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Lithology identification using 
semantic segmentation 
for well log data
Abstract

In the past decade, machine learning techniques were responsible for a revolu-
tion in classification and regression tasks, making it possible to automate some la-
borious activities, saving time and reducing errors. It is known that the geological 
logging process is one of the most time-consuming activities accomplished by mining 
companies. Additionally, it is a subjective activity, and changes in the staff directly 
affect the geological databases due to different human log interpretation. By develop-
ing an automatic log classifier, a company can avoid problems related to the turnover 
of the staff by standardizing the criteria used to label an interval and can save time 
by avoiding manual log description. The proposed solution is: given the well log data 
containing the coordinates, resistivity and natural gamma, the model will be able to 
predict the presence or absence of coal, and its lithology. The innovation of the meth-
odology proposed, considers not only the geophysical logging values, but additionally 
inserts the neighbourhood of a given depth as valuable input information, using Fully 
Convolutional Network. It performs a semantic segmentation using the well log data, 
which means that model ś input is the complete well log data curve and the trained 
model will return an output curve giving the probability of the presence of coal, by 
interval. The results showed good prediction for the binary problem (F1-score 0.79). 
The multi-class modelling suffers from the lack of data for each class, resulting in a 
F1-score from 0.38 for the worst result to 0.76 for the best.

Keywords: well log data, lithology identification, machine learning, semantic 
segmentation, Fully Convolutional Networks.
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Geosciences

Geophysical logging is widely used in 
mining and petroleum, especially for its abil-
ity to discriminate strata and the potential to 
replace laboratory analyses made for certain 
physical and chemical parameters of inter-
est. In the case of coal deposits, geophysi-
cal logging could be used to delineate the 
coal/rock interfaces (Hoffman et al. 1982 
Asfahani and Borsaru 2007), assisting in 
establishing stratigraphic correlation, and 
eventually generating estimates of quality 
parameters and geomechanical requested 
data. In short-term mine planning, due to 
the impossibility of using diamond drilling 
at operating benches and faces, geophysical 
logging can be used quickly at blasting holes 
as an alternative to obtaining lithological 
contacts and the other estimates mentioned 
above. In this study, geophysical logging 
was used to determine the coal and waste 
rock, by analyzing the contrasts between 

the measures given by the equipment along 
the drill hole. The negative aspect regarding 
the use of geophysical logging is related to 
the need to use radioactive sources, such 
as Cesium 137 and Americium–beryllium 
in these probes. The radioactive sources 
coupled with these probes give rise to envi-
ronmental concerns because there is always 
the possibility of their getting trapped in the 
drill holes. Therefore, handling the radioac-
tive source requires accredited personnel 
and special care. In spite of the negative 
points above-mentioned, this research area 
is on the uprise.

Another field of study that is under 
expansion in the mining context is ma-
chine learning, which according to Lary 
et al. (2016), is part of the artificial intel-
ligence field: its algorithms can learn from 
the data using multivariate, nonlinear, 
nonparametric modeling for classification 

and regression. The quality of informa-
tion, combined with a good choice of pre-
dictive models, will significantly increase 
the possibility of getting better forecasts to 
be used in the mining routine. The present 
study uses artificial intelligence methods 
capable of indicating the correspondences 
between the type of ore and its physical, 
chemical, and mineralogical character-
istics. The hypotheses investigated are: 
i) can the lithotype (layer) be determined 
through the usage of trained algorithms, 
and ii) fed with readings of physical-
chemical properties? Would classification/
agglomeration/regression methods be use-
ful in identifying lithologies?

It is expected that an almost auto-
matic separation or individualization of 
the lithological units or their origins, with 
a given degree of certainty, can be obtained. 
This could help the geomodeler to quickly 

1. Introduction
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1.1 Analysing geophysical trace using machine learning algorithms

2. Materials and methods

2.1 Geological details about Candiota Sedimentary Basin

Lithological classification using 
machine learning methods have been 
explored (Imamverdiyev and Sukhostat 
2019; Antariksa et al. 2022; Salehi and 
Honarvar 2014; Dev and Eden 2019) 
usually in a “patch based” modelling. We 
understand there is space for improvement 
in prediction when considering the curve 
for each measured variable. To accomplish 
this improvement, we propose modelling 
the well log data by using the full log curve 
as input to a Fully Convolutional Network 
based on 1d convolutional layers to per-
form a semantic segmentation.

