rcaat
Revista Caatinga
Rev. Caatinga
0100-316X
1983-2125
Universidade Federal Rural do Semi-Árido
RESUMO
Na agricultura de precisão a determinação de zonas de manejo dos atributos de solo e planta, é um processo complexo que demanda o conhecimento de muitas variáveis, o que dificulta o processo de gestão e tomada de decisão. Este estudo avaliou a variabilidade espacial da produtividade da cultura da soja e de atributos químicos do solo por meio de análise multivariada e geoestatística para a determinação de zonas de manejo específico em um Latossolo. A produtividade de soja e os atributos químicos do solo nas camadas 0-0.2 e 0.2-0.4 m de profundidade foram amostrados em 70 pontos de amostragem. Análises geoestatísticas e multivariadas foram então realizadas. As propriedades químicas do solo apresentaram maior variabilidade na profundidade de 0,2 a 0,4 m. Os parâmetros do semivariograma dos dados da análise de componentes principais (PCA) (PCA 1, PCA 2 e PCA 3) para ambas as profundidades foram mais homogêneos do que os dados originais. Os mapas de propriedades químicas do solo apresentaram alta similaridade com o mapa de produtividade da soja. A ACP explicou 65,34% (0 a 0,2 m) e 70,50% (0,2 a 0,4 m) da variabilidade dos dados, agrupando a produtividade da soja, matéria orgânica, pH, fósforo, potássio, cálcio, magnésio e sódio. A espacialização do PCA permitiu a definição das zonas de manejo indicadas pelo PCA 1, PCA 2 e PCA 3 para ambas as profundidades. O resultado indica que a área deve ser manejada utilizando diferentes estratégias de manejo da fertilidade do solo para aumentar a produtividade da soja.
INTRODUCTION
In Brazil, agribusiness makes a significant contribution to the national economy, with soybeans as the main agricultural commodity. The mean soybean yield in Brazil is 3,000 kg ha-1, cultivated in an area of 41 million hectares. However, in the state of Maranhão alone, the mean yield is 3,300 kg ha-1 cultivated in 1 million hectares (CONAB, 2022).
Several studies have examined the spatial variability in soybean yield (CAMBARDELLA et al., 1994; SILVA et al., 2010; VIEIRA et al., 2010; LIMA et al., 2013; SIQUEIRA et al., 2015a; GAVIOLI et al., 2016; BUTTAFUOCO et al., 2017; FREDDI et al., 2017; BUSS et al., 2019; JIANSHU, 2019). According to Vieira (2000), some soil natural variability always exists but may be altered by soil use and management. Siqueira et al. (2015a) stated that fertilizer application in agriculture increases the variability of soil properties and that management zone definition requires the use of methods involving a greater number of properties that vary in time and space.
GuedesFilho et al. (2010) found a common standard of spatial variability when evaluating crop yield maps in long-term experiments. However, in some years, the spatial variability of crop yield was aleatory. Vieira et al. (2010) reported that the spatial variability of nutrient export by plants is not homogeneous, although soil fertility is also managed. However, it is necessary to understand the spatial variability dynamics of crop yields and soil chemical properties using mathematical models that can integrate a greater number of variables.
Multivariate analysis describes the variance and covariance structure of variable groups by constructing linear combinations and reducing the number of dimensions (JEFFERS, 1978; SILVA et al., 2010; LIMA et al., 2013; BUSS et al., 2019). Therefore, studies involving the application of geostatistical and multivariate techniques provide a multidimensional understanding and higher accuracy in defining management zones. Alarcón-Jiménez et al. (2015) used a multivariate analysis of soil physical properties and corn yield to establish management zones. Córdoba et al. (2016) presented a geostatistical and multivariate analysis protocol to determine management zones using soil and crop yield data.
Multiple approaches (geostatistical and multivariate analysis) have been used by researchers to describe the spatial variability in plants and soils (SILVA et al., 2010; SILVA; LIMA, 2012; LIMA et al., 2013; GAVIOLI et al., 2016; BUTTAFUOCO et al., 2017; FREDDI et al., 2017; MASOUD et al., 2018; OUMENSKOU et al, 2018; URIBEETXEBARRIA et al., 2018; BUSS et al., 2019), demonstrating its importance.
The objective of this study was to evaluate the spatial variability in soybean yield and soil chemical properties using geostatistical and multivariate analyses to define management zones.
MATERIAL AND METHODS
The study area is in Mata Roma municipality, Maranhão State, Brazil (3º 70’ 80.88″ S e 43º 18’ 71.27″ W), with a median altitude of 103 m. The regional climatic classification is Aw, warm and humid, with two well-defined seasons: rainy (December-May) and dry (June-November). The annual mean precipitation is 1,835 mm, and the mean temperatures in summer and winter are 26.5 and 28 °C, respectively (Figure 1a).
The soil area is Oxisol (SANTOS, et al., 2018), which has a clayey texture. The soil characteristics are presented in Table 1. The area has been cultivated with soybean (Glycine max L.) and corn (Zea mays L.) in crop rotation without irrigation under no-tillage since 2008. The total area is 44.75 ha (Figure 1b). The crop yield and soil were sampled after soybean harvest (2015/2016) at 70 regular sampling areas of 100 × 35 m. Sampling points were referenced using a static GPS with post-processed differential correction (static DGPS) (Figure 1b).
Figure 1
Climate parameters (a) and map with level difference and location of sampling points in area (b).
Table 1
Physical and chemical characterization of the soil of the area cultivated with soybean under no-tillage.
0-0.2 m
Sand
Silt
Clay
BD
Macro
Micro
TP
OM
pH
P
K
Ca
Mg
CEC
-------- g kg-1 -----------
Mg gm-3
--------- m3 m-3 ---------
g dm-3
mg dm-3
---------- mmolc dm-3 ----------
745.58
138.21
117.14
1.27
0.17
0.38
0.55
22
5
49
0.7
18
3
46.7
0.2-0.4 m
Sand
Silt
Clay
BD
Macro
Micro
TP
OM
pH
P
K
Ca
Mg
CEC
-------- g kg-1 -----------
Mg gm-3
--------- m3 m-3 ---------
g dm-3
mg dm-3
---------- mmolc dm-3 ----------
737.77
141.70
120.63
1.29
0.16
0.37
0.53
19
4.7
47
0.5
17
3
45.6
BD, bulk density; Macro, macroporosity; Micro, microporosity; TP, total porosity; OM, organic matter; CEC, cation exchange capacity.
