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Abstract

The Direct Strength Method (DSM) is a well-known formulation presented in 
the Brazilian standard ABNT NBR 14762:2010, that estimates the strength capacity 
of cold-formed steel (CFS) members. However, this formulation requires the elastic 
critical buckling loads as point of departure, regarding local (L), distortional (D) and 
global (G) modes, which can be obtained by (i) elastic buckling analysis or (ii) avail-
able direct equations. The present study is dedicated to the development of a computer 
program, FStr Computer Application, with graphical user interface (GUI), in order to 
make the buckling analysis easier and approachable for both research activities and 
engineering design of thin-walled structures with arbitrary cross-sections (sections 
combining closed cells with open branches). The proposed application uses the Finite 
Strip Method (FSM), mainly focused on a simple and accessible GUI, which was 
implemented in the MATLAB App Designer. Validation of the FStr was performed 
with the help of examples of open and closed cross-sections and comparison with 
the results of acknowledged computer programs, such as CUFSM and GBTul, based 
respectively on FSM and GBT (Generalized Beam Theory), as well as analytical pro-
cedures for the case of the global buckling modes. Both, the critical buckling loads 
expressed by the computed signature curve and the correspondent critical buckling 
modes are compared, confirming the adequate performance of the proposed com-
putational tool. As future research, the authors plan updates for the FStr Computer 
Application, including the computation of the buckling modal participation and the 
automatic strength predictions, based on the DSM-based design prescriptions.

Keywords: Finite Strip Method, computer application, thin-walled structures, elastic 
buckling analysis, cold-formed steel members.
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1. Introduction

Applying thin-walled members may 
be a frequent option due to light structural 
systems, less material consumption, engi-
neering design and architectural concepts. 
However, steel thin-walled constructional 
systems are mostly slender structures, 
which present additional stability prob-
lems, (Batista, 2005).

Cold-formed steel (CFS) members 
are composed of thin-walled sections, 
usually conductive to slender structural 
systems, prone to buckling, obliging 
designers to deal with the complexity of 
the phenomenon and requiring as simple 
as possible design procedures in order to 
allow safe structural performance. The 

current CFS structural design codes, 
Brazilian standard NBR 14762 (ABNT,  
2010), Australian/New Zealand code 
4600 (AS/NZS, 2018) and North-Amer-
ican standard S100-16 (AISI, 2016), have 
been improving their design approaches 
over the past decades. Revisions of the 
design procedures, usually based on semi-
empirical procedures, obliges laboratory 
experimental campaigns combined with 
accurate numerical analysis in order 
to calibrate and improve the proposed 
equations and procedures. The usual 
formulations for the design of thin-walled 
CFS members require a previous elastic 
critical buckling analysis as the point of 

departure, regarding the identification of 
local (L), distortional (D) and global (G) 
buckling modes, which can be obtained 
by (i) an elastic buckling analysis or (ii) 
available analytical equations.

The current study is dedicated to 
the development of a computer program 
for an elastic buckling analysis with 
graphical user interface (GUI), in order 
to make it easier and approachable for 
both research activities and engineering 
design of thin-walled structures with ar-
bitrary cross-sections (e.g. symmetric and 
asymmetric open section CFS members, 
hollow sections, multi-cell box girder and 
monosymmetric I-shape beams).
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1.1 The finite strip method
The present article provides the 

finite strip method (FSM) for an elastic 
buckling analysis. The FSM was originally 
formulated by Yau Kai Cheung, honorary 
professor of The University of Hong Kong 
(Cheung, 1976). On the other hand, it was 
Gregory J. Hancock, emeritus professor 
of The University of Sydney, who began 
using the FSM in structural members, 
such as hot-rolled sections and CFS sec-
tions (Hancock, 1978; Hancock, 1981; 
Hancock et al., 1980).

