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Quantifying mean grades 
and uncertainties from the 
ratio of service variables: 
accumulation to thickness. 
Applied to a phosphate 
deposit in Southern Mato 
Grosso, Brazil
Abstract

Estimating mineral resources of a stratiform mineral deposit is not always a 
simple activity. Some difficulties can arise in mineral deposits where the thickness is 
relatively much smaller than the dimensions in the horizontal plane, or because these 
deposits have suffered events after their genesis, such as thrusts and folds. Usually, 
in these cases, we use a new variable named accumulation as a product between the 
average grade and thickness. Then, from these service variables, accumulation and 
thickness are estimated in a regular grid. Dividing accumulation by thickness, we have 
the mean grade. However, the mean grade is just an approach because the uncertain-
ties of variables are not considered in this division. This calls for applying the Taylor 
series to computing, not only the mean grade, but also the associated uncertainty. In 
this article, we present the satisfactory results of this method applied to quantify the 
mean grades and uncertainties of the blocks to a stratiform phosphate deposit located 
in southern Mato Grosso, Brazil.
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1. Introduction

A variable named accumulation 
is commonly used for ore resource 
estimation in stratiform, stratabound, 
or tabular deposits. This variable is 
also known as the service variable 
(Rossi and Deutsch, 2014) and is 
defined as the product of the aver-
age grade in the borehole and the 
thickness of the mineralized section 
(Journel and Huijbregts, 1978; Chilès 
and Delfiner, 2012). Actually, this 
variable has been used in the valua-
tion of gold mines and it represents 
direct measurements of gold per unit 
area (Krige, 1978). The mean grade 
of a block is computed by dividing 
the estimated accumulation by the 
estimated thickness (David, 1977; 
Dowd and Milton, 1987; Rossi and 

Deutsch, 2014). However, the result-
ing mean grade is just an approxima-
tion (Dowd and Milton, 1987, p. 42) 
because the quotient is a function de-
fined by the ratio of accumulation to 
thickness. The uncertainty associated 
with the mean grade must take into 
consideration uncertainties regarding 
estimations of both accumulation and 
thickness. Actually, we want to know 
the probability distribution function 
of the mean grade resulting from the 
division of accumulation by thickness. 
This issue can be addressed by Monte 
Carlo simulation, but the main draw-
back of this method is that the results 
obtained are not readily transferable 
to a new situation due to the nature 
of this method; it does not provide a 

closed analytical form (Dettinger and 
Wilson, 1981). On the other hand, 
there is another approach that allows 
calculating the statistical moments of 
the mean grade distribution, which is 
known as the first and second moment 
method (Dettinger and Wilson, 1981). 

This approach is based on second 
order Taylor Series expansion of the 
ratio function (accumulation by thick-
ness). The mean grade and its variance 
can be calculated by mathematical 
expressions. Herein, the equations 
developed for the calculation of mean 
grade and variance by Yamamoto et 
al. (2018) are tested in a real database 
of research in a stratiform phosphate 
mineral deposit located in the south-
ern state of Mato Grosso.
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2. Review of previous studies

It is clear in previous studies that 
the average grade resulting from the 
division of estimated accumulation 

by estimated thickness is accepted 
as estimated grade (David, 1977; 
Krige, 1978; Journel and Hujbregts, 

1978; Sinclair and Blackwell, 2002; 
Chilès and Delfiner, 2012; Rossi and 
Deutsch, 2014).

(1)

(2)

(3)

(4)

For notational convenience we will consider hereafter the function grade as:

However, according to Dowd and 
Milton (1987), the average grade obtained 
by dividing estimated accumulation by 
estimated thickness is just an approxi-
mation and that it is valid only under 
restrictive conditions: accurate thickness 
estimates; use of paired data to estimate 
both accumulation and thickness. Herein, 

we provide a full equation to calculate the 
average grade.

For the average grade, we have to 
assess the uncertainty associated with 
the estimate. Previous studies have ad-
dressed this issue by assuming that true 
values are known at estimation locations 
(Journel and Huijbregts, 1978). There-

fore, errors can be determined and the 
error of the average grade results from 
the propagation of errors of accumula-
tion and thickness. The true global val-
ues G, X and Y are known and also the 
estimated values G*, X* and Y* (Journel 
and Huijbregts, 1978). Thus, we can 
derive error expressions:

Since estimates are assumed to be unbiased, we have (Journel and Huijbregts, 1978):

According to these authors, estimation variances are also known:

The relative estimation variance of 
the quotient G=X/Y can be calculated as 

second order Taylor expansion (Journel 
and Huijbregts, 1978):

This equation has also been used 
by Dowd and Milton (1987) and by 
Sinclair and Blackwell (2002).

