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Coal is an abundant fossil fuel, with 
reserves widely located around the world. 
Despite recent policies to accelerate a tran-
sition to cleaner energy sources, the grow-
ing demand for energy sources leaves coal 
as an important and strategic natural re-
source, particularly in emerging countries, 
ensuring price stability. Currently, coal is 
responsible for about 27% of the world’s 
primary energy consumption (Thomas, 

2023). Part of the coal produced is destined 
for the metallurgical industry, being used 
in the production of 71% of the global steel 
(World Coal Association, 2009).

In Brazil, coal is mainly used by 
thermal power stations to complement 
the energy matrix (CRM, 2018). Coal 
deposits are located in southern Brazil. 
The Brazilian Electricity Regulatory 
Agency (in Portuguese, Agência Nacional 

de Energia Elétrica, ANEEL) estimates 
that the state of Rio Grande do Sul has 
88% of the reserves, of which 38% of 
national coal production is provided by 
the Candiota mine.

Mineral prospecting and coal min-
ing planning is traditionally carried out 
using models created based on geological 
drilling and field surveys that are relatively 
expensive and provide discrete informa-
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The main coal reserves in Brazil are located in the southern region, where the 
most important coalfield, including the Candiota mine, is found. The mineral explo-
ration and mine planning programs of the companies mining these coal deposits are 
generally restricted to drilling data and cores, despite the exploratory potential of 
geophysical methods in coal prospecting. This study aims to investigate the ability 
of the seismic method known as Multichannel Analysis of Surface Waves (MASW) 
to identify coal seams in the Candiota area. The MASW method allows obtaining a 
layer model composed of a low-velocity (blind) layer and/or relatively thin (hidden) 
layer from the surface wave dispersion curves. The hidden and blind layer problems 
are pitfalls of the traditional seismic refraction method and the geological settings 
related to coal seams may encompass both problems. In addition, the Candiota mine 
has conditions favorable for applying the MASW method due to the shallow depths 
of the coal seams. The study was based on the analysis of synthetic seismic data 
generated from a 3-layer conceptual model of the Candiota deposit. The dispersion 
curves of the fundamental mode of the Rayleigh surface waves were generated and 
the effects of each of the parameters of the seismic model were evaluated, as well as 
the relationship between the parameters through objective function tests. A new in-
version algorithm capable of obtaining the true model was implemented. The results 
obtained from the application of the inversion algorithm demonstrated the potential 
of the MASW method in identifying coal seams from S-wave profiles and proves it to 
be a powerful tool for coal mineral exploration programs.
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Figure 1 - (a) Map of southern Brazil and neighboring countries highlighting the locations 
of the mineral coal deposits (yellow features). Geographical boundaries are indicated by plain black lines and capitals 

represented by white circles. Reference cities, states and countries are properly labeled on the map. The area depicted by the 
black rectangular outline points to the location of the Candiota Coalfield. The inset map shows the southern Brazil in the context 

of the South American continent; and (b) geological setting map of the Candiota mine showing the formations of the Paraná Basin 
(Paleozoic to Recent sedimentary and volcanic strata) and basement (Precambrian crystalline igneous and metamorphic rocks). The 

boundary of the municipality of Candiota and the coal reserve are represented by polygons with plain black and yellow contours, respectively.

The study area is located in Candiota, state of Rio Grande do Sul, southern Brazil (Figure 1).

2. Geological setting of the study area

tion, as opposed to continuous results 
of geophysical profiles. Integration with 
geophysical data allows a more reliable 
modeling of the subsurface coal deposits 
(Krey, 1963; Buchanan, et al., 1981; 
Gochioco & Cotten, 1989; Gochioco, 
1990; Gochioco, 2000). The geophysical 
data commonly used for coal prospecting 
consist of well-logging, used to identify 
the layer, and estimate the quality of coal 
(Hatherly, 2013), such as electroresistivity 
logs, natural gamma and density (gamma-
gamma) (Christoffel & Kayal, 1989; 
Webber et al., 2009; Souza et al., 2010).