Soybean yield (kg ha-1) was determined on April 20, 2016 in plots of 18 m2. After harvest, the grains were oven-dried at 65 °C and weighed after attaining a constant mass.
Disturbed soil was sampled at soil depths between 0 to 0.2 and 0.2 to 0.4 m to determine the following chemical properties: organic matter (OM, g dm-3), pH CaCl2, potential acidity (H+Al, mmolc dm-3), phosphorus (P, mg dm-3), potassium (K, mmolc dm-3), calcium (Ca, mmolc dm-3), magnesium (Mg, mmolc dm-3), sodium (Na, mmolc dm-3), cation exchange capacity (CEC, mmolc dm-3), base sum (BS, mmolc dm-3), base saturation (V%), copper (Cu, mg kg-1), iron (Fe, mg kg-1), manganese (Mn, mg kg-1), and cadmium (Cd, mg kg-1), following procedures mentioned in Raij et al. (2001).
Data were analyzed using descriptive statistics with the help of R 3.3.1 (R CORE TEAM, 2018), and the following measures were determined: mean, variance, standard deviation, coefficient of variation, asymmetry, kurtosis, and D (maximum deviation in relation to normal distribution, using the Kolmogorov-Smirnov test with error probability of 0.01).
The assumptions of the intrinsic hypothesis of geostatistics were considered for modelling and adjusting the experimental semivariogram according to Vieira (2000), obtaining the following parameters using the jackknifing technique: C0 (nugget effect), C0 +C1 (sill), and a (range, m).
Scaled semivariograms were adjusted to evaluate the spatial variability pattern of pairs of variable variances (Equation 1) (VIEIRA et al., 1997). This allows for the overlap of variables with different scalar magnitudes by the standardization of semivariance pairs, as described by Siqueira et al. (2015b).
(1)
y
s
c
(
h
)
=
y
(
h
)
Var
(
z
)
where:
ysc(h) is the scaled semivariogram; y(h) is the original semivariogram; Var(h) is the data variance.
The spatial dependence ratio (SDR) among the samples was determined as previously described by Cambardella et al. (1994), which is classified as low (75-100%), medium (25-75%), and high (0-25%).
Multivariate analysis (principal component analysis, PCA) was used to analyze soil and plant data, taking into account the null mean and unitary variance, using the software Statistica 12.0 (STATSOFT, 2015). Data were initially standardized (mean = 0 and standard deviation = 1) to the original data of the same magnitude, once all evaluated variables had different orders of magnitude. With this standardization, it was possible to perform the PCA.
PCA was performed using the correlation matrix between standardized variables (JEFFERS, 1978), allowing collinearity determination, which contributes to reducing variable dimensionalities (BUSS et al., 2019) by the orthogonal linear recombination of variables (JEFFERS, 1978). From the correlation matrix between standardized variables, the place of each variable with collinearity was determined in a covariance matrix.
For the PCA biplot graph, a set of eigenvectors (PC 1, PC 2,..., PC h) was included, which explained more than 60% of the data variability, and the variance of each main component was calculated using Equation 2:
(2)
C
P
h
=
λ
h
(
C
)
100
where:
CPh = principal component h;
λh = eigenvalue h; and, where:
C = covariance matrix; trace (C) = λ1 + λ2 + ... + λh.
For each eigenvalue (PC1, PC2, ..., PCh) that explained more than 60% of the data variability, outliers were checked using the Hotelling T2 technique. The validation was performed considering the quadratic sum of the forecast errors [SPE(Q)]. After validating the PCA, the scores of each eigenvalue were determined to further examine spatial variability using the experimental semivariogram and scaled semivariogram adjustment. Maps of spatial variability were obtained using kriging interpolation and performed on SURFER 12 (GOLDEN SOFTWARE, 2014).
RESULTS AND DISCUSSION
The mean yield in the area was 3,770.01 kg ha-1 (Table 2), and is 13.21% above the mean yield of Maranhão (3,330 kg ha-1) and 25.66% above that of the national mean yield (3,000 kg ha-1) (CONAB, 2022). Our results were higher than those of Freddi et al. (2017), who found a soybean yield of 3,280 kg ha-1 in an Oxisol located in the Cerrado and Amazônian Forest ecotones.
The organic matter content was higher in the surface layer (12.64 g dm-3) than in the subsurface (11.08 g dm-3). In no-tillage, the high values of OM in the surface layer are attributed to the absence of mobilization and accumulation of crop residues during cultivation. Our OM results corroborate those found by Lima et al. (2013), Buttafuoco et al. (2017), Freddi et al. (2017), Silva and Siqueira (2020), and Siqueira et al. (2022).
Table 2
Descriptive statistics of soil chemical attributes at 0.0-0.2 m and 0.2-0.4 m depth cultivated with soybean.
Mean
Variance
SD
CV (%)
Skew
Kurtosis
D*
0.0-0.2 m
Soybean yield
3770.71
189447
435.25
11.54
0.11
-0.50
0.065n
OM
12.64
35.36
5.95
0.47
1.15
1.43
0.194Ln
pH
5.12
0.34
0.58
0.11
-0.09
-0.05
0.074n
P
10.87
55.21
7.43
0.68
2.21
6.80
0.193n
K
1.88
2.01
1.42
0.75
1.42
0.51
0.329Ln
Ca
14.51
27.08
5.20
0.36
2.44
9.53
0.191n
Mg
4.94
9.56
3.09
0.63
0.59
-0.38
0.185n
H+Al
20.77
16.50
4.06
0.20
-0.15
-0.46
0.101n
Na
3.53
0.50
0.71
0.20
0.46
-0.62
0.101n
CEC
45.63
69.92
8.36
0.18
1.74
4.34
0.161n
BS
24.86
64.71
8.04
0.32
1.36
2.77
0.121n
V%
53.70
93.67
9.68
0.18
0.02
-0.52
0.054n
Cu
0.11
0.01
0.08
0.71
0.80
-0.15
0.154n
Fe
15.15
136.33
11.68
0.77
1.51
4.25
0.103n
Mn
0.44
0.11
0.33
0.75
0.72
-0.19
0.129n
Cd
0.01
0.00
0.01
0.74
0.66
-0.22
0.141n
0.2-0.4 m
OM
11.08
15.83
3.98
0.36
1.45
1.53
0.189n
pH
4.76
0.18
0.43
0.09
0.02
-0.14
0.123n
P
11.34
190.98
13.82
1.22
3.58
14.87
0.295Ln
K
1.31
0.22
0.47
0.36
4.68
29.93
0.224n
Ca
13.40
22.42
4.73
0.35
0.78
0.25
0.125n
Mg
4.35
6.08
2.47
0.57
0.37
-0.45
0.135n
H+Al
23.24
35.88
5.99
0.26
0.59
-0.32
0.091n
Na
3.61
0.47
0.69
0.19
0.15
-0.90
0.099n
CEC
45.78
50.19
7.08
0.15
0.62
-0.19
0.111n
BS
22.54
37.88
6.15
0.27
0.79
0.42
0.105n
V%
49.15
108.10
10.40
0.21
0.27
-1.27
0.140n
Cu
0.18
0.02
0.15
0.83
4.24
23.67
0.265Ln
Fe
33.83
200.92
14.17
0.42
1.36
2.00
0.183n
Mn
0.34
0.09
0.30
0.87
3.07
12.51
0.212n
Cd
0.01
0.00
0.01
0.71
0.59
-0.39
0.087n
OM: organic matter (g dm-3); pH in CaCl2; P: phosphorus (mg dm-3); Cu: copper (mg dm-3); Fe: iron (mg dm-3); Mn: manganese (mg dm-3); Cd: cadmium (mg dm-3); K: potassium (mmolc dm-3); Ca: calcium (mmolc dm-3); Mg: magnesium (mmolc dm-3); H+Al: hydrogenj + aluminum (mmolc dm-3); Na: sodium (mmolc dm-3); CEC: cation exchange capacity (mmolc dm-3); BS: base sum (mmolc dm-3); V%: base saturation (%); n: normal frequency distribution and Ln: log-normal frequency distribution, according to the Kolmogorov-Smirnov test at p ≤ 0.01 (D).
