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Abstract

This paper aims to present an elastic, perfectly plastic, constitutive model 
based on the Hoek-Brown failure criterion and with non-associative plasticity. 
The objective is to apply the model to the non-linear analysis of geotechnical 
problems like excavations in rock mass. The computational implementation was 
carried out with a computational program called ANLOG (Non-Linear Analy-
sis of Geotechnical Problem) system based on a displacement formulation of the 
finite element method. Due to the non-linear nature of the constitutive model, 
the study adopts an incremental iterative Newton-Raphson procedure with auto-
matic load increments to guarantee the global level equilibrium. In addition, to 
guarantee the consistency condition at the local level, the study adopts, for the 
stress integration, an explicit algorithm with automatic sub-increments of strain. 
To validate the computational implementation and applicability of the numerical 
model, the study uses theoretical results to compare with ones obtained with the 
numerical simulation of cylindrical cavity in rock mass.

Keywords: Hoek-Brown failure criterion, finite element method, elastoplasticity, stress 
integration algorithm, cylindrical cavity, tunnel, rock mass.
 
Resumo

Esse artigo apresenta um modelo constitutivo elástico perfeitamente plás-
tico com plasticidade associada e com base no critério de resistência de Hoek-
-Brown. O objetivo é aplicar esse modelo para análise não linear de problemas 
geotécnicos como escavações em maciços rochosos. As implementações compu-
tacionais foram realizadas no sistema ANLOG (Análise não linear de obras ge-
otécnicas) com base na formulação em deslocamento do método dos elementos 
finitos. Devido à natureza não linear do modelo constitutivo, o estudo adota um 
procedimento incremental iterativo do tipo Newton-Raphson com incrementos 
automáticos de modo a garantir o equilíbrio em nível global. Além disto, para 
garantir a condição de consistência em nível local, o estudo adota um esquema 
de explicito de integração de tensão com subincrementos automáticos de defor-
mação. Para validar as implementações computacionais e a aplicabilidade do 
modelo numérico gerado, o estudo usa os resultados da simulação numérica de 
uma cavidade cilíndrica em maciços rochosos.

Palavras-chave:  Critério de ruptura de Hoek-Brown, método dos elementos finitos, 
elastoplasticidade, algoritmo de integração de tensão, cavidade cilíndrica, túnel, 
maciço rochoso.
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1. Introduction

The application of the finite ele-
ment method (FEM), which considers 
a continuous media, to analyze the me-
chanical behavior of a rock mass has been 
restricted to hard rock or non-fractured 
rock mass. Due to the increasing number 
of geotechnical works carried out on frac-
tured rock masses, it has become neces-
sary to use a constitutive model that takes 
into account the geological condition of 

a rock mass. Such a model is capable of 
providing more realistic results when us-
ing a displacement formulation of FEM.

In the early 1980’s, the Hoek-
Brown failure criterion was developed 
for hard rock (Hoek and Brown 1980). 
Since then, several versions have been 
published in order to include the influence 
of geological conditions on the failure pa-
rameter of rock masses (Hoek and Brown 

1988; Hoek et al 1992, 1995, 2002). 
The use of a Hoek-Brown failure 

criterion, as the yield function in an 
elastic-plastic analysis, leads to the appli-
cation of an incremental iterative proce-
dure at the global level of a FEM analysis 
and the application of a stress integration 
scheme at the local level (Sharan 2003; 
Sharan 2005; Clausen and Dumkilde 
2008; Wang and Yin 2011).

2. Hoek-Brown elasto-plastic model formulation

The equilibrium equations of a 
mechanical problem, in static condi-
tion, describe a non-linear equation 
system when adopting an elasto-plastic 
stress-strain-strength relationship 

(Teixeira et al 2012). During a given 
equilibrium path, the variation on the 
displacement, strain, and stress fields 
depends on the stress and strain levels 
and their history through the equilib-

rium path.
Based on the displacement finite 

element formulation, the equilibrium 
equations can be written as:

Fint = Fext (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Where, Fext is the external nodal force vec-
tor that represents the global arrangement 

of the element external nodal force vector 
F e 

 defined as:

in which ffff represents the parcel of 
external nodal force due to surface load; 
ffff represents the parcel of external 
nodal force due to body force, ffff and   

represents the parcel of external nodal 
force due to non-null prescribed dis-
placements, δ. Fint is the internal nodal 
force vector that represents the global 

arrangement of the element internal 
nodal force vector ffff equivalent to the 
stress state σ in a given element that is 
defined as:

Fext
e

Fext= FS + Fb + F
δ

ee e e

FS 
e

Fb 
e

F
δ
 e

Fint 
e

Fint = ∫ BTσdVe 
e

Ve

Due to the non-linear nature of the 
equation system represented by Equation 
(1), an incremental-iterative procedure 
should be used in order to obtain the 
displacement, strain, and stress fields. 
Then, starting from a given equilibrium 

configuration n, where the stress and 
strain states are known, a predicted 
incremental solution in terms of the 
global displacement (ΔÛo

n) is obtained. 
This predicted approximation should 
be corrected by successive iteration (δ 

ΔÛ) until reaching a new equilibrium 
configuration n+1 (Crisfield 1991). In 
this strategy, the problem solution is 
obtained by updating the nodal displace-
ment vector (Û) in each new equilibrium 
configuration, by doing:

B is the cinematic matrix which depends on the strain-displacement relationship.

Ûn+1 = Ûn + Ûk

ΔÛk = ΔÛο
n + ∑δΔÛk 

k =1

iter

Where,
ΔÛo

n = [Kep] 
-1 Δ λ Fext

δ ΔÛk = [Kep] 
-1 Ψk

Ψk = Fext
k - Fint

k

iter is the necessary iterative cycle 
number to reach convergence at the 
current step, while Δλ is the increment 
of load factor, which can be automati-

cally defined starting from the initial 
trial provided by the user (Nogueira 
1998; Oliveira 2006; Simão 2014). 
Kep is the global stiffness matrix that 

represents the global arrangement 
of the element stiffness matrix Ke

ep 
defined by:
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where, Dep is the elasto-plastic constitu-
tive matrix which depends on the stress-

strain-strength relationship. According to 
the Modified Newton-Raphson iterative 

scheme the global stiffness matrix is kept 
constant during the iterative cycles.

The vector Fext
k represents the exter-

nal nodal force applied at each load step 
and kept constant throughout the iterative 
cycles, according to the Newton-Raphson 

iterative scheme. This vector is updated 
at the beginning of a given step load by:

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Kep= ∫ BT Dep BdVe
e

Fext
k = Fext n + Δ λ Fex

where Fext n is the external nodal force 
vector at a given equilibrium configuration 

n. The internal nodal force vector Fint
k is 

evaluated at each iterative cycle depending 
on the stress state evaluated at this itera-
tive cycle, σ k.

At the end of each iterative cycle, a 
convergence state of the solution is veri-
fied by using a criterion that relates the 
Euclidian norm of the unbalance nodal 
force vector with the Euclidian norm of 

the external nodal force vector. Thus, for 
a given tolerance and at each increment, 
the iterative scheme ensures the overall 
balance by satisfying the compatibility 
conditions, boundary conditions and con-

stitutive relationships.
This iterative scheme involves the 

stress state evaluation at each iterative 
cycle. Then, in each element, the stress 
vector σ k is obtained by:

σ k = σn + Δσ k

σ k = Dep Δεk

Where,

Δεk  = -B ΔÛk

and, ΔÛk is the incremental displacement vector at element level and updated at the current iterative cycle

By adopting linear elastic, per-
fectly plastic (which is free of harden-
ing during the plastic flow) and with 

the associated plasticity (in which the 
potential plastic and yield functions 
are the same) constitutive model, the 

elasto-plastic constitutive matrix can 
be written as:

Dep = De - De
T 

(aTa)
(aTDea)

De

where, De is the elastic constitu-
tive matrix which depends on the young 
modulus (E) and Poisson coefficient (ν). 
The vector a is the gradient of the yield 

function (F) which depends on the failure 
criterion used.

This paper adopts the generalized 
Hoek-Brown failure criterion (Hoek et al 

2002) written in terms of principal stress, 
σ1 and σ3, as:

(σ1 - σ3 ) = σci [ mb ( σ3 / σci ) + S ]a

In which σci is the uniaxial compres- sive strength of intact rock, and mb, a and s are constants defined as:

mb = mi e (GSI - 100)/(28 - 14D)

s = e (GSI - 100)/(9 - 3D)

a = 0.5 + (e - GSI/15)/(9 - 3D) - e-20/3)/6

Where, mi is a constant of Hoek-Brown 
criterion intact rock; D is a disturbance 
coefficient which varies from 0.0 for 
undisturbed in situ rock mass to 1.0 for 

very disturbed rock mass, and GSI is the 
Geological Strength Index, which takes 
into account the geological condition of 
the rock mass.