The contrast of physical properties 
of coal with the host rock also enables 
the use of geophysical methods in the 
lithological characterization of these sub-
surface layers. For example, carbonaceous 
sequences are generally characterized by 
low values of seismic velocity and density 
in relation to other sedimentary rocks 
(Dresden & Ruter, 1996). As a result, 
seismic methods have been widely applied 
in coal exploration since the 1960s (Krey, 
1963; Costa et al., 1978; Bentes & Costa, 
1979; Costa & Dias, 1982; Gochioco 

& Cotten, 1989). For instance, high-
resolution reflection seismic imaging has 
been shown to be efficient in mapping coal 
seams and identifying geological faults 
(Greenhalgh et al., 1986).

In this study, because of the shal-
low depth of the coal seam (< 50 m) 
of the Candiota deposit, using surface 
waves in seismic data provides favorable 
conditions and possibilities for mineral 
prospecting. Herein, a study of the ap-
plication of the seismic method known as 
Multichannel Analysis of Surface Waves 
(MASW) to obtain representative S-wave 
models of coal seams is presented. First, 
the use of the method based on the sen-
sitivity analysis of the seismic parameters 
(Vp, Vs, density) and thickness of the 
layer model is investigated. The tests are 
performed considering synthetic data 
generated from models built based on 
information obtained from drillholes at 
the Candiota mine.

The MASW method allows resolv-
ing models with a low velocity layer 
(hidden layer), which is one of the limi-
tations of the application of the seismic 

refraction method. Furthermore, the 
method provides S-wave models from 
data generated from predominantly 
compressive seismic sources recorded 
by vertical sensors only. For this rea-
son, MASW is one of the most suitable 
surface geophysical tools for coal pros-
pecting and the inversion approach em-
ployed is effective in terms of sensitivity 
and relationship between the physical 
properties of the subsoil.

In order to solve the non-uniqueness 
problems inherent to geophysical inver-
sion and overcome some limitations of 
the available software (such as Dinver, 
SWAN, etc.), mainly with regard to the 
determination of the thickness of the 
low velocity layers, as in the case of coal 
sequences, we have implemented the 
Controlled Random Search algorithm 
(CRS). The code was written in Python 
language incorporating Geopsy modeling 
tools (gpdc). CRS is a global optimization 
algorithm that searches through random 
models exploring more widely the solution 
space, avoiding local minima of the objec-
tive function (Price, 1977).

(a) (b)
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Seismic methods are based on the 
propagation of elastic waves through the 
Earth (Lowrie, 2007). Surface waves are 
the part of the seismic wavefield that travel 
along or near the surface of the ground, the 
wave motion falling off rapidly with depth. 
It is characterized by relatively low veloc-
ity, low frequency, and high amplitude. In 
seismic exploration, it is usually referred 
to as ground roll and mainly comprises 
what are known as Rayleigh waves. The 
presence of near-surface stratigraphic lay-
ers, such as seen in Figure 2, causes surface 

wave dispersion, which is the variation of 
velocity with frequency. The phenomenon 
of dispersion is observed from the change 
in waveform with the separation of surface 
waves due to the propagation of differ-
ent wavelengths through different depth 
ranges, and hence, different phase velocities 
(Sheriff & Geldart, 1995).

The Multi-channel Analysis of Sur-
face Waves (MASW) method, introduced 
by Park et al. (1999; 2007), uses the dis-
persion curve from the spectral analysis of 
surface waves to infer an S-wave velocity 

profile, indicating subsurface lithological 
and/or petrophysical changes, which can 
be obtained by ground-roll analysis. This 
method allows identifying layers that could 
not be imaged by the high-resolution seis-
mic reflection method, due to the intrinsic 
resolution limit. The analysis of MASW in-
volves three steps: acquisition of the ground-
roll, construction of dispersion curves of the 
fundamental and harmonic modes in terms 
of phase velocity by frequency, and inver-
sion of these curves to obtain 1D structure 
models of S-wave velocity (Foti et al., 2018).

Figure 2 - Lithological description of the MVI-39 well.

3. MASW method

According to Silva (1993), the coal 
seams in Candiota are attributed to the 
Rio Bonito Formation (290.6±2.8 Ma 
and 281.7±3.2 Ma; Cagliari et al., 2014) 
of the Paraná Basin. The coal deposits of 
the Rio Bonito Formation have been stud-
ied since the 19th century, and Machado 
& Castanho (1956) used the term Rio 
Bonito Formation to describe the fluvial-
lacustrine continental sediments, with 
intercalations of carbonaceous beds be-
tween the Itararé Group and the Palermo 
(Holz & Kalkreuth, 2004).