The pH and macro and micronutrients presented high values in surface layer than in subsurface (Table 2), which reflects the concentration of fertilizers and correctives in this layer in a no-tillage system (LIMA et al., 2013). The CEC values for both depths indicated the area with media/high fertility, according to Sobral et al. (2015) (CEC > 40%).
The chemical attributes showed low coefficient of variation (CV < 12%) (WARRICK; NIELSEN, 1980) indicating a low variation in the area, which does not mean that there is no spatial variability in the area. Geostatistical analysis allows us to describe the scales of variability that are not detected by classic statistics. Asymmetry, kurtosis, and Kolmogorov-Smirnov tests indicated that chemical attributes (both depths) and yield had a generally normal frequency distribution.
The variables H+Al, CEC, and Cd at 0-0.2 m soil depth and P, H+Al, BS, V%, Cu Mn and Cd at 0.2-0.4 m soil depth presented a pure nugget effect (PNE) (Table 3), which means that the spatial variability of these variables occurred at a lower scale than the smaller distance between the sampling points. The spherical model was adjusted for soybean yield, OM, Ca, and Fe at the 0-0.2 m soil depth, while pH, Na, V%, and Mn were adjusted to the exponential model. The other variables were adjusted using a Gaussian model. At the 0.2-0.4 m soil depth, the exponential model was adjusted to OM, K, Ca, Na, CEC, and Fe, whereas the Gaussian model was adjusted to pH and Mg. Similar results were reported by Lima et al. (2013), Tripathi et al. (2015), and Bitencourt et al. (2016).
Table 3
Semivariogram adjustment parameters for soybean yield and soil chemical properties at 0-0.2 m and 0.2-0.4 m soil depth under no-tillage system.
Variables
Model
C0
C0+C1
a
r2
RSS
SDR
0-0.2 m
Soybean yield
Spherical
145000
250160
200
0.724
35.6
57.96
OM
Spherical
7.1
39.65
265
0.818
293
17.91
pH
Exponential
0.0369
0.338
220
0.243
0.752
10.92
P
Gaussian
0.100
48.88
51
0.752
391
0.20
K
Gaussian
0.263
2.046
52
0.714
0.653
12.85
Ca
Spherical
0.01
31.42
72
0.220
564
0.03
Mg H+Al Na
Gaussian
0.710
9.68
46
0.772
8.73
7.33
Pure nugget effect
Exponential
0.001
0.534 50
0.772
0.028
0.19
CEC
Pure nugget effect
BS
Gaussian
0.100
67.02
46
0.614
1175
0.15
V%
Exponential
12.2
95.1
20
0.089
1939
12.83
Cu
Gaussian
0.00001
0.0056
66
0.865
3.94E-06
0.18
Fe
Spherical
8.8
147.7
194
0.832
2844
5.96
Mn Cd
Exponential
0.0001
0.124
117
0.927
8.460E-04
0.08
Pure nugget effect
0.2-0.4 m
MO
Exponential
1.14
17.63 109
0.878
37.9
6.47
pH P K
Gaussian
0.0001
0.179 47
0.787
3.03E-03
0.06
Pure nugget effect
Exponential
0.0001
0.179 49.9
0.406
0.0105
0.06
Ca
Exponential
2.31
22.22 36.1
0.814
20.4
10.40
Mg H+Al Na
Gaussian
0.49
5.705 57
0.456
4.16
8.59
Pure nugget effect
Exponential
0.184
0.491 63
0.635
0.0382
37.47
CTC SB V% Cu Fe Mn
Exponential
0.5000
50.52 49
0.876
258
0.99
Pure nugget effect
Pure nugget effect
Pure nugget effect
Exponential
22
201.9 28
0.247
7480
10.90
Pure nugget effect
Cd
Pure nugget effect
OM: organic matter (g dm-3), pH CaCl2, H+Al: potential acidity (mmolc dm-3), P: phosphorous (mg dm-3), K: potassium (mmolc dm-3), Ca: calcium (mmolc dm-3), Mg: magnesium (mmolc dm-3), Na: sodium (mmolc dm-3), CEC: cationic exchange capacity (mmolc dm-3), BS: base sum (mmolc dm-3), V: base saturation (%), Cu: copper (mg kg-1), Fe: iron (mg kg-1), Mn: manganese (mg kg-1), Cd: cadmium (mg kg-1), C0: nugget effect, C0+C1: sill, a: range (m), r2: coefficient of regression, RSS: residual sums of squares; SDR: spatial dependence ratio (%).
Soybean yield had a range of 200 m, while OM, pH, P and Mn at 0-0.2 m soil depth, and OM at 0.2-0.4 m soil depth presented a range of 109-265 m. The other variables showed a range of < 72 m. The range represents the distance at which sampling points are spatially dependent on each other (VIEIRA, 2000). The variables exhibited higher data variability at 0.2-0.4 m soil depth than at 0-0.2 m. The soil chemical properties showed high soybean yield media spatial dependence ratios (Table 3). Bitencourt et al. (2016) found similar values of the spatial dependence ratio when studying the chemical and physical properties of soil.