Semantic segmentation is well 
known in image and pattern recognition: 
after taking a photo or image as input, 
the semantic segmentation algorithm is 
capable of recognizing the elements pres-
ent in the image at the pixel-level. When 

considering well log data, the inputs are 
the 1d vectors (one vector for each log 
variable, one entry for a given depth value) 
and a semantic segmentation algorithm 
will determine where the lithologies occur.

A Fully Convolutional Network 
(FCN) (Fukushima 1988; Shelhamer et 
al. 2017) is a segmentation solution based 
on Deep Learning (Schmidhuber 2015). 
The main characteristic of an FCN is its 
exclusive use of convolutional layers in the 
network, with no downsampling, such as 
with max pooling layers. These convolu-
tional layers are responsible for learning 
the spatial correlations. Considering well 
log 1-dimensional data, these spatial cor-
relations are the possible patterns of the 
measured quantities across the 1d vector 
(across the depth). A FCN also permits 
inputs with different depth sizes, which is 

the case of this study. Fully Convolutional 
Networks were used in Zhu et al. (2020) 
to predict the occurrence of gas in a gas 
reservoir using well log data. Our study 
comes to enrich this field with some prog-
ress and differences.

The next sections will highlight 
some key aspects of the study: an expla-
nation about the coal deposit under study 
will be given in section 2.1; details about 
the database used (section 2.2) and the 
geophysical logging values (section 2.3) 
will also be presented; a quick descrip-
tion about Fully Convolutional Network 
will be given in section 2.4; the results 
obtained through the application of the 
techniques herein presented will be shown 
in section 3 and the discussion about the 
results obtained and the conclusions will 
be given in section 4.

The Parana Basin is the largest in-
tracratonic basin on the South American 
platform, distributed within Brazilian, 
Argentinian, Uruguayan and Paraguayan 
territories. It has a NE–SW direction with 
dimensions of approximately 1750 km long 
by 900 km wide. It represents a sedimenta-
ry-magmatic succession with ages between 
the NeoOrdovician (465 Ma) and the 
Neo-Cretaceous (65 Ma). It was marked 
by cyclical events of subsidence and uplift, 
with thicknesses reaching up to 7,000 m 
in its deepest portion. The Gondwana I 
supersequence, which bears the coal seams, 

is represented by sedimentary successions 
that define transgressive-regressive cycles 
linked to fluctuations in the relative sea 
level during the Paleozoic Era. The Seival 
and Candiota areas are briefly composed 
of the rocks of the Rio Bonito formation 
and Palermo formations. The Rio Bonito 
formation can be subdivided into three 
main horizons, with coal seams separated 
by sandstones or siltstones.

In the Candiota deposit, in addi-
tion to the two layers of the same name 
Candiota Superior (CS) and Candiota 
Inferior (CI), there are up to nine upper 

layers (from S1 to S9) and up to nine 
lower (from I1 to I9) (Projeto Candiota 
- CPRM, 2016). Particularly in the 
database used, there are S layers that 
may not be present due to the uplift 
of the Candiota Block, which caused 
the erosion of these layers. In the lower 
layers "I", separated by gray siltstones, 
we have identified layers I1 to I4 in the 
cores. Above the Candiota layers, we 
also have the Banco Louco (BL) layer, 
characterized by high ash content. 
Figure 1 shows the spatial locations of 
the drill hole collars.

Figure 1 - Location of the drill hole collars. The dataset is comprised of 21 diamond drill holes.

get a determination of a lithotype, using 
existing and available data. Additionally, 
this can be used as a checking tool for old 
campaigns where the input data is avail-

able or easily accessible, by highlighting 
intervals where the geological descriptions 
made do not match with the resistivity 
and natural gamma found. It can also 

be used in a descriptive way, by helping 
to understand which variables can best 
characterize or contribute to identify the 
geological material.
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2.2 Database information

2.3 Obtaining geophysical logging values

A coal mining company, located 
in the South of Brazil, provided the 
database used, consisting of 21 drill 
holes with resistivity (Ω·m) and natu-
ral gamma (API Cs.) measurements. 
In the case of the database used, the 
number of layers observed is not con-

stant in all holes, whereas for most 
holes, there are incomplete sequences 
of layers S6 to I4, with the greatest 
absences being the layers S6, BL and 
I4. The layers “S” and “I” have an av-
erage thickness of around one meter, 
and the layers CS and CI combined, 

present 3.85 meters in average. As 
shown in Figure 1, the holes are ar-
ranged on an irregular grid, with an 
average depth of 52 m, ranging from 
22 to 74 m. The shallow depth of the 
deposit results in an open pit extrac-
tion in the region.