As no hardening occurs in a perfect-
ly plastic constitutive model and the yield 
concept merges with the failure concept, 
the yield function can be written as:

F = F (σ) = 0

or, by using the Hoek-Brown failure cri- terion (Equation 15):



REM: R. Esc. Minas, Ouro Preto, 68(2), 145-152, apr. jun. | 2015148

Non linear elasto-plastic analysis of cylindrical cavity in rock mass using a Hoek-Brown criterion

( )
0s

3
Im

sen
3

1
cosθmI

2cos θ I
),I,I(F ci

1b
b2D

a/1

ci

2D
ciD21 =σ−−⎟

⎠

⎞
⎜
⎝

⎛
θ++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ
σ=θ (20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

where, I is the first invariant of the 
stress tensor; I2D is the second invariant 
of the deviator stress tensor, and θ is the 
Lode angle that depends on the second 
and the third (I3D) invariant of deviator 
stress tensor (Owen and Hinton 1989).

In theory, at each increment and 
for a selected tolerance, the iterative 
scheme satisfies the global equilibrium 

equations, the compatibility and bound-
ary conditions, and the constitutive 
equations. However, the constitutive 
equation integration is not trivial, even 
if one knows the incremental strain 
magnitude on each iterative cycle, what 
is still unknown is the way it varies 
across the incremental path. It is nec-
essary then to use an accurate stress 

integration algorithm.
It is possible, by adopting the ex-

plicit stress integration scheme as sug-
gested by Sloan et al (2001), to increase 
the precision of the stress calculation. 
According to these authors the incre-
ment of stress can be divided into two 
parcels: elastic, Δσe , and elastic plastic, 
Δσep , such as:

Δσ k = Δσe + Δσep = α DeΔε  +  Δσep

where, α is a scalar that varies from 0 to 
unity. For α = 0 the strain increment gen-

erates an elastic plastic stress increment. 
For α = 1 the strain increment generates a 

purely elastic stress increment. The α sca-
lar value is obtained by solving iteratively:

|F (σn + α DeΔε| ≤ FTOL

where FTOL is the tolerance sug-
gested by Sloan et al, (2001) as 10-5. Once 

defined, the α scalar, the stress state upon 
the yield surface, is updated according to:

σint = σn + Δσe

σ j = σ j - 1 + dσep
j

The increment of elastic plastic stress is obtained by:

dσep
j = Dep (σ j)dεep

j

dεep
j = ΔTj Δεep

Δεep = ( 1- α ) Δε

where ΔTj is a scalar known as increment 
of pseudo-time (T) that varies from zero 
to unity and is evaluated while taking into 
account the local error committed during 
the stress integration. This error cannot 

exceed a STOL tolerance. The first trial 
is conducted by adopting ΔT = 1. The 
procedure is controlled by pseudo-time T 
(0≤T≤1) at the end of each subincrement, 
ΣΔT = T = 1. The stress state is updated 

at the end of each sub increment starting 
from stress state upon the yield function 
(σ 0 = σint). The procedure described in 
this paper was implemented into ANLOG 
(Nogueira 2010) by Simão (2014).

3. Cylindrical cavity in elasto-plastic rock mass

This item describes the numerical 
simulation of a cylindrical cavity in a 
semi-infinite rock mass. The main goal 
of this simulation is to establish the plastic 
and elastic zones around the cavity and its 
stress distribution, highlighting the influ-
ence of the pressure acting internally on 
the cavity wall.

The problem is depicted in Figure 
1 and consists of a cylindrical cavity of 
internal radius, ri, deeply conducted in a 
rock mass considered homogeneous, iso-

tropic, and subjected to a isotropic initial 
stress state, σ0. The stress-strain behavior 
of the rock mass is represented by using 
non-linear elastic-perfectly plastic, with 
associate plasticity, based on the Hoek-
Brown criterion constitutive model as 
presented in the previous item. The elasto-
plastic transition radius, R, defines a zone 
with plastic behavior (R-ri) around the 
cavity and the external radius, re, defines 
the dominium of the problem.