PCA at the 0-0.2 m soil depth had three components that explained 65.34% of the total variability of the data (PCA 1 = 31.16%, PCA 2 = 20.87%, and PCA 3 = 13.30%), and were correlated with the following eight variables: soybean yield, OM, pH, P, K, Ca, Mg, and Na (Table 4). At a 0.2-0.4 m soil depth, the three components grouped (PCA 1 = 37.87%, PCA 2 = 23.61%, and PCA 3 = 18.01%) explained 70.50% of the total variability of the data, and it correlated the following seven variables: soybean yield, OM, pH, P, K, Ca, and Na.
These results are corroborated by Tripathi et al. (2015) and Jianshu (2019), who described the importance of multivariate analysis to group soil properties into principal components that consider only the properties that correlate. Therefore, PCA allows the grouping of variables even if they have presented a pure nugget effect in the preliminary geostatistical analysis, and variables related to soil natural properties or those affected by soil management (JIANSHU, 2019).
The soil chemical properties that correlated with PCA with soybean yield at the 0-0.2 m soil depth were K (PCA 1 = 16.30%), OM (PCA 2 = 15.63%), and P (PCA 3 = 43.27%). At the 0.2-0.4 m soil depth, pH (PCA 1 = 28.18%), Na (PCA 2 = 23.63%), and OM (PCA 3 = 68.64%) contributed more to explaining soybean yield variability. OM was the only property common to both the soil depths. Buttafuoco et al. (2017) stated that OM is one of the predominant variables to define management zones using geostatistical and multivariate analyses, as soil with a higher content of organic matter had normally higher CEC and V%.
Table 4
Principal components for soybean yield and soil chemical properties at the 0-0.2 and 0.2-0.4 m soil depths under a no-tillage system.
-------------- 0-0.2 m --------------
-------------- 0.2-0.4 m --------------
PCA 1
PCA 2
PCA 3
PCA 1
PCA 2
PCA 3
% of variance
31.16
20.87
13.30
37.87
23.61
18.01
Cumulative %
31.16
52.04
65.34
37.87
61.49
70.50
Eigenvalue
21.50
14.40
9.18
26.51
16.52
12.61
Variables contrib
utions (%)*
Soybean yield
24.87
56.26
4.24
30.31
53.83
0.40
OM
13.97
15.63
0.10
0.00
9.51
68.44
pH
16.30
7.05
18.97
28.18
2.06
9.38
P
1.15
12,51
43.27
2.68
0.04
0.44
K
20.65
3.58
0.61
1.43
7.79
4.04
Ca
0.16
2.32
0.15
17.87
3.11
0.13
Mg
9.20
1.24
5.74
-
-
-
Na
13.65
1.60
26.88
19.50
23.63
17.13
OM, organic matter; pH, CaCl2; P, phosphorus; K, potassium; Ca, calcium; Mg, magnesium; Na, sodium;
*
Variable contributions based on the correlation matrix of the main components (PCA).
Maps of spatial variability were constructed only for the more representative variables established by PCA (Figure 2). The soybean yield map was split into two zones: upper half of the area with a yield above 2,800 kg ha-1, and lower half with a yield between 2,200 and 2,800 kg ha-1 (Figure 2a). The K (Figure 2b) and P (Figure 2d) maps did not show similarity with the soybean yield, which may be attributed to the influence of soil management on these soil chemical properties (JIANSHU, 2019). The maps of the spatial variability of the other soil chemical properties showed high similarity with the soybean yield map. This demonstrated the efficiency of multivariate analysis in grouping soil variables related to yield to define management zones.
Figure 2
Maps of spatial variability of soybean yield and soil chemical properties at 0--0.2 and 0.2-0.4 m soil depth under a no-tillage system.
The geostatistical analysis of the eigenvalue scores is presented in Table 4. PCA 2 at the 0-0.2 m soil depth showed a PNE, and the OM was the chemical property that explained most of the data variability (15.63%). However, OM was spatially related to soybean yield (Figures 2a and 2c) and presented a range of 265 m in the preliminary geostatistical analysis (Table 3). The other eigenvalue scores had an experimental semivariogram adjusted by the exponential and spherical models with range from 42 m (PCA2 at the 0.2-0.4 m soil depth) up to 156 m (PCA 1 at the 0-0.2 m soil depth). Freddi et al. (2017) also fitted the exponential and spherical models for the principal components and observed the range from 34.2 to 208.1 m when studying soybean yield and soil physical and chemical properties. With regard to the SDR, the variables showed high and medium spatial dependence (Table 5).
The scaled semivariogram for the principal components at both soil depths (Figure 3) confirmed that despite the data semivariograms being fitted to different models (exponential and spherical), there is homogeneity between variance pairs up to 250 m independent of the soil depth (Figure 3). At a 0.2-0.4 m soil depth, the variables were more stable and correlated with each other than at 0-0.2 m soil depth (Figure 3b). This indicates that the maps of spatial variability were more stable and had patterns of similar contour lines.
Table 5
Semivariogram adjustment parameters of the principal components for soybean yield and soil chemical properties at 0-0.2 and 0.2-0.4 m soil depth under no-tillage system.
Model
C0 C0+C1 a
r2
RSS
SDR
0-0.2 m
PCA 1 PCA 2 PCA 3
Exponential
0.00004 0.00043 156
0.403
9.07E-09
9.30
Pure nugget effect
Spherical
0.00005 0.00153
213
0.834
3.68E-07
3.27
0.2-0.4 m
PCA 1
Exponential
0.00042 0.00091
165
0.863
2.88E-08
46.15
PCA 2
Exponential
0.00012 0.00094
42
0.55
9.25E-08
12.77
PCA 3
Spherical
0.00007 0.00125
82
0.586
1.22E-07
5.60
C0: nugget effect; C0+C1: sill; a: range (m); r2: coefficient of regression; RSS: residual sum of squares; SDR: spatial dependence ratio (%).
Figure 3
Scaled semivariogram of principal components for soybean yield and soil chemical properties at 0-0.2 and 0.2-0.4 m soil depth under a no-tillage system.
The use of a scaled semivariogram demonstrated that PCA is promising for defining management zones mainly because the possibility of grouping several soil and plant variables in one component allows the identification of common spatial patterns (VIEIRA et al., 1997; SIQUEIRA et al., 2015b; BUSS et al., 2019). However, when PCA results from many components are grouped into different variables, some data information can be lost (JEFFERS, 1978; SILVA et al., 2010). Our PCA considers only those components that explain more than 60% of the data variability, which indicates the efficiency of describing the spatial variability of the eigenvalue scores of the components.