Expression (2) considers that all 
variables are roughly lognormally dis-
tributed and therefore it is considered 

a particular case of Tukey’s formula 
(David, 1977):

Notice that Equation (3) is the 
formula for variance of function G that 

resulted from first order Taylor expansion.
The derivatives of the function 

G=X/Y are:

Replacing these derivatives in (3) and considering the variance around a point θ = (μx,μy), we have:

Although equations (2) and (4) 
look different, we can show that Equa-

tion (2) was also derived from (3) as 
follows. Multiplying both sides of Equa-

tion (2) by G²=X²/Y² and knowing that 
Cov(X,Y)=ρxy σx σy, we have:
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Since Equation (2) results from first 
order Taylor expansion and considering 

that the expansion is made about a point 
θ = ( μx, μy ), we can replace X and Y by 

μx and μy, respectively. Thus, we have the 
same equation as (4):

Actually, this is an advantage of 
the Taylor method because it allows 

computation of the variance of the 
function without knowing the shapes 

of input distributions (Maskey and 
Guinot, 2003).

2.1 Computing mean and variance from second order taylor expansion

Yamamoto et al. (2018) devel-
oped mathematical expressions for 
calculating mean and variance for 

arithmetically combined variables. 
For the ratio function the mean or the 
mathematical expectation around a 

point θ=( μx, μy ) and the variance are 
calculated as:

(5)

(6)

(7)

(8)

Where σxy is the covariance between x 
and y. Details of the mathematical develop-
ment of Equations (5) and (6) can be found 
in Yamamoto et al. (2018).

Notice that Equation (5) is just an 
approach based on second order Taylor 
expansion. As shown in a previous item, the 
mean grade is usually calculated as the ratio 
of accumulation to thickness. Actually, 
keeping just the first term on the right side of 
Equation (5), means that we are calculating 
the mathematical expectation after the first 
order Taylor expansion. This is why Dowd 
and Milton (1987) drew attention to this 
approach. Evidently, Equation (5), which 
results from second order Taylor expansion 
is better than considering just the first order. 
Moreover, Equation (5) is still an approach 
because there is no exact formula for the 
mean of the ratio of x to y, since the func-
tion f (x,y)=x⁄y  is infinitely differentiable 

with respect to y. Yamamoto et al. (2018) 
also provided a formula for the mean after 
the third order Taylor expansion.

Equation (6) is composed of ten 
terms as a result from second order Taylor 
expansion for the variance of the function  
f (x,y)=x⁄y . The first three terms on the 
right side of Equation (6) are related to the 
first order expansion (equation 4). Yama-
moto et al. (2018) showed that this equation 
is a much better approach than just keeping 
the first order terms.

Mean and variance after Equations 
(5) and (6), respectively, are valid as global 
statistics. Since we are interested in com-
puting mineral resources in blocks of a 2D 
deposit, we must be able to compute local 
first and second order statistical moments 
(mean, variance and covariance) and high-
order moments as required by Equation (6).

Because accumulation and thick-

ness are additive variables, they can be 
estimated by kriging (Chilès and Delfiner, 
2012). Theoretically, μx and μy are estimated 
separately from different sets of kriging 
weights. However, we cannot proceed with 
further calculations, especially second order 
moments, because of the risk of bias, as 
recognized by Chilès and Delfiner (2012). 
These authors suggest using the same 
basic variogram multiplied by a constant. 
Actually, accumulation and thickness are 
proportional variables and therefore their 
variograms are proportional to the same 
basic variogram function (Chilès and 
Delfiner, 2012). Indeed, these variables are 
intrinsically co-regionalized (Journel and 
Huijbregts, 1978). Considering that both 
variables are estimated using the same data 
configuration, the kriging weights will be 
the same (Chilès and Delfiner, 2012) μx and 
μy are calculated as follows:

}
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The variances σx
2 and σy

2 are 
calculated by using the approach pro-

vided by the interpolation variance 
(Yamamoto, 2000).

(9)

(10)

(11)

The covariance between accumulation and thickness can be computed as (Yamamoto et al. 2018):

First and second order statisti-
cal moments are used to compute 

both mean and variances according 
to Equations (5) and (6), respectively. 

High-order moments are calculated 
as:

3. Materials and methods

4. Results and discussion

For this research, we used a geochemi-
cal database composed of 92 drillholes, 
which were sampled at one-meter intervals 
and generated 4,892 samples. The evaluation 
method proposed by this article required 
careful analysis of each drillhole for the 
selection of mineralized intervals in apatite 
phosphorus (considering the CaO / P2O5 
ratio) and the insertion of some variables 
into the database: weighted mean of P2O5, 
thickness and accumulation.

Accumulation of P2O5 content by 
thickness resulted in 92 sample points, 

which the samples generated consider only 
x and y coordinates, not considering the z 
coordinate and placing all samples in a single 
horizontal plane.