The stratigraphic sequence analysis 
described by Holz et al. (2000) estab-
lishes that the coal seams of economic 
potential of the Rio Bonito Formation 
are associated with a lagoon-barrier 
depositional system. The Rio Bonito 
Formation is initially marked by a low-
sea system tract followed by a trans-

gressive system tract, in which the most 
important coal seams were deposited. 
The transgressive system tract can be 
divided into four parasequences: the 
first is composed of sandstones that are 
onlap on the low sea system tract; the 
second is formed by storm beds from a 
barrier-lagoon island system where the 
coals form the lower layers; the third 
parasequence is composed of stormflood 
cycles that formed the coal layers; and in 
the fourth parasequence, the deposition 
of peat was not sufficient for the forma-
tion of coal (Holz & Kalkreuth, 2004).

The Candiota coalfield corresponds 
to a sequence of thin coal layers inter-
bedded with sandstones, claystones and 
shales. The average thickness of the coal 
seam package is 4.5 m, in places reach-
ing 6 m (Gomes et al., 1998). Silva & 
Kalkreuth (2005) classified Candiota 

coal as sub-bituminous (low rank A) 
according to the international classifica-
tion (UN-ECE). Currently, the Candiota 
deposit is being mined by Companhia 
Riograndense de Mineração (CRM) and 
Seival Sul Mineração (SSM).

Figure 2 shows the lithostratigraphy 
of the MVI-39 well in the CRM area. At 
the location of this borehole, the Candiota 
deposit corresponds to three layers of coal 
a few meters thick: Banco Louco corre-
sponds to a layer less than 1 m thick, being 
the shallowest coal layer, followed by the 
Banco Superior and Banco Inferior layers, 
each exceeding 2.5 m thickness located 
at about 20 m deep in the study area, 
intercalated between thin packages of 
waste rock. The roof strata of the mined 
coal seam is composed of sandstone, 
claystone and shale. The floor stratum is 
predominantly composed of sandstone.
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A number of inversion algorithms 
have been formulated to obtain robust 
models in multidimensional parameter 
space (Olsson & Nelson, 1975; Price, 
1977) and various geophysical data inver-

sion software packages have been devel-
oped from these algorithms. The present 
study uses the Controlled Random Search 
(CRS) inversion algorithm to search for 
global minima of multimodal functions.

The CRS algorithm is versatile and can 
be adapted to any kind of multi-dimensional 
global optimization problem, constrained or 
unconstrained. The main aspects of the CRS 
workflow are presented in Figure 3.

Figure 3 - Schematic diagram illustrating the CRS algorithm search procedure for an arbitrary 
two-dimensional objective function, f

obj
 (x

1
, x

2
), where x

1
 and x

2
 are model parameters (n = 2). In this example, a set of 

five points (N = 5 models) delimited by the search domain V (dashed red rectangle) is used: Step 1 – Set the search domain, V; 
Step 2 – Randomly choose N points; Step 3 – Determine the highest f

obj
 point; Step 4 – Randomly choose n+1 points to form a simplex; 

Step 5 – Calculate the centroid C of the simplex; Step 6 – Determine the new point Q from the centroid; Step 7 – Replace P with Q if f
obj

 
(Q) < f

obj
 (P); Step 8 – Repeat steps 2 to 7 until the stopping criterion is satisfied; and Stop – Points converged to the minimum of the f

obj
.

Some examples of the application of 
CRS in geophysical inversion are found 
in Silva & Hohmann (1983), Smith et al. 
(2000), Bortolozo et al. (2015) and Di 
Maio et al. (2016). Furthermore, modified 
and improved versions of the algorithm are 
described by Křivý & Tvrdík (1995), Kaelo 
& Ali (2006) and Charilogis et al. (2021).

First, the user defines the search 

range of a domain V for each of the n pa-
rameters of the model and the N random 
search points in the parameter space (steps 
1 and 2). The parameter space is a multi-
dimensional space where each dimension 
corresponds to one parameter and each 
point represents one model. The value of 
the objective function is calculated for each 
random point and stored in vector A, for 

which the point P with the highest value of 
the objective function f

obj
(P) is determined 

(step 3). At each iteration of the algorithm, 
n+1 points are chosen randomly for the 
construction of a “simplex”, where a new 
point Q will be determined from the reflec-
tion of the (n+1)th point (H) with respect to 
the simplex centroid (C) (steps 4-6) given 
by the following equation:

If point Q is contained in do-
main V, its objective function f

obj
(Q) is 

calculated. If f
obj

(Q) is less than f
obj

(P), 

P is replaced by Q in A. If fobj(Q) is 
greater than f

obj
(P), then the point Q is 

discarded, and a new iteration of the 

algorithm is performed. Iterations are 
performed until the stopping criterion 
is satisfied.