The map of spatial variability of PCA 1 at the 0.2-0.4 m soil depth (Figure 4c) did not present similar distribution of contour lines with the maps of the other components. The pH was the soil property that more contributed to explaining the PCA 1 variability at the 0.2-0.4 m soil depth (Table 4). However, its spatial variability map (Figure 2e) did not have similarity with the PCA 1 map (Figure 4c). The new variable described by PCA 1 included and explained the variability that was not considered when only geostatistical analysis was performed. According to Silva et al. (2010), in principal component interpretation, individualized analysis must be performed only if the variables are independent, and priority must be given to a group of variables that explain a component. Therefore, we must analyze the components as a whole and identify a common variability pattern in all spatial variability maps.
The maps of spatial variability for PCA (Figure 4) showed two management zones: one in the upper half and the other in the lower half. The analysis of the spatial variability maps indicated that the new variables that were identified by the correlation matrix demonstrated an inverse behavior, which means that the upper area presented higher values for the components at the 0-0.2 m soil depth (Figures 4a and 4b), while the lower side area presented high values at the 0.2-0.4 m soil depth (Figure 4c, 4d, and 4e). From the analysis of soybean yield and principal components, it was observed that soybean yield was more influenced by the layers in the 0-0.2 m soil depth. Therefore, this soil layer must be considered when establishing a management zone in an area.
Figure 4
Spatial distribution maps of principal components at 0-0.2 m soil depth [PCA 1 (a) and PCA 3 (b)] and 0.2-0.4 m soil depth [PCA 1 (c), PCA 2 (d) and PCA 3 (e)].
Overall, the individualized maps of spatial variability (Figure 2) and variable maps grouped into components (Figure 4) showed similarity in the spatial pattern of the contour lines, particularly with the yield map (Figure 2a). This validated the separation of the areas in the two management zones, corroborating the results of Silva et al. (2010), Bitencourt et al. (2016), Lima et al. (2013), Tripathi et al. (2015), Buttafuoco et al. (2017), and Jianshu (2019).
The spatial analysis of principal components allows the construction of maps that are more homogeneous when compared to the original data, as stated by Silva et al. (2010), Lima et al. (2013), Tripathi et al. (2015), and Buss et al. (2019). Maps of spatial variability of data analyzed by multivariate techniques reduce the dimensionality of the original data, which usually have low spatial and temporal stability (GAVIOLI et al., 2016).
Our results demonstrated that PCA, together with geostatistical analysis, improved the evaluation of the spatial variability of soil chemical properties because it reduced the number of maps to be analyzed. The combination of these techniques improves decision-making related to soil fertility management and is an innovation that can be used in precision agriculture.
CONCLUSIONS
The multivariate analysis grouped the OM, pH, P, K, Ca, Mg, and Na with the soybean yield, and the three components explained 65.34% (0-0.2 m) and 70.5% (0.2-0.4 m) of data variability.
The maps of spatial variability of principal components were similar to the soybean yield map, showing the efficiency of the integration of geostatistical and multivariate techniques to define management zones.
The management zones defined by PCA 1, PCA 2, and PCA 3 confirmed that different management strategies were necessary for each soil depth in the study area.
ACKNOWLEDGEMENTS
Thanks to Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA - process UNIVERSAL- 001160/17, BD-02105/17, COOP-04938/18, BESTEXT-00361/19, BINST-00362/19, UNIVERSAL-00976/19, POS-GRAD-02423/21 and RESOLUÇÃO-FAPEMA-N07-03/05/2022). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES - Finance Code 001). Thanks also to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Process 429354/2016-9, 307619/2016-8, 103961/2018-6 and 312515/2020-0).
1
Paper extracted from the doctoral thesis of the first author.
REFERENCES
ALARCÓN-JIMÉNEZ, M. F. et al. Management zones based on corn yield and soil physical attributes. Agronomia Colombiana, 33: 373-382, 2015.
ALARCÓN-JIMÉNEZ
M. F.
Management zones based on corn yield and soil physical attributes
Agronomia Colombiana
33
373
382
2015
BITENCOURT, D. G. B. et al. Multivariate and geostatistical analyses to evaluate lowland soil levelling effects on physics-chemical properties. Soil & Tillage Research, 156: 63-73, 2016.
BITENCOURT
D. G. B.
Multivariate and geostatistical analyses to evaluate lowland soil levelling effects on physics-chemical properties
Soil & Tillage Research
156
63
73
2016
BUSS, R. N. et al. Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes. Revista Brasileira de Engenharia Agricola e Ambiental, 23: 446-453, 2019.
BUSS
R. N.
Spatial and multivariate analysis of soybean productivity and soil physical-chemical attributes
Revista Brasileira de Engenharia Agricola e Ambiental
23
446
453
2019
BUTTAFUOCO, G. et al. Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field. Precision Agriculture, 18: 37-58, 2017.
BUTTAFUOCO
G.
Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field
Precision Agriculture
18
37
58
2017
CAMBARDELLA, C. A. et al. Field scale variability of soil properties in central Iowa soil. Soil Science of America Journal, 58: 1501-1511, 1994.
CAMBARDELLA
C. A.
Field scale variability of soil properties in central Iowa soil
Soil Science of America Journal
58
1501
1511
1994
CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: grãos, safra 2021/22 - 7º levantamento. Brasília, DF: CONAB, 2022. 94 p.
CONAB - Companhia Nacional de Abastecimento
Acompanhamento da safra brasileira: grãos, safra 2021/22 - 7º levantamento
Brasília, DF
CONAB
2022
94
CÓRDOBA, M. A. et al. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering, 146: 95-107, 2016.
CÓRDOBA
M. A.
Protocol for multivariate homogeneous zone delineation in precision agriculture
Biosystems Engineering
146
95
107
2016
FREDDI, O. D. S. et al. Physical-chemical quality of a latossol under direct seeding and soybean-corn succession in the cerrado-amazonian ecotone. Revista Caatinga, 30: 991-1000, 2017.
FREDDI
O. D. S.
Physical-chemical quality of a latossol under direct seeding and soybean-corn succession in the cerrado-amazonian ecotone
Revista Caatinga
30
991
1000
2017
GAVIOLI, A. et al. Optimization of management zone delineation by using spatial principal components. Computers and Electronics in Agriculture, 127: 302-310, 2016.
GAVIOLI
A.