The Finite Strip Method is a par-
ticular case of the Finite Element Method 
(FEM). Briefly, the FEM uses polynomial 
shape functions in all directions, while the 
FSM uses polynomials shape functions in 
a transverse direction and trigonometric 
shape functions in a longitudinal direction, 
which satisfies the boundary conditions 
(Figure 4.) for the case of small displace-

ments of the structural system. The main 
advantage in using FSM, as compared to 
FEM, is to reduce the structure’s degrees 
of freedom, in order to acquire perfor-
mance and time consumption in the elastic 
buckling analysis. In addition, the choice 
of the longitudinal deformation function 
as a trigonometric shape allows FSM to 
solve the buckling analysis (first order 
small displacements solution) with highly 
accurate results. However, the method is 
not eligible to perform structural analysis 
addressed to obtain displacements and 
stresses in structural systems.

The FSM formulation is based on 
classical plate theory assumptions, which 
are described in detail by Timoshenko 
and Woinowsky-Krieger (1959). In the 
present study, the computational matrix 
formulation is based on the main refer-
ence by Cheung (1976). Additionally, the 

following sources are also used in the 
present study – i.e. (Bradford & Azhari, 
1995; Schafer, 1997; Li & Schafer, 2009; 
Li, 2009; Lazzari, 2020).

The strip element is a lower order 
rectangular strip with two nodal lines 
(LO2) as shown in Figure 1. For each 
strip, the membrane strain is examined, 
considering plane stress assumptions and 
the bending strain, in accordance with  
Kirchoff thin plate theory assumptions 
(Cheung, 1976). Due to these assump-
tions, each strip has 8 degrees of freedom 
and 4 degrees per nodal line.

First, the displacement field inside de 
strip can be approximated by Eq. (1), us-
ing the nodal displacements {d}, shown in 
Figure 1-b, and the shape function matrix 
[N]. The displacements field for each strip, 
{u v w}T, is determined as a summation of 
all longitudinal terms (p), from 1 to m ∈ N.

Figure 1 - Lower order rectangular strip with two nodal lines (LO2). (a) Strip discretization in a Lipped 
channel section. (b) Degrees of freedom on nodal lines. (c) External end stress distribution applied to the strip (Li & Schafer, 2009).

The shape function matrix can 
be found in Lazzari (2020) and is com-
posed of polynomial functions times Y

p
, 

which is a trigonometric function.
The formulation of the finite strip 

now can be defined using the principle 
of minimum total energy. According 
to Cheung (1976), the principles states 
that “of all compatible displacements 
satisfying given boundary conditions, 

those which satisfy the equilibrium 
conditions make the total potential 
energy assume a stationary value”. 
In other words, Eq. (2) appears in the 
variational form:

in which Π is the total potential energy, 
U is the strain energy and W is the po-

tential energy of external forces.
By definition, the strain energy of 

a three dimensional solid is defined by 
Eq. (3).

In Eq. (3) {ε} is the strain, com-
pounded with the sum of the bending 

and twisting curvature strain, {ε
B
 }, with 

the normal and shear strain, {ε
M
 }. Also, 

{σ} is the stress, related to the strains, 
[B] is the strain-displacement matrix 
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The matrices in Eq. (5) and Eq. (6) 
are the global matrices, which are obtained 
by assembling all the half-wave terms in 
each corresponding degree of freedom. For 
the assembling, it is necessary to transform 

the local into global coordinates. In this 
case, there is considered a common y axis 
for the local and global coordinates. More 
details about the assembly of the global 
stiffness matrices can be found in Ádany 

and Schafer (2006) and Lazzari (2020).
After the assembling, the general 

stability solution is obtained solving the 
classic generalized eigenvalue problem 
described in the Eq. (7).

Using the global elastic stiffness matrix 
[K], the global geometric stiffness matrix [KG] 

and a proper eigenvalue problem solver, it is 
possible to obtain the eigenvalues [Λ], which 

are the critical stresses, and the eigenvectors 
[Φ], which are the critical modal shapes.