The geophysical profiles were ob-
tained using a GLOG® (Focussed Electric 
Guard Log Sonde). The natural gamma 
and resistivity values were processed 
with the Winlogger software in a suit-
able format to obtain the values along the 
coal seams. An experienced professional 
previously identified the coal seams to 

obtain a correct correlation between the 
seam and the values received. The instru-
ment reads continuously along the hole. 
However, when processing, we used a 
one-centimeter window interval.

Table 1 shows the lithologies for 
each well, where the numbers represent 
the length of the correspondent lithol-

ogy in centimetres. Not all lithologies 
are present in all wells. The S6 lithol-
ogy samples, for example, exist only in 
eight different wells. The most abun-
dant lithology is CI, which is present 
in all wells. The well log data from 0 to 
10 meters depth were discarded due to 
noise and the high number of outliers.

Table 1 - Length by lithology (in centimeters) for each well. The ‘Coal’ column 
represents the sum of the length of all lithologies. The ‘Other’ column represents all depth points that are not coal.

Well BL CI CS I1 I2 I3 I4 S2 S3 S4 S5 S6 Other Coal

0 0 130 241 0 0 155 140 58 0 0 88 0 6393 812

1 77 153 257 111 99 92 90 89 117 84 101 153 3007 1423

2 0 143 0 130 92 120 55 64 107 0 0 0 6672 711

3 94 152 279 115 78 40 0 75 0 0 91 49 6196 973

4 100 108 253 86 78 49 0 68 102 67 83 0 6389 994

5 0 140 236 105 82 70 120 0 0 0 0 95 4438 848

6 97 125 240 110 75 79 88 0 0 0 0 89 6480 903

7 79 165 0 105 120 93 120 60 109 60 0 0 6472 911

8 0 163 275 98 113 82 63 76 109 73 85 0 6246 1137

9 117 109 225 120 83 96 0 96 110 111 109 241 5966 1417

10 131 93 205 101 89 111 215 92 100 108 101 238 5799 1584

11 105 153 265 137 0 0 0 77 130 101 90 0 6325 1058

12 89 172 263 114 88 133 52 75 94 0 0 0 6303 1080

13 0 142 243 69 95 100 0 68 97 76 83 85 6325 1058

14 0 146 224 112 80 0 0 0 0 0 0 0 6821 562

15 0 158 282 108 78 111 127 63 110 83 93 0 6170 1213

16 0 143 259 125 98 0 0 74 114 105 110 230 4028 1258

17 0 145 0 0 82 122 82 0 0 0 0 0 6952 431

18 0 144 230 103 76 115 0 70 0 0 69 0 6421 807

19 0 144 211 116 66 118 135 88 94 90 65 0 6256 1127

20 83 146 194 97 0 78 77 69 0 0 0 0 6639 744

The methodology uses the core 
logged data to train a neural network 
to predict where the coal appears. 
To predict a given core lithology, the 
input are the two curves obtained 
from geophysical logging (resistivity 

and natural gamma, Figure 2) and the 
output is the probability of each in-
terval to contain coal. Next, the same 
neural network was trained to predict 
each specific coal seam, this being 
a multi-class scenario. The network 

adjusted was a Fully Convolutional 
Neural Network, which will be better 
explained in section 2.4. The training 
procedure and performance assess-
ment of the trained model are detailed 
in section 2.4.3.
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Figure 3 - Architecture of the fully convolutional network. The inputs are two variables from the well logs, followed by 
ten convolutional layers with the same size as the inputs. The last part consists of a 1D convolutional layer with kernel size equal 

to 1 and number of filters equal to the number of classes presented in the dataset. The result is a probability profile for each class.

A Fully Convolutional Network 
(FCN) permits inputs with different 
sizes, which is necessary in this study 
since each drill hole contains different 
thicknesses. The chosen architecture 
is detailed in Figure 3. It comprises 10 

identical convolutional layers with the 
same size (length) as the input.

