
383

David Alvarenga Drumond  and Cláudio Lúcio Lopes Pinto

REM, Int. Eng. J., Ouro Preto, 71(3), 383-389, jul. sep. | 2018

David Alvarenga Drumond
http://orcid.org/0000-0002-5383-8566

Pesquisador

Universidade Federal do Rio Grande do Sul - UFRGS

Escola de Engenharia

Departamento de Engenharia de Minas

Belo Horizonte – Minas Gerais - Brasil

david.engminas.ufmg@gmail.com

Cláudio Lúcio Lopes Pinto
Professor

Universidade Federal de Minas Gerais – UFMG

Escola de Engenharia

Departamento de Engenharia de Minas

Belo Horizonte – Minas Gerais - Brasil

cpinto@ufmg.br

Using rodogram function 
to characterize hurst 
coefficient in rock profiles
Abstract

Roughness is a fundamental feature to define rock deformability and resis-
tance. A detailed characterization of discontinuity surface geometry is essential for 
understanding some of the rock’s mechanical behaviors. Fractal geometry has been 
used by several authors to correlate parameters such as the Hurst coefficient for JRC 
(Joint Roughness coefficient) to better describe a surface geometry. Surface profiles 
might be characterized by a fractal dimension that represents the small scale of the 
geometric recurrence.  In this paper, we propose to modify the methodology used 
to identify the Hurst coefficient incorporating the rodogram function in the JRC 
analysis. The proposed function is less influenced by drifting effects, and seems to 
be more precise than the commonly used variogram function. Robust mathematical 
models of spatial continuity can be a better alternative to characterize the rough-
ness of rock discontinuities.
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1. Introduction

Joint roughness is one of the fea-
tures responsible for strength, deform-
ability, water flow and other rock mass 
properties. According to Lee (1990), 
discontinuities have an important in-
fluence on the deformational behavior 
of rock masses. Roughness directly 
influences the internal friction angle, 
dilatancy and peak shear strength. 
Such effects are highly dependent on 
the scale considered. There has been 
a considerable amount of research on 
rock roughness to understand its effects 
on rock deformability and strength. 
Raimbay et al. (2017) show that the 
variogram fractal dimension better 
describes the water and polymer solu-

tion flow in rock discontinuities. Li et 
al. (2017) present a fractal model for 
analyzing the shear behavior of large-
scale opened rock joints.

The Joint Roughness Coeffi-
cient (JRC) is an important parameter 
for estimating rock quality (Barton, 
1973). This parameter is commonly 
obtained by, visually, comparing the 
discontinuity profile against standard 
ones. The differences between actual 
and JRC proposed profiles has boosted 
the research on statistical geometry 
descriptions. Fractals is one of the 
most important methodologies for 
roughness description. Methodolo-
gies such as the box counting method 

(Feder, 1988), variogram methodology 
(Orey, 1970), spectral analysis (Berry 
and Lewis, 1980),roughness length 
(Malinverno, 1990) and line scaling 
(Kulatilake, 1988) have been used to 
describe roughness profiles. Most of 
the relevant research studies on fractal 
dimension analyses have been done in 
the last decades of the twenty century.

Many authors have proposed 
s evera l  re lat ionsh ips  a s soc iat -
ing fractal geometry, JRC and rock 
roughness(ODLING, 1994),(XIE , 
1995), (BADGE, 2002).As discussed 
by Lee (1990), the relationship between 
JRC and the Hurst coefficient can be 
described as the empirical equation:

JRC = -0.87804 + 37.7844 D - 1
0.015

- 16.9304 D - 1
0.015

2

where D is the profile fractal dimen-
sion given by D=2-H. The equation is 
bounded for D values between (1.0046 
and 1.013).The Hurst coefficient  
0 < H < 1 characterizes the self-similari-
ty of rock profiles. A higher Hurst coef-
ficient indicates lower rugosity while a 
lower Hurst coefficient indicates higher 

rugosity. Experimental variograms are a 
common methodology used to estimate 
the Hurst coefficient.