Evaluation of mineral resources us-
ing a service variable makes use of some 
additional procedures. Thus, after adding 
these variables to the database, some tasks 
are required to obtain the mean grade and 
its variance of estimated blocks, such as 
statistical analysis of variable thickness and 
accumulation; calculation of experimental 
variograms of both variables and determina-

tion of directions of anisotropy; modeling an 
experimental variogram; ordinary kriging of 
both variables; calculation of the mean grade 
and uncertainty; displaying 2D maps of the 
mean grade and uncertainty.

It should be pointed out that ordinary 
kriging was applied because it is the best 
non-biased linear estimator, besides being 
able to calculate a local kriging variance and 
covariance through the equations by Yama-
moto (2000), and of great importance for the 
calculation of uncertainty by the equations 
presented here deriving the Taylor Series.

Analyzing frequency distribu-
tions for both variables, we conclude 
that they present positive asymmetry 

(Figure 1). Moreover, we can see that 
a quarter of the distribution has ze-
roes, because of negative drillholes 

(no phosphate apatite). Statistics for 
both variables are presented in Tables 
1 and 2.

Figure 1
Accumulated frequency curve 
of the Thickness (a) and Accumulation
(b) variables with histogram inserted.

(a) (b)
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Thickness Variable (m)

# 
data

Mean 
(m)

Standard 
Deviation

Coefficient 
of Variation Maximum Minimum Upper 

Quartile Median Lower 
Quartile

92 14.12 17.23 1.22 70.30 0.00 18.00 9.74 -99.00Table 1
Statistics for thickness.

Table 2
Statistics for accumulation.

Accumulation Variable (m%)

# 
data

Mean 
(%m)

Standard 
Deviation

Coefficient 
of Variation Maximum Minimum Upper 

Quartile Median Lower 
Quartile

92 42.06 50.82 1.21 202.04 0.00 54.67 28.05 -99.00

In order to identify the directions of 
anisotropy, we computed the variogram 

map (Figure 2), which shows anisotropic 
directions between 70-80° and 160-170° 

in which the former is the direction of 
high continuity, showing lower variance.

Figure 2
Variogram maps for Thickness 

(a) and Accumulation (b) variables.

Experimental variograms (Figure 3) 
were computed according to anisotropic di-

rections as displayed in variogram maps. In 
addition, Figure 3 shows variogram models 

fitted to experimental variograms according 
to parameters presented in Tables 3 and 4.

Figure 3
Experimental variograms

for Thickness (a) and Accumulation (b) 
variables. Spherical theoretical model fit.

Table 3
Variogram parameters

 of Thickness variable (a).

Table 4
Variogram parameters

of Accumulation variable (b).

Thickness Variable

Nugget 
Effect Struct. 1 

(75°)

Range 
max.

Range 
min. Sill

Struct. 2 
(165°)

Range 
max.

Range 
min. Sill

100 585 480 285 1*1030 480 309

Accumulation Variable

Nugget 
Effect Struct. 1 

(75°)

Range 
max.

Range 
min. Sill

Struct. 2 
(165°)

Range 
max.

Range 
min. Sill

880 585 480 2508 1*1030 480 2719.2

In Figure 3, it is possible to check 
the proportionality of the variograms 
by a constant k, according to Chilès 
and Delfiner (2012) who assert that 
proportional variables must have pro-
portional variograms for the same basic 
variogram function.

Then, ordinary block kriging was 
carried out based on the variogram 
models presented. The block size for 
both directions is equal to 50 meters, 
resulting in 2,931 blocks. The blocks are 
defined in order to generate blocks with 
minerable dimensions, since the average 

distance of the samples is very large and 
would generate non-operational blocks.

Values of local variances and co-
variances were computed after expres-
sions 9, 10 and 11, which were replaced 
in Equations 5 and 6 for calculation of 
the mean grade of P2O5 and associated 

(a) (b)

(a) (b)
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uncertainty with the estimated blocks.
The results of this calculation can 

be displayed in 2D maps, as shown in 

Figures 4 and 5, for the mean grade of 
P2O5 and associated uncertainty, respec-
tively. Remembering that dimension z 

is disregarded when the average hole 
content is accumulated by multiplying 
it to the thickness.

Figure 4
Map of mean grade of P2O5.

Figure 5
Map of uncertainties 
associated with the estimates.

In Figure 4, there are empty blocks 
highlighted by the letter A. Actually, 
empty blocks resulted from negative 
mean grades because Equation 5 takes 
into account a subtraction of the second 

term that is greater than the first term. 
On the other hand, the letter B indi-
cates regions of high grades but closer 
to negative drillholes. This happens 
because the thickness (T* = μy ) is much 

less than the estimated accumulation 
(GT* = μx). Then in these cases care 
must be taken in interpreting the results, 
especially for high grades in regions of 
low probability.

A notable result can be seen in 
Figure 5, in which high uncertainties are 
associated with lithological boundaries. 

Moreover, the regions located by the letter 
B show high uncertainties associated with 
high mean grades. This means that these 

high mean grades are meaningless and 
should be disregarded when calculating 
the mineral resource. 

5. Conclusion

Acknowledgments
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