After 10 convolutional layers, the 
tensor is processed by the last convolu-
tional layer, which also has the same size 
of the input, but with kernel size equal 

to 1 and the number of filters equal to 
the number of classes. The data is pro-
cessed by a Softmax activation function, 
which normalizes the probability for a 
given interval, so all class probabilities 
add 1.

2.4 FCN - Fully Convolutional Networks

Figure 2 - Example of captured well log data (well 16). The resistivity and natural 
gamma curves are provided as input to the fully convolutional neural network for a given well.

The input tensor for a given well 
has the two 1d vectors, resistivity, and 
natural gamma, and its dimensions are 
n

i 
× 2, where n

i 
 denotes the number of data 

points for well i. Thus, the input tensors 
will have different lengths depending on 
the specific well.

For the output tensor, there are two 
different scenarios of segmentation of well 
log data: the first one is a binary segmenta-

tion, which means the neural network will 
classify the input data as coal or not coal. In 
this binary case, the output is n

i
 × 1, which 

means one probability curve of the same 
size as the input (values between 0 and 1).

The second scenario has the input 
configuration but was retrained to predict 
the different coal classes. In this case, the 
output tensor will have the dimensionality 
n

i 
 × n

classes
, where nclasses is the number of 

different coal classes plus 1 (not coal, or 
"other"). Again, each 1D vector for each 
class in the output tensor is a probability 
result (values between 0 and 1), of which 
the sum over all classes, at a given depth, 
equals 1. In the database used to train the 
network, the output tensors are filled with 
zeros or ones, because there is knowledge 
about the presence or absence of coal (and 
its lithology).

Inside the FCN, two functions were 
adjusted: the Softmax activation function 
which normalizes the sum of the probabilities 
over the classes and the loss function, calcu-

lated across the classes and averaged over the 
entire well log size during the training. A brief 
explanation about them will be given below.

The Softmax function normalizes a 

vector to a probability distribution, i.e., each 
component lies in the interval (0,1] and the 
sum adds 1. Given a vector y with size N, the 
Softmax normalization becomes

2.4.1 Input tensors for FCN

(1)

2.4.2 Softmax activation function and Loss function

σ (y)
j
 =

expz
j

N expz
ii = 1

,
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The training steps and the model 
evaluation phase for the two scenarios 
(binary and multi-class) are described 
as follows:

1. Initiate the Leave One Out 
Cross-Validation (LOOCV) by well. 
Select one well for the test set and the 
remaining wells for the training set.

2. Standardize each variable in the 
training set. The learned transformation 
is applied to the test set.

3. Calibrate the FCN model pa-
rameters using the training set.

4. Evaluate the segmentation 
model using the test set.

5. Repeat the steps using another 
well log as the test set with the training set 

being composed of all the remaining wells.
6. Evaluate the FCN model per-

formance for all test sets.
To clarify the step by step pre-

sented above, illustrated now is the 
methodology naming the wells: the 
LOOCV by well means, for example, 
that the first well (id 0) is used as the 
test set, and the remaining 20 wells 
compose the training set. The train-
ing set is standardized, and the mean 
and standard deviation of the training 
variable are used to standardize the 
test set (well 0). No data imputation 
was needed in the preprocessing step. 
The performance of the trained model 
is assessed using the test set, namely, 

well 0. The process is then repeated 
for the next well (id 1), and the stan-
dardization and training are repeated 
for the new training and test sets. The 
performance is measured using well 1 
as the test set. The process is repeated 
until all wells belong once to the test 
set. This procedure is a possibility 
for spatial cross-validation regarding 
wells individually. This spatial cross-
validation field is getting increased 
attention due to the machine learning 
models which are being used to pre-
dict estimates and are prone to overfit 
(Wang et al. (2023) Brenning (2022) 
Ploton et al. (2020) Valavi et al. (2018) 
Deng et al. (2017)).

The FCN model performance is 
scored by the Precision, Recall, and F1-score 
metrics, described below.

The Precision score is defined as 
T

p
 / (T

p
+F

p
). It represents the number of 

correct predictions of “coal” (true posi-
tives, T

p
) divided by the total number of 

predictions of “coal”.
The Recall score (also called true 

positive rate) is defined as the number of 
correct predictions of coal layers divided by 
the total number of coal layers existent in 
the database. The expression for the recall is 
T

p
 / (T

p
+F

n
), where T

p
 is the number of true posi-

tives and F
n
 is the number of false negatives.