Working on the Eq. (4) using matrix 
formulation, and considering the principle 
of minimization of the total potential en-
ergy due to the initial stress, the geometric 
stiffness matrix or the initial stress matrix 
can be reached. Again, the geometric 
matrices are given from the membrane 

and bending assumption separately. Both 
matrices can also be found in Schafer 
(1997), Li and Schafer (2009), Li (2009) 
and Lazzari (2020).

For the assumed flat shell strip 
(LO2), there is no interaction between 
the bending and the membrane, be-

cause the displacements are small 
enough. Due to that the elastic stiffness 
matrix, Eq. (5), and the geometric stiff-
ness matrix, Eq. (6), are obtained by 
assembling the membrane and bending 
matrices through a simple combination, 
as described in Eq. (5) and Eq. (6).

So far, the finite strip method 
is well consolidated in well-known 
computer programs. The two most 
famous computer programs that 
perform a finite strip method are: the 
Constrained and Unconstrained Finite 
Strip Method (CUFSM), by Ádany and 
Schafer (2006), Ádany and Schafer 
(2006a), Ádany and Schafer (2006b), 
Schafer (1997), Schafer (2020), and the 
THIN-WALL by Papangelis and Han-
cock (1995) and Nguyen et al. (2015).

The CUFSM (Schafer, 2020) 
program is a finite strip elastic buck-
ling analysis application, which per-
forms analyses for thin-walled sec-
tions. CUFSM is an open free source 

program created by professor Ben  
Schafer's thin-walled structures 
research group at Johns Hopkins 
University (Baltimore, MD, United 
States of America) and it was de-
veloped in the MATLAB platform  
(Matworks, 2000).

The THIN-WALL is a Semi-An-
alytical Finite Strip Method (SAFSM), 
which has been recently updated to 
the THIN-WALL 2 (Nguyen et al., 
2015). The new updated version was 
developed at The University of Syd-
ney (Sydney, NSW, Australia), with 
the help of a graphical user interface 
(Mathworks, 2000) and Visual Studio 
C++ computational engines.

Besides the finite strip computer 
programs, there are other methods for 
performing the elastic buckling analy-
sis. The Generalized-Beam-Theory 
(GBT) is a well consolidated method, 
originally proposed by Schardt (1989), 
that has been updated in the last 
decade by the IST research group 
(Instituto Superior Técnico – IST – 
University of Lisbon, Portugal) - e.g. 
Silvestre (2005), Bebiano (2010) and 
Camotim et al. (2010). The  best per-
formance computer program that uses 
this method is the GBTul 2.0, from the 
Generalized Beam Theory Research 
Group at the IST, Lisbon (Bebiano  
et al., 2018).

1.2 Computer programs and methods for elastic buckling analysis

and [D] is the elasticity matrix.
The stiffness matrix can now be 

computed by substituting Eq. (3) in 
the Eq. (2). Doing the appropriate dif-
ferentiation and organizing in the form 
[k]{d} - {F}={0}, the stiffness matrices 
can be determined. Solving for the 
membrane strain - considering plane 
stress assumption - it leads to the elastic 

stiffness matrix for the membrane case, 
and solving for the bending strain - 
considering Kirchoff thin plate theory 
assumptions - it results in the elastic 
stiffness matrix for the bending case. 
Both matrices can be found in Scha-
fer (1997),  Li and Schafer (2009), Li 
(2009) and Lazzari (2020).

For the stability problem, it is 

necessary to formulate the geometric 
matrix due to initial stress. The finite 
strip element is LO2, subjected to initial 
stresses that varies linearly, as shown in 
Figure 1-c. However, the distribution of 
the edge stresses along the longitudinal 
axis is constant. Thus, the potential 
energy due to the in-plane forces is 
given by:
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Figure 2 - FStr Graphical User Interface index description.