Optimization of management zone delineation by using spatial principal components
Computers and Electronics in Agriculture
127
302
310
2016
GOLDEN SOFTWARE. Surfer 12: powerful contouring, gridding, and surface mapping. Colorado: Golden Software. 2014, 1056 p.
GOLDEN SOFTWARE
Surfer 12: powerful contouring, gridding, and surface mapping
Colorado
Golden Software
2014
1056
GUEDES FILHO, O. et al. Geostatistical analysis of crop yield maps in a long term no tillage system. Bragantia, 69: 9-18, 2010.
GUEDES
O.
FILHO
Geostatistical analysis of crop yield maps in a long term no tillage system
Bragantia
69
9
18
2010
JEFFERS, J. N. R. An introduction to system analysis: with ecological applications. Edward Arnold Publishers: London. 1978. 198 p.
JEFFERS
J. N. R.
An introduction to system analysis: with ecological applications
Edward Arnold Publishers
London
1978
198
JIANSHU, L. V. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental Pollution, 244: 72-83, 2019.
JIANSHU
L. V.
Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils
Environmental Pollution
244
72
83
2019
LIMA, J. S. S. et al. Variabilidade espacial de atributos químicos de um latossolo vermelhoramarelo cultivado em plantio direto. Revista Ciência Agronômica, 44: 16-23, 2013.
LIMA
J. S. S.
Variabilidade espacial de atributos químicos de um latossolo vermelhoramarelo cultivado em plantio direto
Revista Ciência Agronômica
44
16
23
2013
MASOUD, A. A. et al. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt. Journal of African Earth Sciences, 142: 64-81, 2018.
MASOUD
A. A.
Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt
Journal of African Earth Sciences
142
64
81
2018
OUMENSKOU, H. et al. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geology, Ecology, and Landscapes, 3: 1-12, 2018.
OUMENSKOU
H.
Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco
Geology, Ecology, and Landscapes
3
1
12
2018
R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: <https://www.r-project.org/>. Acesso em: 16 out. 2018.
R CORE TEAM
R: A language and environment for statistical computing
R Foundation for Statistical Computing
Vienna, Austria
Disponível em: <https://www.r-project.org/>.
Acesso em: 16 out. 2018
RAIJ, B. V. et al. Análise química para avaliação da fertilidade de solos tropicais. Campinas,SP: Instituto Agronômico. 2001. 285 p.
RAIJ
B. V.
Análise química para avaliação da fertilidade de solos tropicais
Campinas,SP
Instituto Agronômico
2001
285
SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5. ed. ver. e ampl. Brasília, DF: Embrapa, 2018.
SANTOS
H. G.
Sistema brasileiro de classificação de solos
5
Brasília, DF
Embrapa
2018
SILVA, A. S. et al. Variabilidade espacial de atributos químicos de um latossolo vermelhoamarelo húmico cultivado com café. Revista Brasileira de Ciência do Solo, 34: 15-22, 2010.
SILVA
A. S.
Variabilidade espacial de atributos químicos de um latossolo vermelhoamarelo húmico cultivado com café
Revista Brasileira de Ciência do Solo
34
15
22
2010
SILVA, D. A. S.; LIMA, J. S. S. Avaliação da variabilidade do estado nutricional e produtividade de café por meio da análise de componentes principais e geoestatística. Revista Ceres, 59: 271-277, 2012.
SILVA
D. A. S.
LIMA
J. S. S.
Avaliação da variabilidade do estado nutricional e produtividade de café por meio da análise de componentes principais e geoestatística
Revista Ceres
59
271
277
2012
SILVA, R. A.; SIQUEIRA, G. M. Multifractal analysis of soil fauna diversity indexes. Bragantia, 79: 120-133, 2020.
SILVA
R. A.
SIQUEIRA
G. M.
Multifractal analysis of soil fauna diversity indexes
Bragantia
79
120
133
2020
SIQUEIRA, G. M. et al. Estacionariedade do conteúdo de água de um Espodossolo Humilúvico. Revista Brasileira de Engenharia Agrícola e Ambiental, 19: 439-448, 2015b.
SIQUEIRA
G. M.
Estacionariedade do conteúdo de água de um Espodossolo Humilúvico
Revista Brasileira de Engenharia Agrícola e Ambiental
19
439
448
2015b
SIQUEIRA, G. M. et al. Spatial distribution of soil apparent electrical conductivity measured by electromagnetic induction and sugarcane yield. Bragantia, 74: 215-223, 2015a.
SIQUEIRA
G. M.
Spatial distribution of soil apparent electrical conductivity measured by electromagnetic induction and sugarcane yield
Bragantia
74
215
223
2015a
SIQUEIRA, G. M. et al. O. Multifractal and joint multifractal analysis of soil invertebrate fauna, altitude, and organic carbon. Revista Brasileira de Engenharia Agrícola e Ambiental, 26: 248-257, 2022.
SIQUEIRA
G. M.
O. Multifractal and joint multifractal analysis of soil invertebrate fauna, altitude, and organic carbon
Revista Brasileira de Engenharia Agrícola e Ambiental
26
248
257
2022
SOBRAL, L. F. et. al. Guia prático para interpretação de resultados de análises de solos. Aracaju, SE: Embrapa Tabuleiros Costeiros, 2015. 13 p.
SOBRAL
L. F.
Guia prático para interpretação de resultados de análises de solos
Aracaju, SE
Embrapa Tabuleiros Costeiros
2015
13
STATSOFT. Statistica 7.0. Tulsa: StatSoft. 2015, 250 p.
STATSOFT
Statistica 7.0
Tulsa
StatSoft
2015
250
TRIPATHI, R. et al. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena, 133: 128-136, 2015.
TRIPATHI
R.
Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering
Catena
133
128
136
2015
URIBEETXEBARRIA, A. et al. Apparent electrical conductivity and multivariate analysis of soil properties to assess soil constraints in orchards affected by previous parcelling. Geoderma, 319: 185-193, 2018.
URIBEETXEBARRIA
A.
Apparent electrical conductivity and multivariate analysis of soil properties to assess soil constraints in orchards affected by previous parcelling
Geoderma
319
185
193
2018
VIEIRA, S. R. et al. Scaling of semivariograms and the kriging estimation of field-measured properties. Revista Brasileira de Ciência do Solo, 21: 525-533, 1997.
VIEIRA
S. R.
Scaling of semivariograms and the kriging estimation of field-measured properties
Revista Brasileira de Ciência do Solo
21
525
533
1997
VIEIRA, S. R. et al. Variabilidade espacial dos teores foliares de nutrientes e da produtividade da soja em dois anos de cultivo em um latossolo vermelho. Revista Brasileira de Ciência do Solo. 34: 1503-1514, 2010.
