COMPOSIÇÃO CORPORAL, NO 1º ESTRO, DE RATAS SUBMETIDAS A DIFERENTES GRAUS DE RESTRIÇÃO ALIMENTAR

Leda Ulson Mattos*
Hisako Kajiyama**
Sandra Megrich***
Margareth Knoch***
Ruth Silvia Steuer***

MATTOS, L.U.; KAJIYAMA, H.; MEGRICH, S.; KNOCH, M.; STEUER, R.S. Composição corporal, no 1º estro, de ratas submetidas a diferentes graus de restrição alimentar. Rev. Esc. Enf. USP. São Paulo, 18(3):215-221,1984.

As autoras estudaram a composição corporal em proteína, água e gordura, em 2 grupos de ratas com restrição alimentar, que recebiam, respectivamente, 6g dia e 4g dia de uma dieta com 20% de proteína de caseína. Como percentagem de peso corporal houve aumento do teor de proteína e diminuição de água e de gordura nos grupos com restrição alimentar, em relação ao grupo controle. Na época do 1º estro a média ponderal não diferia, significativamente, nos 3 grupos.

INTRODUÇÃO

Estudos de KENNEDY & MITRA (1963) mostraram que a puberdade do rato era alcançada quando este atingia determinado peso. Estes dados foram usados por FRISCH & REVELLE (1970), FRISCH & REVELLE (1971), FRISCH (1972), FRISCH (1972) para construir um modelo semelhante em seres humanos.

A antecipação de menarca em adolescentes bem nutridos, nos Estados Unidos, foi uma das observações que FRISCH (1972) utilizou como suporte para a hipótese de que um "peso crítico", ou melhor, um certo grau de gordura é necessário para atingir a puberdade (FRISCH & McARTHUR, 1974).

^{*} Química. Professor Titular do Departamento de Enfermagem Médico Cirúrgica da Escola de Enfermagem da USP — disciplina Nutrição e Dietética Aplicadas à Enfermagem.

^{**} Enfermeira. Mestre em Enfermagem. Professor Assistente do Departamento de Enfermagem Materno-Infantil e Psiquiátrica da EEUSP — disciplina Enfermagem Ginecológica e Obstrétrica e Neonatal.

^{***} Estudante do Curso de Graduação em Enfermagem da Escola de Enfermagem da USP.

Durante o amadurecimento do sistema reprodutor, o corpo modifica-se, não só em proporções, como também em relação à composição corporal (WIDDOWSON & Mc CANCE, 1960). Um aspecto fundamental dessa modificação é a alteração do teor de água, proteína e gordura corporal, que se acelera no pico do crescimento do adolescente (FRISCH et alii, 1973; FRISCH & REVELLE, 1973; FRISCH, 1976). Na mulher o teor de água diminui à medida que cresce e a gordura aumenta em percentagem (EDELMAN et alii, 1952). Na época da maturidade a mulher tem 52% de água e 26 a 28% de gordura (FRISCH, 1980).

A descoberta de que o início da puberdade e a manutenção da função menstrual exigem um peso crítico implica em que determinada relação gordura/peso corporal é importante para a capacidade reprodutora.

As atletas que fazem treino muito pesado tem alto índice de amenorréia. Estes resultados são interessantes porque no atleta a relação peso/altura é representada principalmente por massa muscular e pouca gordura (PARISKOVA, 1963).

Como o ciclo menstrual cessa em mulheres com desnutrição crônica ou perda rápida de peso, não é de surpreender que na jovem a desnutrição atrase a menarca (FRISCH, 1972).

FRISCH et alii (1973), tendo encontrado casos de menarca em jovens de diferentes pesos e alturas, analisou o peso em termos de composição corporal, baseado no fato de que o total de água e a massa magra estão mais correlacionadas com a velocidade metabólica do que com o peso.

Como a aromatização do andrógeno e estrógeno ocorre no tecido adiposo da mulher, parece que este tecido é importante na fonte estragonodal de estrógeno (NIMROD, 1975).