The Precision and Recall scores 
measure different aspects of the model 
predictions. A way to summarize these 
scores is to calculate the F1-score, defined 
by the harmonic mean of the Precision and 
Recall (equation 3):

where N is the number of possible classes, 
y is the target vector, and ŷ is the probabil-

ity vector. The loss function is calculated 
considering y in equation (2) as the tensor 

with dimension number of classes × size 
of the input vector (well depth).

Loss(y, ŷ)=-∑N
i=1 yi .log ŷi ,

2.4.3 Model training and evaluation

2.4.4 Performance Metrics

(2)

F1 - score =
2 . Precision . Recall

Precision + Recall
. (3)

2.4.5 Code
The workflow was programmed in 

Python using Keras and Tensorflow librar-
ies. The script and the dataset are available 
in the fully-conv-network-1d-coal Github 

repository (Rodrigues, 2022) where 
graphical results for all wells can be seen.

3. Results
Several combinations of the FCN 

parameters were tested, mainly the num-
ber of convolutional layers, the kernel 
size, and the number of filters. A specific 

set of parameters was chosen when the 
performance metrics increased.

Table 2 shows the main parameters 
for the Fully Convolutional Network 

used in this study. The same set of pa-
rameters were used to train the model 
for the binary case and for the multi-
class case.

Table 2 - Chosen parameters for the Fully Convolutional Network.

epochs 4000

number of 1d convolutional layers 10

kernel size 32

number of filters 256

optimizer Adam

learning rate 10-5

where N denotes the number of classes 
and the index j indicates the specific depth.

The purpose of the loss func-

tion is to calculate the distance be-
tween a probability tensor generated 
by the Softmax function and the 

true values. The loss function chosen 
was the categorical cross entropy, 
defined by
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Figure 4 - True data for well 19 (above) and the model prediction (below). Selected from visual inspection of the 
outcomes as an example of good prediction. The scores when using well 19 as test set are: F1-score 0.89, precision 0.90 and recall 0.88.

The binary model labels the litholo-
gies as “Coal” or “Not Coal”. The fully 
convolutional neural network was trained 
following the step-by-step presented in 
section 2.4.3.

Table 3 shows the results (F1-score, 
Precision and Recall) for all wells in the test 
set. The mean score is in the last row, being 

0.79 for the F1-score, 0.79 for the Preci-
sion, and 0.80 for the Recall. The results 
were rounded to the second place after the 
decimal point.

Figure 4 shows the true data and 
the model prediction for well 19 when it 
was used as the test set, a case of good 
prediction. Although all the coal layers are 

predicted by the trained model, the per-
formance score is not perfect. Even in this 
good case, the F1-score is 0.89, the precision 
is 0.90, and the recall is 0.88. For a perfect 
score, the prediction of the coal layers must 
match exactly the beginning and the end 
for each layer. Even a small translation of 
a layer prediction will worsen the score.

Table 3 - Results for the binary modelling (“Coal” or “Not Coal”). 
The well id column means that the given well is the test set and all others make up the training set.

well id F1-score Precision Recall

0 0.78 0.77 0.78

1 0.69 0.80 0.61

2 0.74 0.62 0.90

3 0.80 0.81 0.79

4 0.81 0.86 0.76

5 0.55 0.63 0.49

6 0.86 0.92 0.80

7 0.69 0.66 0.72

8 0.81 0.85 0.77

9 0.78 0.74 0.82

10 0.77 0.90 0.68

11 0.83 0.75 0.92

12 0.86 0.95 0.79

13 0.76 0.74 0.77

14 0.93 0.88 0.99

15 0.87 0.83 0.92

16 0.73 0.68 0.80

17 0.74 0.69 0.79

18 0.83 0.81 0.84

19 0.89 0.90 0.88

20 0.87 0.81 0.94

all (mean) 0.79 0.79 0.80

Figure 5 shows the worst case 
of prediction in terms of the F1-score 
(0.55): the case of well 5. In this case, 
there are 2 predicted coal layers which 

do not exist in the true data, making the 
precision score lower (0.63). The width 
of these predicted layers directly im-
pacts the precision score. There is also 

one coal layer in the true data, which is 
not correctly predicted by the model, the 
widest one. Although the model predicts 
a thinner version of this layer, the size 

3.1 Binary results
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of the unpredicted length of the true 
layer heavily penalizes the recall score 
(0.49). It is worth emphasizing that the 

accuracy metric may be misleading due 
to the imbalance between classes. For 
example, for the worst well, 5, the accu-

racy score is 0.85, which is because there 
is a high count of successful predictions 
of “not coal”.