Sharan (2003, 2005) and Park and 

Kim (2006) presented an analytical solu-
tion for this problem considering the rock 
mass, under isotropic initial stress state, 
as elastic-brittle-plastic material which 
presents a sudden loss of strength after 
reach its maximal value. In this paper, this 
solution is adapted to consider an elastic 
perfectly plastic material which does not 
present this sudden loss of strength. Then, 
the radial and circumferential stress dis-
tribution on the plastic zone, ri<r<R, is 
given by:

i
2
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On the elastic zone, R < r < re, the radial and circumferential stress distribution is given by:
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Physical problen Finite element model

Figure 1 presents the finite element 
mesh used in the numerical simulation; 
it is composed of 220 quadrilateral qua-
dratic isoparametric elements (Q8) and 
661 nodal points. The following constitu-
tive parameters were adopted: E = 5.5GPa;  
ν = 0.25; σci = 30MPa; mb = 1.7; s = 
0.0039; a=0.5 (which correspond to a  
GSI = 50 and mi = 10, approximately).

The study uses a modified Newton-
Raphson incremental iterative procedure 
with automatic increment of load (Id = 
10, miter = 20; toler = 0.1%; Δλ0 = 0.01; 

Δλmin = 10-6; Δλmax = 10-2) and a Forward 
Euler stress integration (FTOL = 10-5 and 
STOL = 10-2).

Figure 2a illustrates the analytical 
and numerical (y = 0) results along the 
radial direction in terms of the radial (σr) 
and circumferential (σ

θ
) stresses, consid-

ering an initial isotropic stress state (σ0) 
of 30MPa and a null internal pressure 
(pi). Table 1 presents the normalized 
elasto-plastic transition radius (R/ri) and 
stresses. As can be observed, numerical 
and analytical solutions agree strongly. 

Figure 2b shows an elastic analyti-
cal solution provided by Kirsch (Poulos 
and Davis 1972) of a circular opening 
considering a horizontal stress coefficient 
of one. In this case, the circumferential 
stress decreases along the radial direction, 
while the radial normal stress increases 
in this direction. The elastic analysis 
overestimates the circumferential stress 
on the wall cavity. The elasto-plastic so-
lution presents an abrupt decrease in the 
circumferential stress on the elasto-plastic 
transition zone.

Figure 1
Deep cylindrical cavity in rock mass

(a) (b)
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Solution R/ri σr/σ0 σ
θ 
/σ0 σz /σ0

Analytical 2.833 0.526 1.474 0.500

Numerical 2.893 0.568 1.400 0.492

Table 1
Elasto-plastic transition radius 
and stress (pi = 0MPa and ri = 5m)

Figure 2
Stress distribution

Figure 3 presents a stress distribution 
around the cavity in terms of the isocurve 

of stress components. The highest vertical 
stress level is observed near the lateral wall 

of the cavity while the highest horizontal 
stress level is observed near its roof (Fig. 3)

Figure 3
Stress distributions – pi = 0
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Figure 5
Influence of GSI

Figure 4
Elasto-plastic transition radius - pi varying

Figure 4 shows the influence of 
the internal pressures acting on the in-
ternal wall cavity on the elasto-plastic 
transition radius. No plastic zone is 
observed from the internal pressure on 
the order of magnitude around half of 
the initial isotropic stress. The highest 
elasto-plastic transition radius is ob-

served in an unsupported excavation, 
represented in this paper by a null in-
ternal pressure. In this case the radius 
depends on the property’s material and 
the cavity radius.

Figures 5a and 5b show the influ-
ence of the GSI on the elasto-plastic 
transition radius and on the normal 

radial and circumferential stresses 
at this point. As was expected, the 
elasto-plastic transition radius de-
creases as the GSI increases. Related 
to normal stresses, the radial stress 
decreases as the GSI increases, while 
the circumferential stress increases as 
the GSI increases.
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5. Conclusion

The results presented in this paper 
demonstrated the importance of using 
the FEM and elastic-plastic constitutive 
model to simulate the opening cavity in 

rock masses. It was shown, for instance, 
that the stress distribution on the support 
structure changes significantly. By using 
the computer program ANLOG, it is pos-

sible to perform parametric studies for a 
wide variety of materials and geometrical 
configuration to improve the design of 
tunnel support.

(a)

(b)
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