Q = 2 ⋅ C - H (1)

4. CRS inversion algorithm

(a)

(f)

(b)

(g)

(c)

(e)(d)

(h) (i)
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As coal deposits are found in 
sedimentary basins, their geology is 
characterized by the occurrence in beds, 
called seams, which are blanket like 
coal deposits a few centimeters to tens 
of meters thick. Despite the structural 
complexity of the various depositional 
environments, in addition to tectonic 
processes, such as folding, faulting and 
erosion, in most cases coal seams can 
be geologically represented by a hori-
zontally layered medium.

Coal typically presents anomalous 
geophysical responses in relation to the 
other lithologies of a usual carbona-
ceous sequence given its contrasting 
physical properties. In general, coal is 
characterized by lower density, lower 
seismic velocity (both P and S waves), 

lower radioactivity, lower magnetic 
susceptibility, and higher electrical 
resistivity than typical adjacent rocks 
(Dresden & Ruter, 1996). The values 
of seismic velocity and density of coal 
can vary according to its composition 
and quality (rank). According to Mor-
cote et al. (2010), the seismic velocity 
of coal increases with increasing rank. 
However, large variations in seismic 
velocity of sedimentary rocks are also 
associated with rock depth and its age, 
being higher with increasing depth and 
deposition time.

A synthetic 3-layer seismic model 
was designed for the local geological 
setting of the Candiota mine and the 
reference P-wave velocity in coal seams 
(Kokowski et al., 2019). S-wave veloci-

ties were defined from typical Poisson’s 
ratio values (Tian et al., 2019). The 
model consists of a 20 m thick non-
coal sedimentary layer overlying a 2 m 
layer, representing the Banco Superior 
layer, both overlying a non-coal sedi-
mentary layer.

Table 1 shows the values of the 
parameters and ranges of the investi-
gated synthetic model. The model ge-
ometry is relatively simple (rock-coal-
rock) in order to allow an unbiased 
analysis of the relationship between 
the seismic parameters. The param-
eter ranges were defined based on the 
minimum and maximum velocities of 
the admissible Poisson’s ratio, and to 
produce a wide variety of model types 
for testing.

Resolution and sensitivity tests 
were performed evaluating the effect of 
each model parameter on the Rayleigh 
fundamental mode dispersion curves. 
From the synthetic model (Table 1), 
each of the parameters (Vp, Vs, den-
sity and thickness) of each layer of the 
model were changed individually to 
verify their influence on the dispersion 
curve (Figure 4).

For forward modeling of theo-
retical dispersion curves, the gpdc 
tool provided by the Geopsy package 
was used. The equations and methods 
implemented in the tool are fully de-
tailed in the software documentation 
and reference links available (Wathelet 
et al., 2020). In short, the computation 
of theoretical dispersion curves is based 
on efficient solutions of the eigenvalue 
problem. Gpdc, for example, has a 
mode search control, called mode jump-
ing, which detects modal curves even 
where they might be located very close 
to each other at certain frequencies: at 
high frequency or at osculation points 
for the case of Rayleigh waves.

The fundamental modes of the 
dispersion curves were computed for 

the frequency range from 1 to 100 Hz. 
In this frequency span, the multimodal 
energy of surface waves can exhibit a 
very complicated distribution at high 
frequencies. Despite this, for practical 
purposes of computational implemen-
tation, the effects of osculation of the 
fundamental and higher modes were 
not considered in the analysis.

In Figure 4a-c, we initially ana-
lyzed the case of the influence of Vp 
with the other parameters fixed at 
the original value. By varying Vp1 and 
Vp3 between 1200 and 1600 m/s and 
Vp2 between 1000 and 1400 m/s, we 
showed that Vp1 causes only small 
variations in the higher frequencies of 
the curves, while Vp3 generates small 
variations in the lower frequencies. 
Thus, it can be considered that the 
Vp profile has a negligible influence 
on the dispersion curves; that is, the 
contrast of the layers in terms of Vp 
does not directly affect the dispersion 
of surface waves.