Figure 5 - True data for well 5 (above) and the model prediction (below). Selected from visual inspection of the outcomes 
as an example of a not-so-good prediction. The scores when using well 5 as test set are: F1-score 0.55, precision 0.63 and recall 0.49.

As explained in section 2.4.3, 
the cross-validation is performed 
well in a LOOCV fashion. Figure 6 
shows how model’s performance var-
ies, since the test well is far from the 
remaining wells, used as the training 
set (Brenning (2022)). This distance 
is defined as the cartesian distance, 
in XY plane, between the well in 
the test set to the nearest well in the 

training set. The results show that 
the F1-score maintains its average 
value across all distances. Some might 
imagine that the model’s performance 
could degrade for a well distant to the 
training data, which did not happen 
in this case study. This behaviour 
can be explained by the coal’s spatial 
continuity, which is well-known as 
high compared to other commodities. 

Another factor that can be accounted 
for is the nature of the prediction 
realized by this fully convolutional 
neural network, which is based on the 
coal’s resistivity and gamma natural 
signature in the well log. Although 
the signature is related to the spatial 
continuity, the well log curves may 
be less sensitive to variations in the 
anisotropy’s angle.

Figure 6 - Scatterplot of the F1-score and the distance of the well in test set to the nearest well in training set. 
In this study the trained model shows approximately the same performance regardless of the distance to the well in test set.

3.2  Multi-class results
For the multi-class results, the 

coal layers are labelled according to the 
corresponding class (lithology). There 
are 12 different classes of coal in the 
dataset, and one last class, which is the 
“not coal” class. This results in a total 

of 13 classes.
Not all classes appear in every 

well. In these cases, the performance 
scores are undefined. A performance 
score for a given class is not defined in a 
well where there is no data correspond-

ing to this class in the test set.
Table 4 shows the F1-score for each 

well when it is present in the test set. 
Overall, the classes which are better pre-
dicted are (from easier to harder): CS, 
CI, S5, I2, I1, S3, S2, S4, I3, BL, I4, S6.
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Figure 7 - True data for well 15 (above) and the model predictions (below). 
Selected from visual inspection of the outcomes as an example of good prediction.

There are classes (like CI class) that 
are almost “all or nothing” regarding the 
F1-score. The F1-score is above 0.90 or 
0.00 for most of the wells, and this is due 
to the lesser amount of samples of this class 
presented in the wells.

Figure 7 shows the best test well 
(id 15) for the multi-class case. The trained 
model predicts all classes in the true well 
data. Also, it predicts two classes which 
are not in the test well data. It is worth 
mentioning that the I3 F1-score for this 

test well is only 0.65, but it is clear from 
Figure 7 that the I3 layer prediction is a very 
good one (dark green). The F1-score in this 
case is heavily penalized due to the fact that 
the I3 layer in the test well data starts a bit 
earlier than the prediction.

Figure 8 shows the test well with 
the worst prediction performance 
(well 5). Although the model correctly 
predicts when the coal layers appear 
in the test well data, the classes are 
mismatched. Additionally, the model 
incorrectly predicts three layers which 
are not present in the test well data.

A poor prediction for a given 
well may have one or more causes: the 
behaviour of the variables (resistivity 
and natural gamma) for well 5 may be 
unique and the training dataset may 
not have a similar pattern. Another 
possibility is that well 5 has a more 
subtle pattern or noiser data. Thus, 

the chosen FCN parameters may not 
detect it in this case and more data may 
be needed to capture this information. 
Finally, it is expected that a multi-class 
version performs worse than the binary 
version on the same dataset because the 
amount of data available to train each 
class is diminished. Discussing again 

Table 4 - F1-scores using the individual well data as test set for each class. When the test set does not contain 
a given class to be tested, the score is represented by a dash. The last line is the mean F1-score calculated across the well data used as test set.