The Hurst coefficient can be rea-
sonably defined for stationary fields. A 
stationary behavior is commonly re-
lated to a stochastic process with mean 
and variance being constant along the 

distance. However, drifting can be ob-
served in most of engineering practical 
instances. It consists in one of the main 
problems in applying variogram meth-
odologies to describe rugosity as much 
as in several other geostatistical features. 
Figure 1 illustrates a discontinuity pro-
file obtained in a laboratory test.

(1)
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Figure 1
Discontinuity profile in a laboratory test.

This profile (Figure 1) is highly af-
fected by the drift effect. Alternatively, the 
experimental data could be turned into a 
stationary field using a data transformation 
methodology. Figure 2 demonstrates the 
same profile after data transformation. For 

this data transformation, linear regression 
was made to define the mean behavior of 
the profile, and simple rotation of the data 
provided the angle of a straight line, thus 
producing a new stationary behavior with 
constant mean. However, the mathemati-

cal methodology used to obtaina stationary 
field might reduce the rugosity scale and its 
variability (Vieira et.al, 2010). Even though 
stationarity can be reached mathematically, 
small trends should be considered since it is 
intrinsic to engineering problems.

Figure 2
Discontinuity profile after data
transformation. Note: scales used in
Figure 1 and Figure 2 are not the same.

1.2 Fractal geometry
Maldebrot (1977) introduced the 

concept of fractal geometry and the defi-
nition of “dimensions” that have been 
used in several areas of physics, math-
ematics and engineering. A line can 
be entirely representedin a1-D space; 
an ideal plane ina 2-D and a solid, a 
cube for example, can be represented 

by a 3-D space. Fractal dimension can 
be represented by a subdivision of a 
Euclidian dimension, and have mixed 
geometrical properties.

According to Kulatilake (1988), 
fractals can be understood as self-
affined or self-similarity entities. A 
self-similar fractal is a geometric feature 

that retains its statistical properties 
through various magnifications of itself. 
Differently, self-affined fractals change 
their statistical properties for different 
scales. It would not be reasonable to 
characterize rock roughness with self-
similarity methodologies, due to its 
natural rock properties.

1.3 Generation of fractional Brownian profiles
Brownian motion profiles were cre-

ated, using a constant Hurst coefficient, to 
compare the rodogram function estimation 
against the traditional variogram function.

Saupe (1988) describes several algo-

rithms for creating fractal geometries. The 
author discusses awell-known method to 
create fractional Brownian profiles called 
the Midpoint Displacement methodology. 
Thisproposition modifies the coordinates 

of the line points based on a recursive 
function that redefines the midpoint of 
each sub segment. Figure 3 demonstrates 
the process of midpoint division. At level 
N=1, point 3 was created as follows:

x (3) = 12
x (1) + x (2)

y (3) = 12
 y (1) + y (2) + D1

(2)

(4)

(6)

(3)

(5)

(7)

where D1 is a normal random variable with mean =0 and variance =∆2
1. The following points are definedbythe recursive function:

x (4) = 12
 x (1) + x (3)

y (4) = 12
 y (1) + y (3) + D2

x (5) = 12
 x (3) + 3 (2)

y (5) = 12
 y (3) + y (2) + D3
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Figure 3
Brownian profile 

generation. At each level n, a 
midpoint is selected and redefined 

using a random function. At level N=1 
segment is divided in two. At level N=2 
segment is divided in 4.At level N=n, 

the segment is divided into 2n segments.

For each incremental level, the variance of D distribution modifies, according to:

Δ2
n =

(2n)2H

σ2 ( 1 - 22H-2) (8)

where σ2 is the initial variance, H 
is the Hurst coefficientand n is the  

iteration number. Figures 4 and Figure 
5 show examples of stationary and 

non-stationary Brownian profiles, 
respectively.

Figure 4
Example of Brownian profile. 

σ2= 100, H = 0.6, n=10. No Drifting.

Figure 5
Example of Brownian 

profile with drift component. 
σ2= 100, H = 0.6, n=10. With Drifting.

1.4 Characterizing the Hurst coefficient using variogram and rodogram
Variogram can be defined as the 

expected value of the squared differ-
ence of regionalized random variables 

E[(Z
i
-Z

i+h
)2]/2. According (KULATI-

LAKE, UM e PAN, 1998) one can 
estimate the Hurst coefficient using a 

variogram function with the following 
relationship:

2γ (x,h)
→h=0=K

v
h2H

where K
v
 is a coefficient of proportional-

ity, H is the Hurst coefficient and h, as in 
the classical geostatistic, is the distance 
vector between two samples. The Hurst 
component can be obtained by linearizing 
the log-log plot (log (2γ (x,h)) and log (h)).