Sendo o estudo de peso, teor de gordura na puberdade de especial interesse, em virtude dos resultados encontrados em mulheres adolescentes, de que um peso crítico (FRISCH & REVELLE, 1971) representado por um nível crítico de gordura (FRISCH, 1974, FRISCH et alii, 1973) está relacionado com a menarca e a manutenção do ciclo ovulatório (FRISCH & McARTHUR, 1974), optamos por estudar a influência de diversos regimes alimentares sobre o início da puberdade. Para isso, estudamos a composição corporal, no 1º estro, de ratas recebendo dietas restritas, em quantidade de alimento, e nos propusemos verificar se, para esses grupos, é válida a hipótese de KENNEDY (1969), de que o teor de gordura armazenada é um sinal para o início da puberdade.

MATERIAL E MÉTODO

Como animais de experiência foram utilizados 45 ratos (Rattus norwegicus, albinus, Wistar) fêmeas logo após o desmame, que se deu aos 21 dias, criadas no biotério da Escola de Enfermagem da USP. Manteve-se a temperatura ambiente entre 24 e 26°C e as luzes apagadas das 18h às 7h da manhã seguinte. Os animais desmamados foram colocados em gaiolas individuais e subdivididos em 3 grupos — Grupo C — recebendo dieta ad libitum (Tabela 1) e os Grupos I e II recebendo, respectivamente, 6g e 4g da mesma dieta. Os animais foram pesados e observados diariamente para se verificar se havia ocorrido abertura da vagina. Após a abertura da vagina, foi colhido material vaginal, diariamente, para determinar o 1° estro (aparecimento de células epiteliais completamente corneificadas).

No dia do 1º estro, após um período de 24h de jejum, as ratas foram sacrificadas por anestesia com éter e pesadas. As carcassas, cortadas em pedaços colocados sobre papel alumínio, foram secas a 95°C, até atingirem peso constante.

O peso perdido foi tomado como água total.

A carcassa seca foi então moída e foram utilizadas alíquotas para determinação da gordura, pelo método de extração com éter e do Nitrogênio total, pelo método de Kjeldahl. A proteína foi calculada multiplicando-se o teor do Nitrogênio por 6, 25.

TABELA 1 – Composição percentual das dietas utilizadas.

Componentes	g/150g de dieta		
Caseína	26,8		
Amido	40,8		
Óleo de Algodão	6,0		
Óleo de Fígado de Bacalhau	1,6		
Mistura de Sais Minerais	3,6		
Mistura de Vitaminas	1,6		
Açúcar	20,0		

RESULTADOS

Na tabela 2 colocamos os dados correspondentes ao peso úmido, percentagem de água, proteína e gordura em relação ao peso corporal úmido, e gordura como percentagem do peso corporal seco, no 1.º estro.

Tabela 2 — Peso úmido, percentagem de água, proteína e gordura em relação ao peso úmido, gordura em relação ao peso seco, idade, em dias, no 1º estro. Idade e peso dos animais no dia da abertura da vagina.

Grupos	Controle	I		II	
Abertura da vagina		···			
Idade (dias)	30,0 ± 3,7	36,7 ± 3,9	p < 0,002*	76,0 ± 5,0	p < 0,001* p < 0,001**
Peso úmido (g)	65,9 ± 6,1	59,0 ± 4,0	NS*	59,3 ± 6,8	NS* NS**
1º ESTRO					
Idade (dias)	30,2 ± 2,5	54,3 ± 7,8	p < 0,001*	91,0 ± 5,6	p < 0,001* p < 0,001**
Peso úmido (g)	74,5 ± 7,9	73,8 ± 6,9	NS*	71,3 ± 5,9	
Proteína (g % P. Corp. úmido)	17,5 ± 0,3	18,3 ± 0,4	NS*	20,0 ± 0,6	p < 0,02* NS**
Água (g % P.Corp.)	72,0 ± 0,9	71,2 ± 0,6	NS*	67,6 ± 1,2	p < 0,03* p < 0,04*
Gordura (g % P. Corp. úmido)	8,0 0,4	5,0 ± 1,0	p < 0,001	5,0 ± 0,6	p < 0,001 NS**
Gordura (g % P. Corp. seco)	28,8 ± 1,4	18,1 ± 1,5	p < 0,001*	17,2 ± 1,3	p < 0,001* NS**

NS Não significativa

Os resultados da Tabela 2 foram computados, usando-se apenas os dados dos animais cuja idade estava abaixo da média das idades no 1º estro, nos diferentes grupos. As médias encontradas para os grupos Controle, I e II foram, respectivamente, 32,2 dias, 60,1 dias e 112,6 dias e correspondem aos

^{*} Diferença entre os grupos I ou II e o controle

^{**} Diferença entre os grupos I e II

animais que alcançaram o 1º estro mais cedo. Os dados dos animais que atingiram o 1º estro com idade superior a média, isto é, os que alcançaram o 1º estro tardiamente não foram usados em virtude de constituirem um número reduzido de animais, com valores muito açima da média.