2. FStr computer application

FStr Computer Application 
(Figure 2 and Figure 3.) is a software 
developed on the basis of the Finite 
Strip Method formulation, as de-
scribed in section 1.1 (The Finite Strip 
Method). The GUI is implemented in 

the MATLAB App Designer (Math-
works, 2000). The purpose of the 
GUI is to make it easier for the user 
to set up the data input and to ana-
lyze the data output. Figure 2 shows 
the FStr GUI with the data input and 

output displayed in one single panel. 
The data input is marked from (1-10), 
the data preprocessing and the finite 
strip analysis are marked as (11) and 
the data output are indicated from 
(12-20).
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3. Elastic buckling analysis validation

3.1 Lipped channel column

One must know that even though 
FStr, CUFSM and THIN-WALL are 
based on the same elastic buckling 
analysis method, they have their differ-
ences. First, the FStr source code has a 
more optimized code structure, which 

makes it: (i) faster to assemble the global 
stiffness matrices; (ii) faster to generate 
the 3D buckling mode; (iii) faster elastic 
buckling analysis for axial compressive 
loading. However, the FStr do not per-
form any type of pure buckling mode 

analysis yet, as well as not include the 
constrained buckling analysis method 
performed by CUFSM. Additionally, 
FStr is an ongoing development and 
limitations of the last version (FStr 1.3.0) 
are shown in Lazzari (2020).

The validation is performed for 
different cross-section models. First, 
a lipped channel section with simply 
supported end boundary conditions 
is performed, in order to show the 
classical signature curve. Secondly, a 

complex I-shaped cross-section is ana-
lyzed, under uniform bending and axial 
compression, and compared with the 
CUFSM and GBTul results. Addition-
ally, more validation models are shown 
in Lazzari (2020).

The material employed to validate 
all the models is taken as an isotropic 
CFS, with elastic modulus of 200 GPa 
(200 kN/mm2), Poisson’s ratio of 0.3 
and transversal modulus of 76.92 GPa  
(76 .92 kN/mm2).

The main goal of this validation is 
to compare a signature curve with ana-
lytical procedures found in literature. For 
this model, a CFS lipped channel column 
with a simply supported end boundary 
condition and only one term of buckling 
shape half-wave is analyzed. The geom-
etry of the cross-section has b

w
=100 mm, 

b
f
=70 mm , b

s
=15 mm and t=2.70 mm, 

web, flange and edge stiffener width and 

thickness, respectively. The finite strip 
model is composed of 19 nodal lines, 18 
strips and 76 degrees of freedom, with a 
total of 200 columns in a length range of 
10 mm to 100000 mm, in logarithmic 
scale. The results are shown in Figure 5.

The critical buckling load from 
FStr is compared to: (i) the approximated 
semi-analytical expression for local 
buckling (Eq. 8), given by Batista (2010) 

and presented in the Brazilian standard 
NBR 14762 (ABNT , 2010); (ii) distor-
tional buckling equation, from Cardoso 
et al.(2017); (iii) global buckling equations 
given by Timoshenko and Gere (1961) and 
mostly into the codes, e.g. (ABNT, 2010; 
AS/NZS , 2018; AISI, 2016). Also, the 
results from the proposed program FStr 
are compared with those from CUFSM 
and GBTul.

Notice in Figure 5 that the FStr 
program obtained practically the 

same signature curve as the CUFSM, 
with an average relative difference of 

0.0012% and a standard deviation 
of 0.27%. The GBTul program also 

Figure 5 - Signature Curve comparison between FStr, CUFSM, GBTul and analytical 
procedures of LC 100x70x15x2.70 column with S-S end boundary condition with one term of half-wave.

Figure 3 - Cross-section generation. Figure 4 - End boundary condition illustration.

P
crl

 = K
l 12 ( 1 -v2)

A t
b

w

2π2E (8)
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3.2 I-shaped cross-section Beam and Column
For this validation, the purpose 

is to analyze the critical buckling 
loads and modes for a section with 
closed cells, in bending and axial 
compression. Given by Gonçalves 

et al., (2009), the cross-section is 
I-shaped with two triangular closed 
cells separated by the web and with 
unequal flanges, described in Figure 6. 
The finite strip model cross-section is 

composed of 21 nodal lines, 22 strips 
and 84 degrees of freedom, with a 
total of 100 lengths in a length range 
of 10 mm to 10000 mm, in logarith-
mic scale.