well id BL CI CS I1 I2 I3 I4 Other S2 S3 S4 S5 S6

0 - 0.96 0.98 - - 0.00 0.61 0.93 0.77 0.92 0.78 0.91 -

1 0.48 0.52 0.63 0.00 0.50 0.44 0.05 0.86 0.65 0.00 0.14 0.62 0.00

2 - 0.97 - 0.70 0.62 0.36 0.00 0.94 0.00 0.33 - - -

3 0.00 0.91 0.92 0.78 0.87 0.63 - 0.96 0.62 0.91 0.92 0.94 0.00

4 0.48 0.00 0.88 0.83 0.89 0.81 - 0.95 0.88 0.92 0.90 0.91 -

5 - 0.00 0.35 0.00 0.00 0.20 0.00 0.91 - - - - 0.00

6 0.00 0.93 0.92 0.79 0.63 0.00 0.00 0.94 - - - - 0.00

7 0.61 0.87 - 0.89 0.69 0.52 0.42 0.87 0.00 0.11 0.00 - -

8 - 0.82 0.86 0.20 0.77 0.95 0.85 0.94 0.70 0.87 0.85 0.90 -

9 0.63 0.93 0.41 0.69 0.41 0.00 - 0.91 0.57 0.55 0.77 0.31 0.32

10 0.03 0.00 0.44 0.70 0.59 0.00 0.00 0.89 0.65 0.70 0.73 0.00 0.33

11 0.85 0.92 0.93 0.95 - - - 0.94 0.95 0.00 - - -

12 0.00 0.92 0.85 0.85 0.75 0.64 0.00 0.94 0.00 0.58 - - -

13 - 0.31 0.88 0.00 0.90 0.68 - 0.92 0.96 0.00 0.00 0.43 0.00

14 - 0.93 - 0.94 0.74 - - 0.96 - - - - -

15 - 0.96 0.96 0.73 0.69 0.65 0.91 0.96 0.96 0.96 0.97 0.79 -

16 - 0.94 0.77 0.37 0.57 - - 0.92 0.00 0.88 0.22 0.86 0.85

17 - 0.62 - - 0.79 0.67 0.20 0.94 - - - - -

18 - 0.93 0.46 0.39 0.14 0.00 - 0.94 0.00 0.65 0.00 - -

19 - 0.84 0.94 0.40 0.81 0.72 0.47 0.92 0.63 0.69 - - -

20 0.68 0.65 0.73 0.76 - 0.00 0.84 0.96 0.88 - - - -

mean 0.38 0.71 0.76 0.58 0.63 0.40 0.33 0.93 0.54 0.57 0.52 0.67 0.19
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the accuracy score, for the worst well, 
5, the accuracy is 0.78. This value does 

not reflect the fact that almost no coal 
classes were correctly predicted by the 

model. The F1-score better represents 
the model’s ability to predict.

In this study, a Fully Convolutional 
Network was built to perform semantic 
segmentation (binary prediction coal or 
not coal, or multi-class prediction of coal 
lithologies) using two variables from well 
logs: the resistivity and the natural gamma.

The results show good performance 
for the binary (“coal” and “not coal”) 
prediction, with a mean F1-score of 0.79. 
For the multi-class modelling, the results 
vary from an F1-score of 0.76 for the CS 
coal class to an F1-score of 0.19 for the S6 
coal class.

For practical use, both trained models 
can be used: the binary trained model may 

establish where the coal layers are and the 
multi-class trained model may provide 
expectations for the classes of the layers, 
especially for the classes with highest score, 
such as CI and CS.

For further development, there is the 
idea to explore other neural network de-
signs, adjust the loss function to add more 
weight to the correct and incorrect predic-
tions of the class when training. Another 
area to explore is to find a way to encode 
spatial variables in the input. In our study, 
the depth is available, but it is not used in 
the input because the neural network may 
memorize the outputs to specific depths. A 

clever way to encode depth may be relative 
distances, and a well encoded depth may 
play an important role for angled drill holes. 
Another idea of spatial encoding in the 
training is to use as input for a given well 
the data from the wells in the neighborhood. 
The use of other measured variables is also 
a good object further investigation.

Other information that may be en-
coded in the modelling is the order of the 
layers with respect to the depth. Seismic data 
is another interesting field to apply semantic 
segmentation with Fully Convolutional 
Networks for classification tasks, although 
FCN may also be used for regression.

4. Discussion and conclusion

Figure 8 - True data for well 5 (above) and the model predictions (below). This example is 
considered the worst. Although the model correctly predicts some coal layers, the labels are not correct.
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