O primeiro estro ocorreu, simultaneamente com a abertura da vagina em 90% do grupo controle, 20% do grupo I e 0% do grupo II.

DISCUSSÃO

Embora a composição corporal de adolescentes seja determinada indiretamente (CRAWFORD & OSLER, 1975; FRISCH & McARTHUR, 1974), é ela a base para a hipótese de FRISCH (1974) de que a composição corporal é o ponto crítico para o início da puberdade.

Em animais, a composição corporal é determinada por análises laboratoriais e o tipo e a distribuição da dieta são estabelecidos em cada pesquisa realizada, o que facilita o estudo.

A composição corporal e o metabolismo podem ser afetados pelo tipo de alimento ingerido e pela distribuição e horário da alimentação. Em nosso trabalho, os animais receberam quantidades restritas de alimentos, mas como a quantidade era pequena, eles ingeriram todo o alimento de uma só vez, no período da manhã. Isto contraria os costumes dos ratos que comem muitas vezes ao dia, um pouco de cada vez e são, principalmente, animais noctívagos.

Não podemos dizer que os nossos resultados comprovem a teoria de FRISCH (1974), mas nos fornecem dados sobre o efeito da restrição alimentar na maturação sexual. Não encontramos diferença significativa de peso entre os 3 grupos no 1º estro, porém, proporcionalmente à idade, as ratas dos grupos I e II pesavam menos.

O fato das ratas apresentarem o mesmo peso médio no 1º estro, nos 3 grupos, já havia sido observado por MATTOS et alii (1984) em ratas com diferentes graus de restrição e por KENNEDY & MITRA (1963) em ratas desnutridas; FRISCH (1972) havia demonstrado em adolescentes desnutridas, que estas, embora alcançassem a menarca com 2 anos de atraso em relação ao grupo de adolescentes bem nutridas, tinham o mesmo peso.

Os resultados por nós obtidos estão em consonância com a hipótese de que populações de idades médias diferentes atingem a puberdade com um "peso demográfico" crítico constante (WILEN & NAFTOLIN, 1976).

A baixa proporção de gordura pode refletir o uso excessivo do tecido adiposo para a manutenção do balanço energético. O aumento da proporção de proteína total sugere a adaptação dos animais a uma proporção reduzida de gordura, aumentando a massa metabólica ou proteíne corpora para um nível suficientemente alto a fim de manter o metabolismo basal (WILEN & NAFTOLIN, 1978). A diminuição do teor de gordura leva a uma queda da energia armazenada e do isolamento corporal.

Como podemos ver na tabela 2, há uma diferença não muito significativa no teor de proteína entre os grupos com restrição alimentar e o controle; porém, dentro de cada grupo, a proporção de proteína é constante e aumenta com o aumento da restrição alimentar, embora a diferença não seja significativa.

Observamos, ainda, uma diminuição do teor de água no grupo mais restrito, quando comparado com o grupo controle e com o de menor restrição alimentar. No regime de distribuição de alimentos por nós adotado, parece que o mesmo peso corporal é atingido com diferentes composições corporais de gordura, proteína e água, não comprovando a hipótese de que o teor de gordura armazenada é um sinal para início da puberdade em ratas bem nutridas e com restrição alimentar.

CONCLUSÕES

Na época do 1º estro, apesar das ratas com restrição alimentar serem mais velhas do que as do grupo controle e, proporcionalmente à idade, mais magras, atingiram o mesmo peso corporal, maior teor de proteína, e menor de gordura e água.

O primeiro estro foi simultâneo à abertura da vagina em 90% dos animais do grupo controle, em 20% dos do grupo I e em 0% dos do grupo II.