VIEIRA
S. R.
Variabilidade espacial dos teores foliares de nutrientes e da produtividade da soja em dois anos de cultivo em um latossolo vermelho
Revista Brasileira de Ciência do Solo
34
1503
1514
2010
VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. In: NOVAIS, R. F.; ALVAREZ V. H.; SCHAEFER, G. R. (Eds.). Tópicos em Ciência do Solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2000. v. 2, cap. 1, p. 1-54.
VIEIRA
S. R.
Geoestatística em estudos de variabilidade espacial do solo
NOVAIS
R. F.
ALVAREZ
V. H.
SCHAEFER
G. R.
Tópicos em Ciência do Solo
Viçosa, MG
Sociedade Brasileira de Ciência do Solo
2000
2
cap. 1
1
54
WARRICK, A. W.; NIELSEN, D. R. Spatial variability of soil physical properties in the field. In: HILLEL, D. (Eds.). Applications of Soil Physics. New York, NY: Academic Press, 1980. v. 1, cap. 13, p. 319-344.
WARRICK
A. W.
NIELSEN
D. R.
Spatial variability of soil physical properties in the field
HILLEL
D.
Applications of Soil Physics
New York, NY
Academic Press
1980
1
cap. 13
319
344
Autoria
RICARDO NIEHUES BUSS
Postgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA, Brazil;Universidade Federal do MaranhãoBrazilSão Luís, MA, BrazilPostgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA, Brazil;
Postgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA, Brazil;Universidade Federal do MaranhãoBrazilSão Luís, MA, BrazilPostgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA, Brazil;
Soil laboratory, Universidade Federal do Paraná, Jandaia do Sul, PR, Brazil;Universidade Federal do ParanáBrazilJandaia do Sul, PR, BrazilSoil laboratory, Universidade Federal do Paraná, Jandaia do Sul, PR, Brazil;
Postgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA, Brazil;Universidade Federal do MaranhãoBrazilSão Luís, MA, BrazilPostgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA, Brazil;
Postgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA, Brazil;Universidade Federal do MaranhãoBrazilSão Luís, MA, BrazilPostgraduate Program in Biodiversity and Biotechnology in the Amazon, Universidade Federal do Maranhão, São Luís, MA, Brazil;
Soil laboratory, Universidade Federal do Paraná, Jandaia do Sul, PR, Brazil;Universidade Federal do ParanáBrazilJandaia do Sul, PR, BrazilSoil laboratory, Universidade Federal do Paraná, Jandaia do Sul, PR, Brazil;
Figure 3
Scaled semivariogram of principal components for soybean yield and soil chemical properties at 0-0.2 and 0.2-0.4 m soil depth under a no-tillage system.
Figure 4
Spatial distribution maps of principal components at 0-0.2 m soil depth [PCA 1 (a) and PCA 3 (b)] and 0.2-0.4 m soil depth [PCA 1 (c), PCA 2 (d) and PCA 3 (e)].
Table 3
Semivariogram adjustment parameters for soybean yield and soil chemical properties at 0-0.2 m and 0.2-0.4 m soil depth under no-tillage system.
Table 5
Semivariogram adjustment parameters of the principal components for soybean yield and soil chemical properties at 0-0.2 and 0.2-0.4 m soil depth under no-tillage system.
imageFigure 1
Climate parameters (a) and map with level difference and location of sampling points in area (b).
open_in_new
imageFigure 2
Maps of spatial variability of soybean yield and soil chemical properties at 0--0.2 and 0.2-0.4 m soil depth under a no-tillage system.
open_in_new
imageFigure 3
Scaled semivariogram of principal components for soybean yield and soil chemical properties at 0-0.2 and 0.2-0.4 m soil depth under a no-tillage system.
open_in_new
imageFigure 4
Spatial distribution maps of principal components at 0-0.2 m soil depth [PCA 1 (a) and PCA 3 (b)] and 0.2-0.4 m soil depth [PCA 1 (c), PCA 2 (d) and PCA 3 (e)].
open_in_new
table_chartTable 1
Physical and chemical characterization of the soil of the area cultivated with soybean under no-tillage.
0-0.2 m
Sand
Silt
Clay
BD
Macro
Micro
TP
OM
pH
P
K
Ca
Mg
CEC
-------- g kg-1 -----------
Mg gm-3
--------- m3 m-3 ---------
g dm-3
mg dm-3
---------- mmolc dm-3 ----------
745.58
138.21
117.14
1.27
0.17
0.38
0.55
22
5
49
0.7
18
3
46.7
0.2-0.4 m
Sand
Silt
Clay
BD
Macro
Micro
TP
OM
pH
P
K
Ca
Mg
CEC
-------- g kg-1 -----------
Mg gm-3
--------- m3 m-3 ---------
g dm-3
mg dm-3
---------- mmolc dm-3 ----------
737.77
141.70
120.63
1.29
0.16
0.37
0.53
19
4.7
47
0.5
17
3
45.6
table_chartTable 2
Descriptive statistics of soil chemical attributes at 0.0-0.2 m and 0.2-0.4 m depth cultivated with soybean.