In Figure 4d-f, only the variations 
of Vs are represented while Vp, density 
and thicknesses held constant. Vs1 and 
Vs3 were changed from 570 to 970 m/s 

and Vs2 varied between 400 to 800 
m/s. It was observed that the curves 
at low frequency are not influenced by 
Vs of the first layer, causing changes 
of the curves at high frequency. On 
the contrary, the effects of the Vs3 
disappeared at high frequency. The 
influence of Vs2 is verified mainly in the 
intermediate frequencies.

The influence of the densities (ρ) is 
tested in Figure 4g-i and notice that this 
parameter does not affect the dispersion 
in the same way.

Finally, the influence of the thick-
ness of layers 1 and 2 was investigated. 
In the first case, variations of h1 change 
the depth of the second layer. Conse-
quently, the effects at high frequencies 
tend to increase in the curves as the top 
of the second layer becomes shallower. 
The influence of h2 was restricted to 
intermediate frequencies. Increasing 
the layer thickness caused an increase 
in the effect produced on the disper-
sion curve; however, the magnitude 
of these changes was clearly subtle. 
Therefore, the resolution of this pa-
rameter depends on the quality of the 
experimental data.

Layer Thickness - Depth (top - bottom) (m) Vp (m/s) Vs (m/s) Density (kg/m3) Poisson’s ratio

1 20 (0 - 20) [10 - 30] 1400 [1200 - 1600] 770 [570 - 970] 2100 [1900 - 2300] 0.28 [0.15 - 0.35]

2 2 (20 - 22) [1 - 3] 1200 [1000 - 1400] 600 [400 - 800] 1700 [1500 - 1900] 0.32 [0.10 - 0.44]

3 ∞ - (22 - ) 1400 [1200 - 1600] 770 [570 - 770] 2100 [1900 - 2300] 0.28 [0.15 - 0.35]

Table 1 - Synthetic 3-layer seismic model physical parameters with variation ranges described in square brackets.

5. Model set-up: parameter resolution and sensitivity
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6. Analysis of the objective function

The objective function, also 
known as cost, loss or misfit func-
tional, plays a key role in optimiza-
tion algorithms applied to inverse 
problems. The goal of the algorithm 
is to find the values of the parameters 

that minimize or maximize the ob-
jective function. The mathematical 
formulation that defines the objective 
function, in practice, measures the 
misfit between the observed data value 
and the computed value from the for-

ward model, using a set of parameters 
chosen from the model space. In the 
present case, the calculated objective 
function is the L2-norm, also called 
the Euclidean norm, which is repre-
sented by Equation 2:

Where fobj is the misfit-value that 
represents the distance between the 
calculated dispersion curve and the 
observed curve, v

di
 is the observed 

dispersion velocity at frequency f
i
, v

ci 

is the calculated velocity at frequency 
f

i
, and nf is the number of frequency 

samples considered.

The analysis of the objective 
function is essential for understanding 
the nature of the inverse problem, es-
pecially of non-linear functions. Since 

Figure 4 - Sensitivity analysis of the Rayleigh dispersion curves against layer parameters: fundamental mode 
dispersion curves of the Rayleigh waves in terms of phase velocity (ordinate axis) by frequency (abscissa axis) for a 

3-layer seismic model individually varying Vp, Vs, density and thickness of each layer of the model (profiles shown in the inset). The 
models and their corresponding dispersion curves are represented by distinct colors. The subscript index the layer number.

(a)

(f)

(b)

(g)

(j)

(c)

(e)(d)

(h)

(k)

(i)

f
obj

 = nf

nfi =1

( v
di
 - v

ci
)2

(2)
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the number of model parameters is 11 
(Vp1, Vp2, Vp3, Vs1, Vs2, Vs3, ρ1, ρ2, ρ3, 
h1 and h2), the multi-dimensional visu-
alization of parameter space would be 
physically unfeasible. Therefore, in or-
der to carry out a study of the behavior 
of the objective function, hyperplanes 
(cross-sections of the parameter space) 
are generated by combining all possible 
pairs of model parameters, varying the 
values of two parameters and setting 
the other parameters to the correct val-
ues. Thus, 55 sections were generated 

corresponding to each of the possible 
pair combinations of the 11 model 
parameters (Figures 5, 6 and 7). The 
intervals used in the hyperplanes of 
the objective function f

obj
 are the same 

used in the analysis of the dispersion 
curves in Figure 4.