Figure 7 and Figure 8 show the 
signature curve for the FStr, CUFSM 
and GBTul programs. Also, in the same 
graphs, are displayed the relative differ-
ence between the proposed program with 

CUFSM and GBTul. All the results given 
are with one term of half-wave. Addition-
ally, with the purpose of comparing the 
single half-wave term, a solution from 
FStr with 10 half-waves (column) and 

with 20 half-waves (beam) are illustrated. 
Moreover, in Figure 9, displayed are the 
critical buckling modes for the I-shaped 
column and beam, comparing the FStr 
with CUFSM and GBTul graphical results.

provided a solution close to the finite 
strip method, with an average relative 
difference of 0.2377% and a standard 
deviation of 0.91%.

Further, the analytical procedures 
offered a great precision for the critical 

loads at critical lengths. The critical 
buckling loads at half-wavelength for 
local and distortional buckling, as high-
lighted in Figure 5, has demonstrated 
that the matrix formulation from FStr 
is following the analytical formulations. 

With a relative difference of 3.8% for 
the local buckling equation, Eq. 8, and 
2.5% for  the distortional buckling 
procedure (Cardoso et al., 2017), the 
FStr accuracy against these analytical 
equations are validated.

Figure 6 - I-shaped cross-section geometry (in mm) 
and initial parameters set up for the analysis in pure bending.

Figure 7 - Signature curve comparison and relative difference (RD) between FStr, CUFSM and GBTul of 
the I-shaped cross-section column with S-S end boundary condition with one term of half-wave (p = 1 and n

w
 = 1).

Figure 8 - Signature curve comparison and relative difference (RD) between FStr, CUFSM and GBTul of
the I-shaped cross-section beam with S-S end boundary condition with one term of half-wave (p = 1 and n

w
 = 1).
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As can be seen, the FStr gives the 
same solution as CUFSM, and compared 
to GBTul, the results are very close. At 
length of 123 mm, the GBTul gives the 
higher relative difference, of 7.5%, for 
the column and beam, while the CUFSM 
gives a maximum relative difference of 
0.001% and 0.08%, for the column and 

beam, respectively. The GBTul solution, 
gives an average relative difference of 
0.94% and 1.01% with a standard 
deviation of 1.5% and 1.6%, for the 
column and beam analyzed with one 
term of half-wave (p = 1). When the half 
wave-terms are increased to 10 and 20 
(column and beam), the average relative 

difference decreases to 0.4% and 0.7% 
(column and beam) and the standard de-
viation also decreases to 0.3% and 0.4% 
(column and beam). On the other hand, 
when the FStr is compared to CUFSM, 
the average and standard deviation of 
the relative difference is not higher than 
0.1% in any case.

An FSM computer application 
entitled FStr was developed, in order to 
assist the elastic buckling analysis. The 
program implemented in MATLAB, has 
an accessible and easy graphical user 
interface, and is conceived to attend 
research activities as well as engineer-
ing design of thinwalled structures with 
arbitrary cross-sections.

FStr is validated, comparing with 
results from analytical procedures 

and other computer applications, i.e. 
CUFSM and GBTul. Additionally, in 
Lazzari, (2020) are given more validation 
models, including a boundary condition 
validation and a comparison with a finite 
element analysis solution. In summary, 
with all these validations, the FStr Com-
puter Application is certified as a reliable 
source for an elastic buckling analysis, 
which can be applied in a numerous 
types of structural stability problems.

The FStr is a free computer applica-
tion, however, it is not an open source i.e. 
the users do not have access to the com-
putational routines. FStr can be accessed 
in the GitHub release repository https://
github.com/joaoadelazzari/FStr/releases, 
in the file exchange from MathWorks 
website https://www.mathworks.com/
matlabcentral/fileexchange/74306 or in 
the google web site https://sites.google.
com/coc.ufrj.br/fstr/.
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