Mean
Variance
SD
CV (%)
Skew
Kurtosis
D*
0.0-0.2 m
Soybean yield
3770.71
189447
435.25
11.54
0.11
-0.50
0.065n
OM
12.64
35.36
5.95
0.47
1.15
1.43
0.194Ln
pH
5.12
0.34
0.58
0.11
-0.09
-0.05
0.074n
P
10.87
55.21
7.43
0.68
2.21
6.80
0.193n
K
1.88
2.01
1.42
0.75
1.42
0.51
0.329Ln
Ca
14.51
27.08
5.20
0.36
2.44
9.53
0.191n
Mg
4.94
9.56
3.09
0.63
0.59
-0.38
0.185n
H+Al
20.77
16.50
4.06
0.20
-0.15
-0.46
0.101n
Na
3.53
0.50
0.71
0.20
0.46
-0.62
0.101n
CEC
45.63
69.92
8.36
0.18
1.74
4.34
0.161n
BS
24.86
64.71
8.04
0.32
1.36
2.77
0.121n
V%
53.70
93.67
9.68
0.18
0.02
-0.52
0.054n
Cu
0.11
0.01
0.08
0.71
0.80
-0.15
0.154n
Fe
15.15
136.33
11.68
0.77
1.51
4.25
0.103n
Mn
0.44
0.11
0.33
0.75
0.72
-0.19
0.129n
Cd
0.01
0.00
0.01
0.74
0.66
-0.22
0.141n
0.2-0.4 m
OM
11.08
15.83
3.98
0.36
1.45
1.53
0.189n
pH
4.76
0.18
0.43
0.09
0.02
-0.14
0.123n
P
11.34
190.98
13.82
1.22
3.58
14.87
0.295Ln
K
1.31
0.22
0.47
0.36
4.68
29.93
0.224n
Ca
13.40
22.42
4.73
0.35
0.78
0.25
0.125n
Mg
4.35
6.08
2.47
0.57
0.37
-0.45
0.135n
H+Al
23.24
35.88
5.99
0.26
0.59
-0.32
0.091n
Na
3.61
0.47
0.69
0.19
0.15
-0.90
0.099n
CEC
45.78
50.19
7.08
0.15
0.62
-0.19
0.111n
BS
22.54
37.88
6.15
0.27
0.79
0.42
0.105n
V%
49.15
108.10
10.40
0.21
0.27
-1.27
0.140n
Cu
0.18
0.02
0.15
0.83
4.24
23.67
0.265Ln
Fe
33.83
200.92
14.17
0.42
1.36
2.00
0.183n
Mn
0.34
0.09
0.30
0.87
3.07
12.51
0.212n
Cd
0.01
0.00
0.01
0.71
0.59
-0.39
0.087n
table_chartTable 3
Semivariogram adjustment parameters for soybean yield and soil chemical properties at 0-0.2 m and 0.2-0.4 m soil depth under no-tillage system.
Variables
Model
C0
C0+C1
a
r2
RSS
SDR
0-0.2 m
Soybean yield
Spherical
145000
250160
200
0.724
35.6
57.96
OM
Spherical
7.1
39.65
265
0.818
293
17.91
pH
Exponential
0.0369
0.338
220
0.243
0.752
10.92
P
Gaussian
0.100
48.88
51
0.752
391
0.20
K
Gaussian
0.263
2.046
52
0.714
0.653
12.85
Ca
Spherical
0.01
31.42
72
0.220
564
0.03
Mg H+Al Na
Gaussian
0.710
9.68
46
0.772
8.73
7.33
Pure nugget effect
Exponential
0.001
0.534 50
0.772
0.028
0.19
CEC
Pure nugget effect
BS
Gaussian
0.100
67.02
46
0.614
1175
0.15
V%
Exponential
12.2
95.1
20
0.089
1939
12.83
Cu
Gaussian
0.00001
0.0056
66
0.865
3.94E-06
0.18
Fe
Spherical
8.8
147.7
194
0.832
2844
5.96
Mn Cd
Exponential
0.0001
0.124
117
0.927
8.460E-04
0.08
Pure nugget effect
0.2-0.4 m
MO
Exponential
1.14
17.63 109
0.878
37.9
6.47
pH P K
Gaussian
0.0001
0.179 47
0.787
3.03E-03
0.06
Pure nugget effect
Exponential
0.0001
0.179 49.9
0.406
0.0105
0.06
Ca
Exponential
2.31
22.22 36.1
0.814
20.4
10.40
Mg H+Al Na
Gaussian
0.49
5.705 57
0.456
4.16
8.59
Pure nugget effect
Exponential
0.184
0.491 63
0.635
0.0382
37.47
CTC SB V% Cu Fe Mn
Exponential
0.5000
50.52 49
0.876
258
0.99
Pure nugget effect
Pure nugget effect
Pure nugget effect
Exponential
22
201.9 28
0.247
7480
10.90
Pure nugget effect
Cd
Pure nugget effect
table_chartTable 4
Principal components for soybean yield and soil chemical properties at the 0-0.2 and 0.2-0.4 m soil depths under a no-tillage system.
-------------- 0-0.2 m --------------
-------------- 0.2-0.4 m --------------
PCA 1
PCA 2
PCA 3
PCA 1
PCA 2
PCA 3
% of variance
31.16
20.87
13.30
37.87
23.61
18.01
Cumulative %
31.16
52.04
65.34
37.87
61.49
70.50
Eigenvalue
21.50
14.40
9.18
26.51
16.52
12.61
Variables contrib
utions (%)**
Variable contributions based on the correlation matrix of the main components (PCA).
Soybean yield
24.87
56.26
4.24
30.31
53.83
0.40
OM
13.97
15.63
0.10
0.00
9.51
68.44
pH
16.30
7.05
18.97
28.18
2.06
9.38
P
1.15
12,51
43.27
2.68
0.04
0.44
K
20.65
3.58
0.61
1.43
7.79
4.04
Ca
0.16
2.32
0.15
17.87
3.11
0.13
Mg
9.20
1.24
5.74
-
-
-
Na
13.65
1.60
26.88
19.50
23.63
17.13
table_chartTable 5
Semivariogram adjustment parameters of the principal components for soybean yield and soil chemical properties at 0-0.2 and 0.2-0.4 m soil depth under no-tillage system.
Model
C0 C0+C1 a
r2
RSS
SDR
0-0.2 m
PCA 1 PCA 2 PCA 3
Exponential
0.00004 0.00043 156
0.403
9.07E-09
9.30
Pure nugget effect
Spherical
0.00005 0.00153
213
0.834
3.68E-07
3.27
0.2-0.4 m
PCA 1
Exponential
0.00042 0.00091
165
0.863
2.88E-08
46.15
PCA 2
Exponential
0.00012 0.00094
42
0.55
9.25E-08
12.77
PCA 3
Spherical
0.00007 0.00125
82
0.586
1.22E-07
5.60
(1)
ysc(h)=y(h)Var(z)
(2)
CPh=λh(C)100
Como citar
BUSS, RICARDO NIEHUES et al. DELINEAMENTO DE ZONAS DE MANEJO PARA A CULTURA DA SOJA POR MEIO DE COMPONENTES PRINCIPAIS E GEOESTATÍSTICA. Revista Caatinga [online]. 2022, v. 35, n. 4 [Acessado 15 Abril 2025], pp. 925-935. Disponível em: <https://doi.org/10.1590/1983-21252022v35n420rc>. Epub 14 Nov 2022. ISSN 1983-2125. https://doi.org/10.1590/1983-21252022v35n420rc.
Universidade Federal Rural do Semi-ÁridoAvenida Francisco Mota, número 572, Bairro Presidente Costa e Silva, Cep: 5962-5900, Telefone: 55 (84) 3317-8297 -
Mossoró -
RN -
Brazil E-mail: caatinga@ufersa.edu.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.