This graphical representation al-
lows establishing the correlation between 
pairs of parameters of the seismic model 
and inferring the degree of ambiguity 
and level of uncertainty of the obtained 
model parameters. By analogy, we can 

interpret the cross-sections of the objec-
tive function as topographic maps, where 
the relief depicts the theoretical/predicted 
complexity of the inverse problem and the 
lowest elevation values indicate possible 
solutions (local and global minima). In 
this way, from the visual assessment of 
the sections, it can be observed that:

i) there is an absence of isolated local 
minima within the investigated ranges;

ii) there is a presence of a typical valley-
shaped pattern in the sections of Vs (Figure 
5a, b, c, e, g, h, i, l, m, n, p, w, x, y, z, a’). 

Figure 5 - Two-dimensional cross-sections (hyperplanes) of the multi-dimensional 
parameter space representing the surface of the objective function for a particular pair of parameters 

while the other parameters are fixed to their correct values: a - a’) Objective function maps (similar to “topography charts”) 
resulting from combining the Vs of the three layers with all model parameters. True parameter values are centered in the 

graphs and indicated by white circles. The areas of the graphs that do not show objective function values (blank area) are due to the 
lack of contrast of physical properties for that combination of parameters or when the Poisson ratio converges to negative values.
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Figure 6 - Two-dimensional cross-sections (hyperplanes) of the multi-dimensional 
parameter space representing the surface of the objective function for a particular pair of parameters while the 

other parameters are fixed to their correct values: a - r) Objective function maps (similar to topographic maps) resulting 
from combining the Vp of the three layers with the model densities and thicknesses. True parameter values are centered in the graphs 

and indicated by white circles. The areas of the graphs that do not show objective function values (blank area) are due to the lack of 
contrast of physical properties for that combination of parameters or when the Poisson ratio converges to negative values.

This characteristic indicates that the 
parameter orthogonal to the valley axis, 
for example Vs1 in Figure 5c, presents a 
unique and well-defined solution for the 
parameter. On the other hand, it is not 
possible to determine the true value of the 
parameter parallel to the valley, because 
any points along the axis result in equal 
objective function values;

iii) in general, hyperplanes in Fig-
ure 5 show that Vs is the best resolved 
parameter, particularly Vs1 and Vs3. Vs2 
tends also to be resolved; however, the 

convergence is highly dependent on the 
layer thicknesses h1 and h2 (Figure 5u-v);

iv) Vp1, when associated with densities, 
thicknesses or Vp2 - Vp3, presents a behavior 
similar to that of Vs. Vp2 is the highest uncer-
tainty parameter (Figure 6h-m); that is, the 
variation of the values of Vp2 in relation to 
the other parameters produces small varia-
tions in the objective function. Vp3 does not 
show significant correlation with the other 
parameters (slightly elliptical circular pat-
tern) (Figure 6n-r);

v) apparently, the objective func-

tion depends weakly on the values of 
densities (Figure 5l, m, n, r, s, t, w, x, y), 
showing greater confidence level only 
in relation to Vp2 (Figure 6i-k); and

vi) despite the high uncertainty 
in the estimation of thicknesses, h1 
and h2 have a direct influence on the 
determination of other parameters, 
mainly on Vs2 (Figure 5u-v). In addi-
tion, observe that there is a positive 
correlation between h2 and ρ3 and a 
negative correlation between ρ1 and h2 
(Figure 7i and 7d, respectively).
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(g)
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(q)
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(i)

(n)

(e)

(j)

(o)(m)
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The CRS inversion algorithm 
was implemented from a set of scripts 
written in Python version 3 in order 
to verify the algorithm’s ability to 
retrieve the true velocity model cor-
responding to a coal seam initially 
defined by a dispersion curve. The 
gpdc tool was imported as a system 
module in the algorithm for the itera-
tive calculation of dispersion curves 
for each model generated. To execute 
the algorithm, a number of model 
layers and a search domain are ini-
tially established for each of the n=11 
parameters. An initial population of 
N=110 random models was created, 
the objective function was calculated 
for each of the models, and the model 
with the highest value of the objective 
function was defined. n+1 models were 
randomly chosen for the assembly of a 
simplex, and from this, a new model 
was obtained with the rebound of the 
simplex in relation to the n+1 point. 
If the objective function of the new 

model obtained was smaller than the 
highest value of the initial population, 
the model was replaced.