The Rodogram function is a robust 
estimator that is less susceptible to non-
stationary effects. According to Goovaerts 
(1997), this robust estimatormay provide 
a clearer description of spatial continuities 
revealing their ranges and anisotropies 

much better than the traditional vario-
gram. This article proposes to estimate 
the Hurst coefficient using the Rodogram 
function defined as E[(|Z

i
-Z

i+h
|)0.5]/2, where 

Z is the regionalized random variable, 
modifying Equation 9 into:

(9)

(10)2γ
r
 (x,h)

→h=0
 =K

v
'h0.5H
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Figure 6 shows the mean square 
error versus exponents in equation 

10. It seems that the choice of coef-
ficient of 0.5 is a better alternative to 

determine the Hurst coefficient using 
Rodogram function.

Figure 6
Scatterplot of mean squared
error versus coefficients for a Hurst
coefficient of 0.9 previously determinated.

2. Methodology

To compare the variogram and 
rodogram methodologies, Brownian 
profiles have been generated. Table 1 
presents the parameters used to gener-
ate a stationary Brownian profile using 
an initial horizontal base line. For the 
non-stationary profile generation, the y 

coordinate of the end-point of the origi-
nalbaseline was modified according to a 
chosen drifting angle. A drifting angle in 
a Brownian profile can be simply defined 
as the arctangent of the difference in yfinal 
and ystart divided by the difference of 
xfinal and xstart. An initial Hurst coef-

ficient of 0.6 was used as a standard value. 
The objective here is to estimatethe Hurst 
coefficient on this profile using traditional 
variogram and rodogram methodologies. 
Python programming was used to gener-
ate the Brownian profiles according to the 
same algorithm showed in section 1.3.

 Brownian Profile Parameters

(x,y) start (0.0)

(x,y) final (without drifting) (600.0)

Hurst coefficient 0.6

Initial st deviation 10

Table 1
Brownian Profile parameters. Hurst 
coefficient was imputed as constant.

Variogram and rodogram log 
plots were used to define the best lin-
ear fitting points as shown in Figure 
7.Hurst coefficients were estimated 

using 5 lags of 10 unities of size. Ac-
cording to Kulatilake (1988), differ-
ent lagsizes cause differences in the 
Hurst estimator; therefore, a standard 

parameter for spatial continuity func-
tions was used for better comparison 
between the rodogram and variogram 
methodologies.

Figure 7
Spatial continuity 
functions log plot –(Seven points).

Groups of 10 Brownian profiles-
generated with the same imposed Hurst 
coefficient, the same variability and the 
same drifting angle (Hinput =0.6 and σ =10) 
were used to compute the statistics of the 
estimated Hurst coefficient. The estimation 

error was calculated for both spatial conti-
nuity functions (rodogramand variogram).

The Hurst coefficient average error 
for different drift values were calculated as 
the difference between the expected value, 
defined by the mean of estimated values, 

and the true value, previously used for 
creating the roughness profiles.

Rodogram and variogram Hurst 
coefficient error were plotted to evaluate 
their response to the drifting profile. Drift-
ing degrees varying from zero to 30 were 
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used in these plots.
Finally, the error was graphically 

analyzed for different Hurst coefficients 
for a non-drifting surface, to compare 

the differences between thevariogram 
androdogram methodologies.

3. Results and discussion

The averages of the Hurst coeffi-
cient calculated for different driftsare 
presented in Table 2. The drifting 

angles were obtained by increasing 
the n-point vertical distance using a 
factor of 2. The original profile gen-

eratedwas obtained using a constant 
Hurst coefficient of 0.6.