MATTOS, L.U.; KAJIYAMA, H.; MEGRICH, S.; KNOCH, M.; STEUER, R.S. Body composition of feed-restricted female rats, at the first estrus. *Rev. Esc. Enf. USP*, São Paulo, 18(3):215-221,1984.

At first estrus the feed-restricted rats were older and, proportionally to the age, leaner than the well fed animals. They had attained a greater proportion of protein and lesser proportion of water and fat; however the animals of the two restricted diet groups; and the well fed group had the same weight.

First estrus was simultaneous with vaginal opening in 90% of the well fed animals, in 20% of the group I and in 0% of the group II.

REFERÊNCIAS BIBLIOGRÁFICAS

- CRAWFORD, J.D. & OSLER, D.C. Body composition at menarche the FRISCH-REVELLE hypothesis revisited. Pediactrics, Springfield, 50:449, 1975.
- EDELMAN, I.S. et alii. Further observations on total body water I Normal values throught the life span. Surg. Gynec. Obstet., Chicago, 95:1-12, 1952.
- FRISCH, R.E. A method of prediction of age menarche from height and weight at ages 9 through 13 years. Pediatrics, Springfield, 53:384-90, 1974.
- Control of the onset of puberty. Pediatrics, Springfield, 50:445, 1972.
- Fatness of girls from menarche to age 18 years with a normogran. Hum. Biol., Detroit, 48: 353-9, 1976.
- Influence on age of menarche. Lancet, London, 2:1007-8, 1973.
- Pubertal adipose tissue: is it necessary for normal sexual maturation? Evidence from the rat and human female. Fed. Proc., Washington, 39:2395-400, 1980.
- Weight at menarche: similarity for well nourished girls at differing ages and evidence for historical constancy. Pediatrics, Springfield, 50:445-50, 1972.
- FRISCH, R.E. & Mc ARTHUR, J. Menstrual cycles: fatness as a determinant of minimal weight and adolescent events. Science, Washington, 185:949, 1974.
- FRISCH, R.E. & REVELLE, R. Components of weight at menarche and the initiation of the adolescence. Hum. Biol., Detroit, 45:469-483, 1973.
- Height and weight at menarche and a hipothesis of critical body weights and adolescents events. Science, Washington, 169:397-399, 1970.
- Height and weight at menarche and a hypothesis of menarche. Arch Dis. Child., London, 46:695-701, 1971.
- FRISCH, R.E.; REVELLE, R.; COOK, S. Components of critical weight at menarche and at initiation of the adolescent spurt: estimated total water, lean body mass and fat. Hum. Biol., Detroit, 45:469, 1973.
- KENNEDY, G.C. Interactions between feeding behavior and hormones during growth. Ann. N.Y. Acad. Sci., New York, 157:1049-1061, 1969.
- KENNEDY, G.C. & MITRA, J. Body weight and food intake as initiating factors for puberty in the rat. J. Physiol., London, 166:408-418, 1963.
- MATTOS, L.U.; KAJIYAMA, H.; MEGRICH, E.; KNOCH, M.; STEUER, R. Velocidade de crescimento e desenvolvimento sexual de ratas submetidas a diferentes graus de restrição alimentar. Rev. Esc. Enf. USP, São Paulo, 18(2):121-8, 1984.
- NIMROD, R. & RYAN, K.J. Aromatization of androgens by human abdominal and Breast fat tissue. J. Clin. Endocr., Springfield, 40:367-377, 1975.
- PARIZKOVA, J. Impact of age diet and exercice on man's body composition. Ann. N.Y. Acad. Sci., New York, 110:661-674, 1963.
- WIDDOWSON, E.M. & Mc CANCE, R.A. Some effects of acelerating growth. Proc. Roy. Soc., London, 152:188-206, 1960.
- WILEN, R. & NAFTOLIN, F. Age and weight gain in the individual pubertal female Rhesus Monkey (Macaca mulatta). Biol. of Repr., New York, 15:356-360, 1976.
- WILEN, R. & NAFTOLIN, F. Pubertal food intake and body weight and composition in the feed-restricted female rat: comparison with well fed animals. Pediat. Res., Basel, 12:263-267, 1978.