The search domain was limited to 
the same ranges used in the above sensi-
tivity tests of the dispersion curves and 
in the objective function maps. The stop-
ping criteria of the algorithm was the 
maximum number of 10000 iterations 
or the minimum value of 0.01% of the 
objective function.

Figure 8 shows scatterplots of 
the seismic parameters of the popula-
tion of models obtained at each itera-
tion during the run of the inversion 
algorithm. These plots record the 
trajectory of the model population 
around the synthetic reference model 
for each iteration. In this way, we can 
evaluate the convergence process of 
the inversion algorithm in terms of ac-
curacy (if the parameters converge to 
the correct values), efficiency (conver-
gence speed), and uncertainty of the 
estimates of each of the parameters 

(standard deviation of the distribu-
tion of values of the final population 
of the models).

The algorithm reaches the stop-
ping criterion with less than 5000 
iterations. Vs1 and Vs3 are the fastest 
convergence parameters (about 1000 
iterations) followed by h1 (3000 itera-
tions), and best determined from the 
model, as previously established by 
the objective function analysis. Vs2 
and h2 tend to converge after 5000 
iterations with the population of 
models oscillating around the real 
value, indicating the presence of un-
certainty in the estimation of the pa-
rameters, while densities and Vp2 are 
the most difficult parameter to fit the 
model. Vp1 and Vp3 slowly converge 
to the correct values due to the low 
sensitivity of these parameters in the 
dispersion curves. Furthermore, the 
parameters corresponding to layer 2 
are more poorly fitted when compared 
to the other layers.

7. Inversion algorithm

Figure 7 - Two-dimensional cross-sections (hyperplanes) of the multi-dimensional 
parameter space representing the surface of the objective function for a particular pair of 

parameters while the other parameters are fixed to their correct values: a - j) Objective function maps (similar to 
topographic maps) resulting from the combination of model densities and thicknesses. True parameter values are centered in 

the graphs and indicated by white circles. The areas of the graphs that do not show objective function values (blank area) are due to 
the lack of contrast of physical properties for that combination of parameters or when the Poisson ratio converges to negative values.
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Figure 8 - Scatter plots of the parameters Vp, Vs, density and thickness of each layer of the population 
of models (vertical axis) in terms of the iteration number of the inversion algorithm (horizontal axis). The solid black 

line is the reference line on the true value of the parameter. The colors of the dots are related to the misfit value of the related model.

Figure 9 shows the misfit between 
the dispersion curves corresponding 
to the synthetic reference model and 

the best model (lowest misfit value) 
obtained after 8268 iterations of the 
inversion algorithm. The parameters of 

the synthetic model and the best model 
obtained from inversion are presented 
in Table 2.
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This study aimed to investigate 
the applicability of the MASW seismic 
method in coal prospecting at the Can-
diota mine, southern Brazil. Theoreti-
cal tests were carried out with synthetic 
data generated from models designed 
from drilling and well cores.

In general, sensitivity tests of the 
seismic model parameters indicated 
the variations in the values of Vp and 
density of the three layers of the model 
do not cause significant changes in the 
dispersion curves obtained. The Vs 
parameter was the main responsible for 
the changes in the dispersion curves. 

Therefore, the study demonstrated 
that the seismic model parameters in-
ferred from the surface wave dispersion 
curves data allow a proper solution to 
be determined for the layer structure 
in terms of S wave velocity, as well as 
layer thicknesses.

The analysis of objective function 
maps supported the sensitivity tests from 
the visualization of the non-uniqueness 
and resolution of the parameters involved 
in the inversion problem.

The implemented CRS inversion 
algorithm proved to be able to recover 
accurately a model represented by seis-

mic velocity inversion and thin layer, 
which according to the local geologi-
cal setting may be associated with the 
presence of a coal seam.

In short, the study demonstrated 
that the MASW method has great 
potential in the exploration of mineral 
resources associated with the carbon-
iferous systems present in southern 
Brazil. Future studies should advance 
in the application of the inversion 
algorithm with real seismic data ac-
quired in the study region and correla-
tion with the geological information 
of the drillholes.
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