Hurst component (Hinput =0,6 and σ =10) x estimation error 

drift  Average H Rodogram Average H Variogram Relative H1 
Rodogram error

Relative H2 
Variogram error

0 0.59 0.57 3.33% 6.67%

0,48 0.58 0.57 5.00% 8.33%

0,95 0.57 0.56 8.33% 10.00%

1,91 0.57 0.56 6.67% 11.67%

3,81 0.59 0.57 3.33% 8.33%

7,59 0.59 0.58 1.67% 6.67%

14,93 0.62 0.60 -5.00% 1.67%

28,07 0.67 0.66 -20.00% -16.67%Table 2
Hurst coefficient error (Hinput =0.6 

and σ =10) for different drift values.

The average error of the Hurst 
coefficientsfor eachdrift are presented 
in Figures 8,9, and 10. The rodogram 
estimator presents smaller errors than 

the variogram estimator for drift angles 
under approximately 10°.Higher drifts, 
where the variogram can be considered 
a better estimator are not usually found 

in rugosity profiles. It should also be 
pointed out that for drift angles over 
around 10°, the error increases rapidly 
for both methodologies.

Figure 8
Average Error of Hurst coefficient 

vs drift. Hurst coefficient 0.6 and σ=10.

Figure 9
Average Error of Hurst coefficient 

by drift. Hurst coefficient 0.7 and σ=10.

1Relative error = |True value –Estimated value|/True Value
2Relative error = |True value –Estimated value|/True Value
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Figure 10
Average Error of Hurst coefficient 
by drift. Hurst coefficient 0.8 and σ=10.

When a stationary problem has 
been considered, the variogram is a 
more precise estimator than the rodo-

gram (average rodogram error is less 
than variogram average error), but less 
accurate (the rodogram coefficient of 

variation is greater than the variogram), 
as shown in Table 3 .

standartdesviation Hurst
rodogram variogram rodogram variogram

cv cv error error

10 0.6 0.084 0.064 0.014 0.033

10 0.5 0.082 0.074 0.066 0.015

10 0.4 0.117 0.103 0.018 0.014

10 0.2 0.142 0.131 0.034 0.032

7,5 0.6 0.090 0.078 0.029 0.036

7,5 0.5 0.113 0.099 0.055 0.016

7,5 0.4 0.124 0.135 0.021 0.011

5 0.2 0.163 0.149 0.042 0.037

5 0.4 0.169 0.143 0.014 0.014

5 0.6 0.095 0.100 0.024 0.026

5 0.8 0.074 0.071 0.056 0.080

average 0.473 0.114 0.104 0.024 0.027

Table 3
Rodogram and variogram errors 
and coefficient of variation for different 
standard deviations, and inputHurst
coefficients. No drift has been considered.

Figure 11 presents the Hurst coef-
ficient error for the different profiles 
generated. It seems that the average error 
of linear estimators (variogram and rodo-
gram) are only deslocated by a constant 
defined by the exponent of the spatial 

continuity function as demonstrated in 
Figure 10. As discussed by Kulatilake 
(1988), the error presented by the vario-
gram methodology increases as the Hurst 
coefficient increases. Rodogram method-
ology seems to be better defined for high 

Hurst coefficient values and lower drifts, 
less than 10 degrees. Considering that rock 
roughness profiles can be defined at these 
terms, the Rodogram methodology can 
be a better alternative for describing rock 
mass discontinuity roughness.

Figure 11
Hurst coefficient error vs Hurst coefficient. 
Average values for different Brownian 
profiles with standard variations equal 
5, 7.5 and 10. 500 simulations used for 
each Hurst coefficient. No drift was inserted.
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4. Conclusion

In this study, the spatial continu-
ity function rodogram was proposed to 
estimate the Hurst coefficient of rock 
discontinuity roughness profiles instead of 
the variogram commonly used. Brownian 
profiles were created imposing a Hurst 
coefficient which has been forward esti-
mated using models of spatial continu-

ity. Rodogram methodologies presented 
errors lower for small drifts and small 
fractal dimensions when compared to 
variogram methodologies. Variograms 
were less accurate than rodograms when 
small drifts are considered (lower than 
10°). For higher drift values, neither the 
variogram or the rodogram methodol-

ogy presented good results for Hurst 
parameter determination. When no drift 
was considered, both the rodogram and 
variogram essentially presented the same 
error for a Hurst coefficient lower than 
0.6. Variogram and rodogram methodolo-
gies failed to describe the Hurst coefficient 
for profiles presenting higher roughness.
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