cA
5.9bA
87.3 nd
6.1bA
7.0aA
17.4cB
21.1bA
2.7aB
4.2aA
4.7dA
3.4dB
98.0 nd
5.0cA
6.1aA
8.0eB
11.3dA
1.4cB
2.1cA
6.1cA
4.3dB
108.3 nd
4.3cA
3.7bA
8.7eA
8.7eA
1.6cA
1.9cA
3.8dA
3.8dA
108.4 nd
4.5cA
5.1bA
10.5eA
11.3dA
2.0bA
2.1cA
5.9cA
5.3cA
108.5 nd
3.9cA
4.3bA
6.1fA
7.7eA
1.3cA
1.6dA
6.4cA
4.2dB
109.2 nd
3.7cA
4.0bA
7.8eA
9.5eA
1.4cA
1.8cA
7.2bA
6.8aA
Mean nd
5.33
5.51
10.58
12.05
1.94
2.36
5.50
5.02
Ama
4.50cA
4.81bA
9.75eA
12.00dA
2.11bB
2.78bA
5.6cA
4.4dA
Min
3.37
3.47
5.0
6.7
1.2
1.2
2.93
2.87
Max
10.15
8.0
24.85
27.2
4.06
4.45
10.4
9.2
Mean
5.23
5.43
11.82
13.49
1.9
2.37
6.03
5.24
Fc
**
**
**
**
**
**
**
**
CV%
8.77
9.23
3.41
6.97
7.28
14.17
13.82
14.40
table_chartTable 3
Joint analysis of variance among melon sub-accessions from family farmers of the state of Maranhão, Brazil, evaluated in 2019 and 2020.
SV
DF
Mean square
EARL
FW
FD
FL
FCD
FCL
PT
SS
PROL
G
27
12.99**
32.90**
22.70**
57.90**
12.00**
57.12**
19.64**
17.51**
10.18**
E
1
7.85ns
3.99ns
2.38ns
4.84ns
2.02ns
5.56ns
9.38ns
14.68ns
6.69*
G×E
27
3.71**
5.33**
2.72**
3.52**
1.80*
2.97**
3.06**
2.04**
1.04ns
RES
9.77
0.04
0.94
3.31
0.48
2.64
0.09
0.63
3.58
CV
5.40
25.41
9.63
11.20
13.08
12.83
13.91
14.11
57.38
Mean
57.82
0.84
10.09
16.25
5.33
12.65
2.18
5.64
3.29
Fmax
4.01
1.03
1.68
1.31
2.87
1.97
1.57
1.21
1.03
table_chartTable 4
Genetic parameters for characters of melon sub-accessions from family farmers of the state of Maranhão, Brazil, evaluated in 2019 and 2020.
Genetic parameters
Character
Year
σ2F
σ2E
σ2G
h2(%)
CVg(%)
CVe(%)
(CVg/CVe)
EARL
19
46.45
5.22
41.23
88.76
10.72
6.61
1.62
20
0.03
0.005
0.02
83.31
2.24
1.73
1.29
PROL
19
0.26
0.03
0.22
85.54
26.88
19.2
1.40
20
7.50
1.17
6.33
84.34
61.64
46.00
1.34
FW
19
0.02
0.001
0.02
93.07
11.75
5.56
2.11
20
0.04
0.001
0.04
95.97
14.73
5.22
2.82
FD
19
4.01
0.39
3.61
90.11
19.45
11.17
1.74
20
4.01
0.23
3.77
94.15
18.63
8.06
2.31
FL
19
29.56
0.95
28.61
96.77
34.93
11.05
3.16
20
38.32
1.25
37.06
96.71
35.39
11.29
3.13
FCD
19
0.05
0.008
0.04
83.86
8.38
6.39
1.31
20
0.81
0.08
0.72
89.63
15.67
9.27
1.69
FCL
19
23.57
0.59
22.98
97.48
40.55
11.29
3.59
20
0.46
0.01
0.44
95.79
17.75
6.45
2.75
PT
19
0.23
0.02
0.21
89.93
23.15
13.45
1.72
20
0.03
0.002
0.02
92.45
9.35
4.62
2.02
SS
19
2.35
0.23
2.12
90.12
24.12
13.86
1.74
20
1.78
0.19
1.59
89.29
24.03
14.47
1.66
Como citar
de Amorim, Clisneide C. et al. Parâmetros genéticos em subacessos de melão da agricultura tradicional. Revista Caatinga [online]. 2023, v. 36, n. 2 [Acessado 3 Abril 2025], pp. 320-328. Disponível em: <https://doi.org/10.1590/1983-21252023v36n209rc>. Epub 22 Maio 2023. ISSN 1983-2125. https://doi.org/10.1590/1983-21252023v36n209rc.
Universidade Federal Rural do Semi-ÁridoAvenida Francisco Mota, número 572, Bairro Presidente Costa e Silva, Cep: 5962-5900, Telefone: 55 (84) 3317-8297 -
Mossoró -
RN -
Brazil E-mail: caatinga@ufersa.edu.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.